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Abstract - Promoting the use of Electric Vehicles (EVs) is a practical way to encourage carbon impartiality and thwart the 

environmental problem. Government regulations and user experiences directly correlate with EV batteries and battery 

management improvements. Alternative engine technologies have become increasingly important in addressing issues with 

traditional automobiles in recent years. To decarbonize the transportation industry, electric vehicles are practical solutions. 

It also becomes crucial to switch from conventional to smart homes and from traditional to EV or HEV vehicles. One of the 

most vital parts of electric vehicles is the battery. When dealing with larger capacity and high-power needs, high-power 

providing battery packs—which are made up of many batteries—are necessary. These large battery packs are prone to 

overheating while being charged and discharged, which can lead to a lot of problems. Consequently, it is imperative to 

employ a battery management system. It is in charge of optimizing the battery pack so that it functions more effectively and 

safely. This essay's primary goals are to simulate a Battery Management System (BMS) model and examine several 

approaches to parameter estimation for a battery management system. It also offers suggestions for the BMS's most effective 

and economical implementation strategies. An efficient battery management system (BMS), primarily used for signaling the 

battery level of charge, is still a key component among the numerous HEV technologies (SOC). Since excessive charging and 

discharging always cause damage to the batteries, the BMS must provide an accurate SOC estimation. Although several 

SOC prediction strategies are available to control battery cell SOC, HEVs require improved SOC estimation capability. The 

construction of a unique deep learning with SOC estimate model for safe energy management technique for this is the main 

emphasis of this paper from this perspective. The proposed model uses a hybrid convolution neural network with long short-

term memory (HCL) model to precisely estimate SOC. The HCL model is used to facilitate modeling and provides an 

accurate representation of the input and output association of the battery model. A detailed experimental investigation 

showed that the proposed model was superior to other current methods in several ways. 

Keywords - Electric Vehicle, HCL, Battery Management System, SOC, Deep Learning. 

1. Introduction 
Energy scarcity and environmental damage have 

recently become significant worldwide challenges, 

particularly as vehicle engineering requirements have 

become more stringent. Few new energy cars, such as 

electric vehicles, have been introduced to replace 

conventional gasoline-powered vehicles to reduce waste gas 

emissions and reproduce energy in driving activities 

(HEVs). The HEV now outperforms the EV in terms of high 

speed and long-distance travel and is a highly viable 

alternate propulsion technology [1]. Since the development 

of electricity, researchers from all over the ecosphere have 

been looking into ways to store liveliness and practice it 

when needed. As a result, the energy storage (ES) sector 

was established and has since developed [3]. The 

development of numerous industries can be aided by 

growing the precision and efficacy of battery models, which 

is a hot area of investigation. These industries include 

electric vehicles (EVs), which also incorporate ES, are 

thought of as green energy sources, and are of interest to 

many academics. Using energy storage devices is becoming 

more common due to the emphasis on lowering greenhouse 

emissions like carbon dioxide (CO2) and the goal to power 

transportation with clean, renewable energy [4]. 

 

The ecology has been harmed, and the quality of the 

world's air has significantly declined due to coal-fired power 

plants with inadequate after-treatment. Internal combustion 

engine (ICE) automobiles and industrial gas emissions have 

worsened urban air pollution. Different electric vehicles 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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(EVs) are being systematically established in a worldwide 

situation due to the ever-worsening state of the environment. 

The rise in popularity of EVs has several benefits, including 

reducing gas emissions and oil reliance, lowering carbon 

footprints and encouraging carbon neutrality, inciting a 

green transportation revolution, and making promises to halt 

climate change [2]. The expansion of electric vehicles (EVs) 

toward globalization is acknowledged as the most effective 

alternative, despite being highly reliant on the foundation of 

electricity. 

 

Using batteries makes it possible to improve the 

consistency and dependability of microgrids with a high 

penetration of renewable energy [5]. Out of all the different 

kinds of batteries that are currently available, the lithium-

ions variety is the one that works the best in electrical 

systems. This is because these batteries have a high 

liveliness and power compactness, a wide working 

temperature range, a long lifespan, the capability to charge 

quickly, and a low rate of self-discharge [6]. The primary 

objective of battery management systems, often known as 

BMSs, is to protect batteries from various dangers, 

including internal and external short circuits, excessive 

current and voltage, and other threats. Even though the past 

decade saw the creation of a large number of studies and 

patents about BMSs and the uses they found, the majority of 

these resources are still open to further investigation [7–9]. 

 

An approximation of the SOC for Li-ion batteries can 

be calculated using one of three methods: the classic 

approach, a model-based approach, or a machine learning 

(ML) approach. Traditional models may be easier to 

understand but cannot be employed in an online 

environment [10]. In addition, the model-based approaches 

are highly good at properly simulating the features of the Li-

ion battery. On the other hand, they have a difficult time 

developing a model that accurately predicts the SOC of 

lithium-ion batteries [11]. On the other hand, the ML-based 

SOC estimation algorithms utilize the influx of data and 

effects processors to estimate the SOC with less prior 

information on the interesting elements of the battery and 

biochemical reaction [12]. This allows for a more accurate 

calculation of the SOC. 

 

On the other hand, the effectiveness of machine 

learning models is heavily dependent on the quantity and 

quality of the training data. On the other hand, the SOC 

estimate that uses recently developed models of deep 

learning (DL) is accurate. The battery needs to have a 

sufficiently lengthy life to prevent having to replace over the 

vehicle's lifetime. Lithium-ion batteries are commonly 

utilized in electric cars. Therefore understanding how they 

degrade over time is crucial to this endeavour. As a battery 

is used to store or discharge energy, its current capacity, 

measured in terms of the state of charge (SoC), declines. 

The range of an electric vehicle is directly related to the 

battery's charge level. Therefore, a battery management 

system, also known as a BMS, is essential to ensure that the 

battery is operated within the safety parameters defined for 

it [13]. The capability of the BMS to correctly estimate the 

state of care is among its most crucial responsibilities. The 

state of charge (SOC) offers a percentage of the battery's 

remaining charge. The SOC can be determined based on 3 

different factors of the battery, including the voltage, the 

current, and the temperature. We can determine when the 

battery desires to be revitalized and how far the car may be 

determined before the battery needs to be recharged by 

using the state of charge [31]. 

 

In this research, we provide an actual deep learning 

(DL)-based SOC assessment model as part of a renewable 

energy management strategy for hybrid and electric vehicles 

(HEVs). In the described model, an accurate SOC 

estimation is accomplished by creating a hybrid convolution 

neural network supported by a long short-term memory 

(HCL) based forecast model. In addition, the barnacles 

mating optimizer (BMO) is utilized to ensure that the hyper-

parameters of the HCL model are properly tuned to ensure 

that an exact estimation of SOC can be obtained. 

 

The residual parts of the study are prepared as shown 

below. Section 2 presents a comprehensive analysis of the 

various SOC estimating methodologies currently in use. The 

HCL method is then broken down into its component parts 

in Section 3, an explanation of the experimental design in 

Section 4, and an evaluation of the findings in Section 5. 

The final part of the study, Section 6, consists of some 

reflections on what was learned. 

2. Related Works 
Zhang et al. [15] developed a particle filter–based 

fusion filtering method for determining the SOC of Li-ion 

units in EVs, combining the optical flow with the classic 

Median filter and the KF as a suggestion dispersion makes it 

feasible to regain the filter's accuracy and speed. Zahid et al. 

[16] developed a novel SOC estimation strategy based on a 

subtractive clustering-enabled neuro-fuzzy system [18]  and 

an advanced vehicle simulator linked to backpropagation 

neural networks (BPNN).   Lai et al. [17] developed a highly 

credible SOC estimation approach that accounts for huge 

sensor and model errors using the SOC increment. As a first 

step, we investigated the features of the SOC error increase 

while using the ampere-hour counting (AHC) and extended 

Kalman filter (EKF) methods. Then we estimated the SOC 

addition with high confidence. Then, an approach that 

utilized AHC and EKF to calculate SOC was developed. 

Figure 1 depicts the most important results from this study, 

which examine the prevalence of Li-ion battery use across 

nations. 

 

The regionalization of the electrical energy group is a 

vital step in transitioning away from fossil fuels and toward 
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RESs [32]. Wind power has increased by 7% and solar 

photovoltaics by 4% during the previous several years on a 

worldwide scale. Wind energy output has increased by 13% 

on average over the past five years, while solar PV-based 

energy generation has increased by 27% over the same time 

period [19,20]. RES are difficult to estimate due to their 

reliance on environmental factors, have limited capacity, 

and are often difficult to install and maintain. High vigorous 

and responsive power fatalities, voltage profile balancing, 

and network dependability are only a few of the problems 

that these features generate in traditional power systems 

[21,22]. Researchers investigate the effects of RES on the 

system using hybrid holdup energy source models and 

improved incorporation methodologies. Batteries and 

electric cars are two of the most popular forms of 

emergency power. They contribute to the grid's reliability 

by supplying power during peak and emergency periods. 

 

 
Fig. 1 Li-on Battery usage by a different country 

Researchers have shown that including battery banks in 

the design of a system makes it more robust. Almost no 

academic work has focused on the possibility of employing 

electric cars for this function. E-vehicle grid integration is 

essential when overcoming electric restrictions. 

 

Standard optimization approaches will not be effective 

for optimizing the HESS systems that are currently in use. 

For this reason, a large number of academics are doing 

research and studies on control systems. Controlling the 

energy flow between the standard battery and the 

supercapacitor by Chatzakis et al. [23] by applying 

algorithmic procedures based on rules[24]. In order to 

determine which rule should be implemented, the threshold 

values of the various parameters (such as load demand and 

battery output current, for example) are compared with one 

another. A lithium-ion is used in the construction of the 

HESS and is maintained utilizing the practices described 

before. The data are associated and analyzed in detail by 

Piao et al. [33]. First-order filtering is outperformed by the 

rule-based technique commonly referred to as the 

"amplitude sharing algorithm." The authors in [14],[25] and 

[26] found that power allocation could be efficiently 

handled with the use of a fuzzy logic organization whenever 

a rechargeable battery and biofuel cell or a battery and 

superconducting magnet were employed as energy storage 

media. In both cases, the power storage systems were used 

as batteries. 

 

Veerendra et al. [34] assessed the feasibility of 

improving the gas mileage and performance of an energy-

electric traction electric vehicle equipped with a 

supercapacitor by employing an electric hybrid management 

strategy. It is possible to guess the SOC by using both the 

EKF and traditional Coulomb counting. Chandran et al. [28] 

established an accurate state-of-charge (SOC) prediction 

model for Li-ion batteries using six distinct machine-

learning models. The models used were artificial neural 

networks, support vector machines, logistic regression, 

collaborative bagging, and ensemble boosting. An intensive 

error investigation of the method was performed to optimize 

the battery recital parameter. Utilizing a refined DNN 

model, How et al. [29] developed a practical approach to 

calculating the SOC of a Li-ion pack for use in EVs[30]. It 

was found during training that a DNN with an appropriate 

hidden layer count can predict the SOC of unknown driving 

cycles with high accuracy. The training procedure was 

evaluated using several different driving scenarios, and a 

standard set of DNN approaches was validated with a 

predetermined amount of hidden layers. 

 

[18] proposed a method for calculating RUL and future 

capacity that took advantage of uncertainty quantification 

methodology. Experts have developed cutting-edge machine 

learning algorithms that use a reliable uncertainty 

management strategy to provide accurate predictions 

regarding the storage capacity and lithium-ion (Li-ion) 

batteries. The next step is to utilize the empirical mode 

decomposition approach, which is exploited to thoroughly 

dissect the battery size into the intrinsic mode function and 

the residual value. We can identify the uncertainty in the 

mean (IMF) and the residual by making use of Long short-

term memory (LSTM). 

3. Methodology 
In this subsection, a convolutional neural network and 

the long short-term memory system hybrid is presented as a 

way of simulating the extremely nonlinear dynamics of 

lithium-ion batteries and calculating battery SOC from 

observable voltage, power, and ambient temperature. The 

convolutional neural network (CNN) layer emphasises real-

time data entry and may derive geographical information 

from battery records. Next, these details are put together to 

form more complex traits. The LSTM is better suited for 

processing time-series data because it uses a hidden cell 

memory to remember the inputs it has already seen. The 

following explains the parts that make up the CNN and 

LSTM networks in more in-depth. 
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3.1. Battery Management System 

As an alternative to other kinds of chemistry, lithium-

ion batteries have found widespread usage in the industry 

for various applications, such as electric cars, due to the 

one-of-a-kind characteristics discussed earlier. Therefore, it 

might be difficult to implement monitoring and control 

systems (BMS) to lengthen the battery's lifespan and 

prevent unanticipated catastrophic events. To effectively 

deploy BMS, its numerous parts must be dissected into their 

constituent aspects and analyzed in depth. Then alternative 

solutions must be investigated to solve their deficiencies and 

boost their overall performance. The primary components of 

the BMS are broken down in Fig. 2, which may be used as a 

reference for discussions and inquiries.  

 

As a result of the multiple problems posed by the 

battery packs, electric vehicles (EVs) require constant 

monitoring of the battery status, both under normal and 

abnormal operating situations.  

 

Monitoring of individual battery cells comprises 

providing signals of battery state and functioning. To 

prevent harm to the battery cells from high current or 

voltage, keeping an eye on both the current and the 

temperature is essential. To analyze EV spending patterns 

and predict the battery's future health, data-driven 

methodologies and edge detection can be employed. To do 

this, sensors and a data-collecting system are used to keep 

track of the battery cells' energy, power, and temperature. 

When in charging or discharging mode, often known as 

when an electric vehicle is being driven on public roads or 

when it is linked to the power grid, the batteries of electric 

cars need to be safeguarded from excessive current or 

voltage. As a result, battery management in various modes 

is essential if one wants to safeguard the battery and extend 

the battery's life cycle successfully. 

 
Fig. 2 The Battery Management System Overview 

3.2. BMS Hardware Structure 

Electric vehicles' power systems consist of the BMS, 

start charging circuit, and battery stack. Managing the 

batteries is the job of the Battery Management System 

(BMS). For this purpose, it employs CAN communication 

to talk to the ECU and relays A, B, and C to regulate the 

charge and discharge circuit. The electric vehicle receives 

power from the battery tower when relays A and B are 

connected; the battery pile is recharged when relays A and 

C are activated.  

 

The battery stack supplies power to the electric car 

when relays A and C are connected. The BMS makes use of 

a wide variety of measuring units. The thermal sampling 

device keeps tabs on the charge lane's internal temperature 

by means of a sensor. The battery management system 

(BMS) will shut down the entire circuit if the battery stack's 

temperature goes beyond the safe threshold due to 

overcurrent or any other problems in the system. This is 

done to protect the battery stack from being permanently 

damaged or even exploding. The voltage sampling device 

monitors the voltage of each cell as well as the overall 

voltage of the battery stack. The BMS uses voltage 

information to execute over-charge/over-discharge 

protection and charge balance. By measuring this current, 

the current sampling device determines how much current 

flows through the Hall sensor in the charge/discharge 

circuit. The current information is the maximum significant 

signal for determining a battery stack's charge state. 

3.3. Proposed Model 

Within the scope of this article, an efficient tactic for 

accurate SOC estimation in HEVs has been devised. The 

proposed method contains two primary processes, namely, 

HCL-based forecast and hyperparameter modification. Both 

of these processes are described in more detail below. At 

this point in the process, it is possible to ascertain both the 

proposed approach's input and output. The SOC selection 

mechanism occurs at step 𝑛. Hence the 𝑆𝑂𝐶(𝑛) value can 

be considered a benchmark input representing the current 

battery health. This is because NN is conceptually grounded 

on neural networks. A change in external factors, like the 

battery's voltage level, does not have a linear effect on it. 

The battery terminal voltage 𝑉𝑙(𝑛) is understood to be the 

input, whereas the straight restriction current 𝐼𝑛(𝑛), which 

may be represented as the output, is considered the input. It 

is also possible to use 𝑉𝑙(𝑛 − 1) (the final voltage at 

sampling step 𝑛 − 1) as the third input to the suggested 

approach. The terminal state of a battery is represented by 

the value 𝑣(𝑛 − 1) and serves as an indication of the 

battery's former operational condition. 

 

The terminal voltage measured at step 𝑛 is represented 

by the notation. 
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𝑉𝑙(𝑛𝑟) = 𝑉(𝑆𝑂𝐶(𝑛𝑟)) + 𝐼𝑅𝑠(𝑛𝑟) + 𝐶𝑅𝐶(𝑛𝑟) (1) 

 

𝐼𝑅𝑠 indicates the battery's internal confrontation and 

𝐶𝑅𝐶 represents the RC circuit voltage. 

 

𝑉𝑙(𝑛𝑟) = 𝑓(𝑣(𝑛𝑟 − 1), 𝐼𝑛(𝑛𝑟), 𝑆𝑂𝐶(𝑛𝑟))  (2) 

 

The battery’s input and output vectors are represented as 

 

𝐴(𝑛𝑟) = [𝑉(𝑛𝑟 − 1)𝐼𝑛 𝑆𝑂𝐶(𝑛𝑟)]𝑇   (3) 

 

𝑉𝑙(𝑛𝑟) is the output route of the battery.  

 

𝐹(𝐴(𝑛𝑟)) = 𝑉𝑙(𝑛𝑟)    (4) 

3.4. HCL Model 

For the purpose of determining the SOC of the HEVs in 

this investigation, the HCL model was applied. The CNN 

layer is utilized within the HCL model to carry out the 

process of automatically extracting the patterns. The LSTM 

layer is used to learn the sequence of characteristics once 

more. The CNN and LSTM learning processes provide 

results fed into the HCL model, which then uses those 

results to make ongoing adjustments to the hyperparameters. 

The CNN technique is applied to derive variables essential 

to the organization process, which may be carried out by the 

class activation map, and extract correlations present in the 

data. This is done so that the CNN method can be used for 

data analysis. Figure 3 shows the overall architecture of the 

HCL model. 

 
Fig. 3 HCL model structure 

The Convolutional Neural Network, or CNN, is useful 

for pattern acknowledgment and feature abstraction. An 

input layer, a convolutional layer, a fully connected layer, a 

pooling layer, and an output layer are the typical layers that 

make up a typical CNN. These layers are depicted in Figure 

4. The CNN starts with a set of filters and then performs 

layer-by-layer intricacy and combining operations to extract 

the topological characteristics concealed within the data. 

The CNN can capture the spatial aspects of the input with 

very few parameters and then combine those features with 

others to produce higher-level features. After that, the fully 

connected layer receives these characteristics for the sake of 

further classification or regression. 

 
Fig. 4 CNN architecture 

To obtain a collection of features, the convolutional 

operation 𝑐 is represented by equation (5). The convolution 

procedure applies a product operation to the dataset that has 

been trained with the use of a feature map that has the 

dimensions𝑓𝑚𝑐−1. During the process of extracting the 

relevant areas of the feature map, the kernel 𝑘𝑤𝑙,𝑛
𝑐
 assigns 

different weights to each individual region. In addition, the 

correlation between the neighboring characteristics may be 

determined by the multiplicative operations. In addition, the 

bias matrix 𝐵 𝑙
𝑐can be applied to modify the weight 

produced by the NN process. After performing the product 

operation on the count of feature mappings 𝑓𝑚1
𝑐
, 𝑦𝑙

𝑐 is sent 

on to the succeeding convolution layer. 

 

In Equation (5), 𝑓(𝑎) represents an activation function, 

ReLU, used in layer 𝑙. This allows for the creation of a 

nonlinear decision boundary. Using many layers of the 

convolution technique accomplishes the extraction of 

features. 

𝐼𝑙
𝑐 = 𝐵𝑖𝑙

𝑐 + ∑ 𝑇𝑙,𝑚
𝑐𝑛1

𝑐−1

𝑚=1 ∗ 𝑋𝑚
𝑐−1   (5) 

𝑂𝑙
𝑐 = 𝑔𝑙𝑓(𝑦𝑙

𝑐−1), 𝑓(𝑥) = {
  𝑥            𝑖𝑓 𝑥 ≥ 0 
0             𝑖𝑓 𝑥 ≤ 0

           (6) 

Using the pooling layer to improve the classification 

result while lowering the computational cost is possible. 

The pooling layer function provides a reduction in 

overfitting while also facilitating the efficient derivation of 

features. 

 

One of the most often used variations of RNN is called 

an LSTM. When employing a traditional gradient-based 

training framework, RNNs are unable to resolve long-term 

dependencies because of phenomena known as gradient 

vanishing and gradient explosion. The LSTM network, on 

the other hand, employs hidden memory rather than 

traditionally hidden nodes to circumvent these limitations. 

The construction of an LSTM unit is represented in Figure 

6.  
 

Input gate 𝐼, which determines what fraction of the 

input signal will be merged into the cell remembrance; 

forget gate 𝐹, which characterises the forgetting rate of the 

cell recollection given the current input; and Output gate 𝑂, 

which regulates the effect of the cell memory on the node 
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output, make up this structure. Starting at time 𝑇, an LSTM 

unit performs its forward run in the following fashion: 

 

 
Fig. 5 LSTM architecture 

𝐹𝑡 = 𝜎𝐹(𝑤𝐹𝑥𝑡 + 𝑉𝐹ℎ𝐼𝑡−1 + 𝑏𝐹   (7) 

 
𝐼𝑡 = 𝜎𝐼(𝑤𝐼𝑥𝑡 + 𝑉𝐼ℎ𝐼𝑡−1 + 𝑏𝐼   (8) 

 
𝑂𝑡 = 𝜎𝑂(𝑤𝑂𝑥𝑡 + 𝑉𝑂ℎ𝐼𝑡−1 + 𝑏𝑂   (9) 

 
𝑀𝑡 = 𝐹𝑡 ∘ 𝑀𝑡−1 + 𝐼𝑡 ∘ 𝜎𝑀(𝑤𝑀𝑥𝑡 + 𝑉𝑀ℎ𝐼𝑡−1 + 𝑏𝑀)    (10) 

 
ℎ𝐼𝑡−1 = 𝑂𝑡 ∘ 𝜎ℎ𝑙(𝑀𝑡)               (11) 

 
Hadamard product is denoted as ∘ . and the 𝑥𝑡 is the 

input data, the hidden memory unit is denoted as ℎ𝐼𝑡−1.  

𝜎𝐹 , 𝜎𝐼, 𝜎𝑂 , 𝜎𝑀 are the activation functions of all gates. 

  

What follows is an example of the 1D convolutional 

layer's impact in action. Different features of the data may 

be extracted and utilised as input to the LSTM layer by 

adjusting the weight of the convolution and the breadth of 

the window. Applying a DFT or a wavelet transform to the 

original data is similar to doing a 1D convolution using the 

same kernel. So, the characteristics are taken out in the 

spectral domain. This is due to the fact that 1D convolution 

is analogous to other signal-processing tasks. The LSTM 

network is now probing the associations between the current 

output and the inputs it has received in the past, while the 

inclusion of CNN forces the network to further capitalise on 

the linkages existing within the input it is getting at the time. 

The connection between power, voltage, average current, 

temperature, and average voltage might help shed light on 

its sometimes murky or paradoxical manifestations. The 

acquisition of these features is indicative of the CNN 

network's training to diminish estimate error. At each 

forward pass during training, the mean squared error (MSE) 

is chosen to serve as the aggregate loss function: 

𝑀𝑆𝐸

=
1

𝑚
∑ (𝑦𝑚

𝑛

𝑚=1

− 𝑦̂𝑚)2                                                                                      (12) 

 
The root mean square error (RMSE) and the mean 

absolute error (MAE) are used in the challenging phase to 

appraise the recital of the planned network: 
 

𝑅𝑀𝑆𝐸

= √
1

𝑚
∑ (𝑦𝑚 − 𝑦̂𝑚)2

𝑛

𝑚=1

                                                        (13) 

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑦𝑚 − 𝑦̂𝑚|

𝑛

𝑚=1

                                             (14) 

 

The MAE is a measurement that ignores the sign of the 

genuine values to determine how near the estimation is to 

the actual values. In contrast, the root-mean-square error 

(RMSE) is more sensitive to high mistakes and acts as a 

characterising measure for error variance. 

4. Experimental Setup 
Experiments were performed using cylindrical A123 

18650 battery samples and an Arbin BT2000 battery tester. 

The battery tester was calibrated with a lithium iron 

phosphate (LFP) cathode and a graphite anode. Mits Pro, a 

piece of software developed by Arbin, was used to regulate 

the charge/discharge profile of the battery. Using a 

temperature chamber manufactured by Votsch, the 

temperature of the surrounding air around the battery 

samples was controlled. 

 

The Adam optimizer is chosen to use to realize the goal 

of minimizing the total loss. This optimizer modifies the 

weights and biases of the network based on the gradient of 

the loss function. The starting learning rate is set at 0.01, 

which is the default. Both of the decay rates are set to their 

respective default values of 0.999. In the LSTM layer and 

the fully linked layer, we use a dropout rate of 20% since we 

are concerned about the possibility of over-training 

occurring during the training phase. 

4.1. Dataset 

At room temperature, the DST data, the FUDS data, 

and the US06 data are used to train the proposed CNN-

LSTM network in this section. Overall, 33165 data are used 

for training and testing purposes, 24815 data are used for 

testing, and the remaining data are used for testing. Figure 6 

shows the data distribution used in our proposed model. 
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Fig. 6 The number of data used in our HCL model 

4.2. SOC initial Value 

Data on Lithium-ion open-circuit amplitude and SOC 

are used in Figure 7 to depict the relationship between these 

two variables. There is no doubt that the voltage measured 

with the circuit open at the present moment may be used to 

compute the SOC value. The link between the SOC value of 

an electric car during its parking period and the amount of 

time necessary for the battery to achieve a steady state. The 

SOC value decreases as time passes, which is the factor that 

establishes whether or not Figure 7 is suitable for use as the 

starting point for the SOC value. 

 
Fig. 7 The link between the open-circuit voltage and the SOC 

 

5. Performance Evaluation 
Data from the DFU test is used to evaluate the quality 

of live SOC estimate, whereas data from the DST test, the 

FUDS test, and the US06 test are used to train the HCL 

network described in Section III. In addition, the recital of 

the network is examined. As seen in Figure 8, the RMSE 

soon falls below 4% after 2000 epochs, and then after 6200 

epochs, it practically remains within 2% of that value. 

Around epochs 6000–8000 and 11000–12000, fluctuations 

can be seen in the RMSEs. These fluctuations indicate that 

the optimization process is jumping from one optimal local 

state to another. Training and testing errors both reach their 

lowest point on a global scale between epochs 8000 and 

11000. Therefore, 10,000 is an appropriate number to use as 

the training epoch. 

 

 
Fig. 8 The root means square errors (RMSEs) of the epoch range is 

from 1 to 15000 

 
The results of each case's RMSE and MAE are arranged 

in Table 1, where it can be understood that each case's 

RMSE is under 2% and each case's MAE is within 1.5%. 

Table 1. RMSE and MAE of Initial SOC 

SOC 
RMSE (%) MAE (%) 

CNN LSTM HCL CNN LSTM HCL 

100 6.32 0.85 0.45 5.42 0.85 0.35 

80 6.7 1.52 1.25 5.62 0.85 0.92 

60 7.25 3.62 0.85 4.56 1.99 0.52 

40 7.89 3.12 1.45 5.6 1.2 0.4 

20 6.59 1.2 0.65 6.02 0.95 0.35 

 
It has been found that the RMSEs and MAEs of the 

estimate are larger within the 42% to 88% range rather than 

growing with the initial SOC bias. Table 1 contains a 

tabulation of further statistical findings, which shows that 

the initial SOC falls from 100% to 20% by a factor of 20%. 

The RMSEs and MAEs produced by the proposed network 

are consistently lower than those produced by the LSTM 

and CNN networks. Figures 9 and 10 show the RMSE and 

MAE values for the proposed model. 

 
Fig. 9 RMSE of CNN, LSTM and HCL models 
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Fig. 10 MAE of CNN, LSTM and HCL models 

In addition, the estimation results are shown in Figure 

11, with the starting SOC set to 60%. As was to be 

predicted, the CNN network's estimation results are quite 

similar. This time around, the proposed network can 

converge to the actual SOC at a significantly quicker rate 

than the LSTM network. The planned network is once again 

more stable and precise once it has gone through the second 

step.  

 

Compared to the LSTM network, the RMSE and MAE 

of the planned network come in at 0.95% and 0.39%, 

respectively, whereas those of the LSTM network comes in 

at 3.67% and 3.23%, respectively, correspondingly. Even 

though it has the lowest performance overall, the CNN 

network is the least affected by variables whose starting 

points are unknown. Both the LSTM network and the 

proposed network have the same problem when it comes to 

SOC approximation: it is initially conquered by an unknown 

starting SOC. When all of the networks have finally 

converged on the real SOC, the projected network will have 

superior recital accuracy and consistency. 

 
(a) 

 

 
(b) 

Fig. 11 Approximation results for SOC assuming a starting value of 60%: (a) estimate inaccuracy; and (b) SOC tracking. 

 



S. Manoj & S. Pradeep Kumar / IJEEE, 10(1), 209-218, 2023 

 

217 

It has been found that the RMSEs and MAEs of the 

estimate are larger within the 42% to 88% range rather than 

growing with the initial SOC bias. The appearance of a flat 

zone in the OCV-SOC curve for the LFP batteries might 

explain this phenomenon. The area with a SOC between 

40% and 80% is quite flat, which indicates that the 

measured battery physical states are pretty stable throughout 

this range. This is something that is desired for the battery 

when it is being used as a power source. On the other hand, 

because of this trait, it is considerably more difficult to infer 

the original SOC. This is because even a slight variation in 

the OCV can lead to a significant variation in SOC estimate. 
 

6. Conclusion  
In this study, we proposed estimating the charge level 

of lithium iron phosphate batteries with a convolutional 

neural network (CNN) combined with a long short-term 

memory (LSTM) network. The network was qualified using 

information from several diverse discharge profiles. These 

profiles were the DST, US06, and FUDS. Data from a new 

collective DFU profile was used to assess the efficacy of the 

projected network for SOC calculation. The results of the 

experiments show that the suggested network can 

successfully capture the nonlinear correlations between the 

state of charge (SOC) and the input variables of the 

network, specifically power, voltage, temperature, average 

power, and average voltage. Within the scope of this work, 

an efficient deep learning-based approach for precise SOC 

estimation in HEVs was devised. The HCL method contains 

two key processes: HCL-based prediction and 

hyperparameter tuning. 
 

Both of these processes are described here. The use of 

the HCL model makes the modelling process simpler and 

delivers an accurate portrayal of the input–output 

relationship of the battery model. This is made possible by 

the utilization of the HCL model. In addition, selecting the 

most appropriate values for the hyperparameters enables a 

reduction in the error rate and an improvement in the 

accuracy of the predictions. In order to provide evidence of 

the technique's superior performance, a number of 

simulations were run, and the results were analyzed in a 

number of different ways. An exhaustive comparison study 

found that this method is superior to more contemporary 

methods that are considered state-of-the-art in terms of 

various categories and subcategories. As a result, the 

proposed approach has the potential to function as an 

efficient instrument for the precise and speedy estimate of 

SOC in the electric vehicle. In the not-too-distant future, 

hybrid optimization algorithms will be able to be built for 

enhanced SOC estimate results and will be able to be 

applied in a real-time setting. 

 
It is preferable to account for various uncertainties, 

such as the noise effect and the various temperature 

conditions, during the data acquisition process because the 

Li-ion battery may be subjected to a wide range of 

environmental conditions in the real world that cannot be 

replicated in laboratories. More study is needed to determine 

the best ways to optimize machine learning systems and 

reduce their computational efficiency. Since the algorithms 

in realistic real-time systems must be processed at rapid 

rates, lesser data-based solutions are used to accelerate the 

learning. In order to meet the challenges of everyday life, 

this is essential. In addition, parallel computing techniques 

might be used to hasten the learning and computing phases. 

 

References  
[1] Pier Giuseppe Anselma, “Computationally Efficient Evaluation of Fuel and Electrical Energy Economy of Plug-In Hybrid Electric 

Vehicles with Smooth Driving Constraints,” Applied Energy, vol. 307, pp. 118247, 2022.  

Crossref, https://doi.org/10.1016/j.apenergy.2021.118247 

[2] Chau K.T., Energy Systems for Electric and Hybrid  Vehicles, Institution of Engineering and Technology, 2016  

Crossref, https://doi.org/10.1049/PBTR002E 

[3] Yury Dvorkin et al., “Ensuring  Profitability of Energy Storage,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 611– 623, 

2017. Crossref, https://doi.org/10.1109/TPWRS.2016.2563259 

[4] Ridoy Das et al., “Multi-Objective Technoeconomic-Environmental Optimisation Of Electric Vehicle For Energy Services,” Applied 

Energy, vol. 257, pp. 113965, 2020. Crossref, https://doi.org/10.1016/j.apenergy.2019.113965 

[5] DolfGielen et al., “The Role of Renewable Energy in The Global Energy Transformation,” Energy Strategy Reviews, vol. 24, pp. 38– 

50, 2019. Crossref, https://doi.org/10.1016/j.esr.2019.01.006  

[6] Kailong Liu et al., “A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles,” Frontiers of 

Mechanical Engineering, vol. 14, no. 1, pp. 47–64, 2019. Crossref, https://doi.org/10.1007/s11465-018-0516-8 

[7] Nisha C. Rani, and N Amuthan, "Soft-Switching Integrated Quasi Resonance Buck-Boost Converter for HHO Optimized Grid 

Connected PV System," SSRG International Journal of Electrical and Electronics Engineering, vol. 9, no. 8, pp. 28-39, 2022.  

        Crossref, https://doi.org/10.14445/23488379/IJEEE-V9I8P104 

[8] R. Venkedesh, R. Anandha Kumar, and G. Renukadevi, "Multilevel Inverter Design with Reduced Switches & THD Using Fuzzy 

Logic Controller," SSRG International Journal of Electrical and Electronics Engineering, vol. 9, no. 12, pp. 1-21, 2022.  

Crossref, https://doi.org/10.14445/23488379/IJEEE-V9I12P101 

[9] Farithkhan Abbas Ali, and E. D. Kanmani Ruby, "Clustering Metric Algorithm for Cost-Effective Routing in Flying Ad-hoc 

Networks," SSRG International Journal of Electrical and Electronics Engineering, vol. 9, no. 12, pp. 101-108, 2022.  

Crossref, https://doi.org/10.14445/23488379/IJEEE-V9I12P108 

https://doi.org/10.1016/j.apenergy.2021.118247
https://doi.org/10.1007/s11465-018-0516-
https://doi.org/10.14445/23488379/IJEEE-V9I8P104
https://doi.org/10.14445/23488379/IJEEE-V9I12P101
https://doi.org/10.14445/23488379/IJEEE-V9I12P108


S. Manoj & S. Pradeep Kumar / IJEEE, 10(1), 209-218, 2023 

 

218 

[10] Murali Matcha et al., "Design and Performance Analysis of Multilayer Neural Network-based Battery Energy Storage System for 

Enhancing Demand Side Management," SSRG International Journal of Electrical and Electronics Engineering, vol. 9, no. 10, pp. 7-

13, 2022. Crossref, https://doi.org/10.14445/23488379/IJEEE-V9I10P102 

[11] Xiong, Rui et al., “Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries with Multi-Stage Model Fusion Method,” 

Engineering, vol. 7, no. 10, pp. 1469–1482, 2021. Crossref, https://doi.org/10.1016/j.eng.2020.10.022 

[12] Chen, Xiaopeng  et al., “Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge 

Estimation in Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 1936–1947, 2015.  

        Crossref, https://doi.org/10.1109/TVT.2015.2427659 

[13] Thiruvonasundari Duraisamy, and Deepa Kaliyaperumal, “Machine Learning-Based Optimal Cell Balancing Mechanism for Electric 

Vehicle Battery Management System”, IEEE Access, vol. 9, pp. 132846-132861, 2021.  

Crossref, https://doi.org/10.1109/ACCESS.2021.3115255 

[14] S. Gopiya Naik et al., "Battery Parameter Monitoring and Control System for Electric Vehicles," SSRG International Journal of 

Electrical and Electronics Engineering, vol. 9, no. 3, pp. 1-6, 2022. Crossref, https://doi.org/10.14445/23488379/IJEEE-V9I3P101 

[15] Zhang Ming, Wang Kai, and Yan-Ting Zhou, “Online State of Charge Estimation of Lithium-Ion Cells Using Particle Filter-Based 

Hybrid Filtering Approach,” Complexity, pp. 1–10, 2020. Crossref, https://doi.org/10.1155/2020/8231243 

[16] Zahid, Taimoor et al., “State of Charge Estimation for Electric Vehicle Power Batteries Using Advanced Machine Learning 

Algorithms under Diversified Drive Cycles,” Energy, vol. 162, no. 1, pp. 871–882, 2018.  

        Crossref, https://doi.org/10.1016/j.energy.2018.08.071  

[17] Lai, Xin et al., “A Hybrid State-of-Charge Estimation Method Based on Credible Increment for Electric Vehicle Applications with 

Large Sensor and Model Errors,” Journal of Energy Storage, vol. 27, pp. 101106, 2020.  

Crossref, https://doi.org/10.1016/j.est.2019.101106 

[18] Ravindra Panchariya, and Dr. Poonam Syal, "An Improved Current Control Charging Scheme Using Neuro-fuzzy and Fopid Based 

Mppt System for EV Charging," International Journal of Engineering Trends and Technology, vol. 69, no. 10, pp. 251-257, 2021. 

Crossref, https://doi.org/10.14445/22315381/IJETT-V69I10P232 

[19] Eric Paglia, and Charles Parker, “The Intergovernmental Panel on Climate Change: Guardian of Climate Science,” Guardians of 

Public Value, pp. 295–321, 2021. Crossref, https://doi.org/10.1007/978-3-030-51701-4_12  

[20] Wei He et al., “Optimal Analysis of a Hybrid Renewable Power System for a Remote Island,” Renewable Energy, vol. 179, pp. 96–

104, 2021. Crossref, https://doi.org/10.1016/j.renene.2021.07.034 

[21] Alberto  Boretti, and Stefania Castelletto, “Cost and Performance of CSP and PV Plants of Capacity above 100 MW Operating in the 

United States of America,” Renewable Energy Focus, vol. 39, pp. 90–98, 2021. Crossref, https://doi.org/10.1016/j.ref.2021.07.006  

[22] Octavio Alves et al., “Techno-Economic Study For a Gasification Plant Processing Residues of Sewage Sludge and Solid Recovered 

Fuels,” Waste Management, vol. 131, pp. 148–162, 2021. Crossref, https://doi.org/10.1016/j.wasman.2021.05.026 

[23] J. Chatzakis et al., “Designing a New Generalized Battery Management System,” IEEE Transactions on Industrial Electronics, vol. 50, 

no. 5, pp. 990–999, 2003. Crossref, https://doi.org/10.1109/TIE.2003.817706 

[24] R Sivapriyan et al., "Comprehensive Review on State of Charge Estimation in Battery Management System" International Journal of 

Engineering Trends and Technology, vol. 70, no. 7, pp. 169-179, 2022.  

        Crossref, https://doi.org/10.14445/22315381/IJETT-V70I7P218 

[25] Z. Cheng-Ning et al., “Design on the Dispersed Management System for the Traction Battery Pack in Electric Transmission Vehicle,” 

Acta Armamentarii, vol. 28, no. 4, pp. 396–398, 2017.  

[26] Min Luo et al., “Online Battery Monitoring System Based on GPRS for Electric Vehicles,” 2013 5th International Conference on 

Intelligent Human-Machine Systems and Cybernetics, pp. 122-125, 2013. Crossref, https://doi.org/10.1109/IHMSC.2013.36 

[27] G. Muneeswari et al., "Urban Computing: Recent Developments and Analytics Techniques in Big Data" International Journal of 

Engineering Trends and Technology, vol. 70, no. 7, pp. 158-168, 2022. 

        Crossref, https://doi.org/10.14445/22315381/IJETT-V70I7P217 

[28] Venkatesan Chandran et al., “State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning 

Algorithms,” World Electric Vehicle Journal, vol. 12, no. 1, pp. 38, 2021. Crossref, https://doi.org/10.3390/wevj12010038 

[29] Dickson N.T. How et al., “State-of-Charge Estimation of Li-Ion Battery In Electric Vehicles: A Deep Neural Network Approach,” 

IEEE Transactions on Industry Applications. Vol. 56, pp. 5565–5574, 2020. Crossref, https://doi.org/10.1109/TIA.2020.3004294 

[30] R.Jeyapandi Prathap et al., "A New Resonant Converter Topology for Ev," SSRG International Journal of Electronics and 

Communication Engineering, vol. 9, no. 3, pp. 9-15, 2022. Crossref, https://doi.org/10.14445/23488549/IJECE-V9I3P102 

[31] Yuanliang Fan et al., “Data-driven State-of-Charge Estimation of Lithium-Ion Batteries,” International Conference on Power 

Electronics Systems and Application, pp. 1-5, 2021. Crossref, https://doi.org/10.1109/PESA50370.2020.9344017 

[32] Kailong Li et al., “A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful 

Life of Lithium-ion Battery,” IEEE Transactions On Industrial Electronics, vol. 68, no. 4, pp. 3170-3180, 2021.  

Crossref, https://doi.org/10.1109/TIE.2020.2973876 

[33] Changhao Piao et al., “VRLA Battery Management System Based on LIN bus for electric vehicle,” Advanced Technology in Teaching, 

vol. 163, pp. 753–763, 2012. Crossref, https://doi.org/10.1007/978-3-642-29458-7_105 

[34] Arigela Satya Veerendra et al., “Hybrid Power Management for Fuel Cell/Supercapacitor Series Hybrid Electric Vehicle,” 

International Journal of Green Energy, vol. 18, no. 2, pp. 128–143, 2020. Crossref, https://doi.org/10.1080/15435075.2020.1831511  

 

 

https://doi.org/10.14445/23488379/IJEEE-V9I10P102
https://doi.org/10.14445/23488379/IJEEE-V9I3P101
https://doi.org/10.1016/j.energy.2018.08.071
https://doi.org/10.1016/j.est.2019.101106
https://doi.org/10.14445/22315381/IJETT-V69I10P232
https://doi.org/10.1109/TIE.2003.817706
https://doi.org/10.14445/22315381/IJETT-V70I7P218
https://doi.org/10.1109/IHMSC.2013.36
https://doi.org/10.14445/22315381/IJETT-V70I7P217
https://doi.org/10.14445/23488549/IJECE-V9I3P102
https://doi.org/10.1109/PESA50370.2020.9344017
https://doi.org/10.1109/TIE.2020.2973876
https://doi.org/10.1007/978-3-642-29458-7_105

