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Abstract - The automatic speaker verification system is vulnerable to several spoofing attacks. Among these spoofing attacks, 

detecting replay attacks is challenging as attackers do not need any expertise to mount replay attacks. Many efforts from the 

research community have focused on anti-spoofing solutions against the reply attack. Such efforts are classified as one focusing 

on feature extraction and others concentrating on classifiers. This work evaluates the performance of feature extraction schemes 

CQCC, LFCC, and MFCC. The success of Linear Prediction analysis has been demonstrated in the past. This work evaluates 

the performance of LPC and LPCC features. The recent work in the literature has focused on using multiple features and 

combining these features for improved performance. In this work, numerous components of CQCC, MFCC, LFCC, LPC and 

LPCC are integrated considering various combinations and evaluated. In literature, the success of Timbrel features has been 
demonstrated for speaker identification. The feature vector formed using various Timbrel features is integrated with cepstral 

and linear prediction-based features. Finally, Timbrel features zero cross rate are combined with these multiple features. Among 

all experiments carried out on the ASVspoof 2017 version 2 database, EER 5.44% is achieved for the integration of zero cross 

rate and LPC on the development set and 17.79% EER is conducted for the integration of zero cross rate, MFCC, CQCC, LFCC, 

and LPCC features on evaluation set.    

Keywords - Automatic Speaker Verification, Replay attack, Timbrel features, T-SNE, Zero cross rate. 

1. Introduction  
A biometric system intends to verify a person’s biological 

and behavioural characteristics [1]. The classification of body 

traits that can be used for biometric recognition includes 

anatomical and behavioural features [1, 2] Anatomical 

characteristics listed in [1] include iris, face, hand geometry, 

fingerprint, palm print and ear shape. In contrast, some 

behavioural features are signature, gait, and keystroke 

dynamics [1]. “Voice biometrics can be considered either as 

an anatomical or as a behavioural characteristic” [1, 2]. It is 

essential to have a robust and secure system from the 

deployment perspective. Speaker identification and speaker 
verification are part of speaker recognition [3]. Speaker 

identification is the system which identifies who the speaker 

is, and speaker verification is the system which verifies the 

claimed identity, whether true or false. Applications of 

Automatic Speaker Verification (ASV) systems include 

access to systems that handle classified information and 

banking transactions [4]. Only enrolled speakers and users can 

access the ASV system [4]. Non-genuine or imposter speakers 

are those who do not have access. However, the 

imposter/attacker deliberately attempts to gain unauthorized 

access to the ASV system, called spoofing attacks on ASV [4]. 

The spoofed speech samples can be produced through 

speech synthesis, voice conversion, or the replay of recorded 

speech. Spoofing attacks can be divided into direct and 

indirect attacks based on how the spoof samples are presented 

to the ASV system. Through the sensor, the samples are used 

as input for the ASV system in direct attacks (also known as 

Physical Access (PA) attacks); direct attack is at the 

transmission and microphone level [1]. The samples passing 

the sensor, or the ASV system software process, are subject to 

indirect attacks, often called Logical Access (LA) attacks, 
which entail accessing the samples during feature extraction, 
tampering with the models, and decision-making or score 

computation stages [1]. Figure 1 shows the block diagram of 

a spoofing attack considering direct and indirect attack points. 

Automatic Speaker Verification (ASV) system is vulnerable 

to various types of spoofing attacks, including speech 

conversion, impersonation text-to-speech synthesis and replay 

attacks. The research community focused on robust 

countermeasures for detection of spoofed speech. Several 

challenges were held in the past for developing novel 

approaches for detecting spoofed speech. Table 1 summarizes 

the challenges faced during INTERSPEECH workshops. 
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Fig. 1 Block diagram of spoofing attack considering direct attack and indirect attack points [1]

Table 1. Summary of ASVspoof challenges 

Sr. No. Challenge Comment 

1 INTERSPEECH 2013 [5] 
Details of different ASV system vulnerabilities and their corresponding 

mitigation strategies were published. 

2 ASVspoof 2015 Challenge [6] 
Concentrated on developing several countermeasures against speech 

synthesis and voice conversion spoofs 

3 ASVspoof 2017 challenge [7] The focus was exclusively on replay spoof speech detection 

4 ASVspoof 2019 challenge [8] The emphasis was on synthetic or simulated replay 

5 ASVspoof 2021 challenge [9] Three-track challenge including LA, PA, and DeepFake detection 

 

Among these attacks, replay attacks are most accessible 

for the imposter. In a replay attack, the target speaker’s 

recorded voice is used to get unauthorized access. Detecting 

replay attacks is more challenging because of high-quality 
recording devices and playback systems. Also, the 

attacker/imposter requires no skills or technical knowledge to 

mount the replay attack. ASVspoof 2017 challenge mainly 

focused on developing countermeasures for detecting 

replayed spoofed speech. There have been several efforts to 

detect replay attacks in the ASVspoof 2017 challenge. The 

ASVspoof 2017 challenge focused on developing 

countermeasures using acoustic characteristics of genuine 

versus replayed speech [10]. The literature analysis for the 

work carried out by researchers in the ASVspoof 2017 

challenge is discussed next. In [11], CQCC, MFCC, LFCC, 

IMFCC, RFCC, LPCC, SCFC, SCMC, and SSFC are 
compared for replay attack detection. Out of these features, it 

is mentioned in [11] that Subband Spectral Centroid 

Magnitude Coefficients (SCMCs) perform better for replay 

attack detection. Another approach proposed for the replay 

attack detection includes VESA-IFCC features [12], score 
level fusion of IFCC, CQCC and MFCC [13], high frequency 

analysis of IMFCC, LPCC, LPCCres, CQCC, and Cepstrum 

features [14]. 

The work in [15] systematically analyzed the state-of-the-

art voice Presentation Attack / Spoofing Attack Detection 

(PAD) systems. As mentioned in [15], the work carried out by 

various researchers may use fusion or not. Two main fusion 

techniques score fusion and feature fusion were applied in the 

works that employ fusion. Other fusion techniques are 

available; however, they are few. To consider multiple scores 

produced by voice PAD models in the classification decision, 

score fusion is used [15-17].   
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Table 2. Summary of approaches from literature focused on using multiple features and fusion 

Sr. 

No. 
Author Features Database EER (%) 

1 
Gupta et al., 2023 

[4] 

Score Level Fusion of 

CQCC, CFCC, CFCCIF, 

CFCCIF-ESA, CFCCIF-

QESA 

ASVspoof 2017 

Version 2 

9.21% EER on the 

Development Set and 

11.24% EER on the 

Evaluation Set 

2 
Dutta et al. 2021 

[22] 
SCQCC+GMFCC 

ASVspoof 2017 

Version 2 

8.60% EER on Evaluation 

Set 

3 
Kamble and Patil 

2021, [10] 

CQCC+LFCC+MFCC 

+TECC 

ASVspoof 2017 

Version 2 

6.68% EER on the 

Development Set and 

10.45% EER on the 
Evaluation Set 

4 
L. Liu and Yang, 

2020 [23] 

Concatenated Features: 

CQEPIC 
ASVspoof 2019 EER 6.97% 

5 

Kamble, Tak, et 

al., 2020, [24] 

 

AM-FM 

Demodulation Based 

Features 

ASVspoof 2017 

Version 2.0 

Reduction in EER: 11.93% 

for AM and 10.12% for FM-

Based Features 

6 
Balamurali et al., 

[25] 

MFCCs, Spectrogram, 

CQCCs, LPCCs, IMFCCs, 

RFCCs, LFCCs, SCFCs, 

SCMCs, and CCCs 

ASVspoof 2017 EER 10.8% 

7 
Phapatanaburi et 

al., [26] 

Combination of Linear 

Predication Analysis, 

Residual Phase and CQCC 

ASVspoof 2017 

Version 2 

 

EER 9.26 % 

8 
Singh & Pati, 

2019, [27] 
RMFCC + CQCC ASVspoof 2017 EER 9.50% 

9 
Singh & Pati, 

2019, [28] 

Score Level Fusion of 

LPRHEMFCC, RPCC and 
CQCC 

ASVspoof 2017 EER 8.86% 

10 Oo et al., [29] 
Combination of CQCC and 

Gammatone-Scale RP 
ASVspoof 2017 

EER 9.48% on the 

Evaluation Set 

 
To combine these scores, many methods are employed, 

including the mean, sum, standard deviation, min, max, 

weighted or normalized sum, etc. [15] Feature fusion 

approaches are also used in the Multimodal Biometric 

Identification system. Feature fusion is done either serial or 
parallel to boost the recognition rate. [15, 18]. Various feature 

vector sets are serially combined into a single feature vector 

through serial fusion. Parallel feature fusion is based on a 

complex vector, a vector with components of complex 

numbers, as opposed to serial fusion, which is based on the 

union vector.  

A thorough literature analysis of fusion-based approaches 

for detecting replay attacks is discussed. Better discrimination 

of genuine voice from spoof voice can be achieved using 

complementary information present in multiple features [15, 

20-22]. Hence, most of the work used numerous features [15]. 

Table 2 summarises approaches that focus on using multiple 

features and fusion.Most of the work in the literature focussed 

on using multiple features and fusion of elements for 
improved performance against replay attack detection. 

However, the effectiveness of Timbrel features needs to be 

evaluated for replay attack detection. Also, the fusion of 

Timbrel features with the cepstral domain and linear 

prediction-based features needs to be assessed. This work 

analyses the performance of features such as LPC, LPCC, and 

LFCC. The rigorous analysis is carried out by integrating 

CQCC, MFCC, LPC, and LFCC features, considering several 

combinations. Energy in residual is also integrated with LPC 

and LPCC.  
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Table 3. Details of ASVspoof 2017 dataset version 2 

Database Subset Number of Speakers Genuine Utterances Spoofed Utterances 

Training 10 1507 1507 

Development 8 760 950 

Evaluation 24 1298 12008 

 
Most often, zero-crossings are used as audio features in 

speech-processing applications the use of zero crossings as 

audio features is demonstrated in [30] for speech recognition. 

The success of Timbrel features for recognizing speakers for 
whispering speech has been shown in [31-33]. In [31], zero 

cross rate is used as a timbre feature for speaker identification 

of whispering speech. This work analyses Timbrel features by 

integrating them with cepstral features. Also, zero-crossings 

are combined with cepstral features CQCC, MFCC, LFCC, 

and LPC and LPCC. The performance of all components is 

evaluated on the ASVspoof 2017 version 2 development and 

evaluation set. A detailed comparison of several integrated 

features is carried out. This paper is organized as follows. 

After the introduction in Section 1, the proposed methodology 

is presented in Section 2. In section 3, experimentation is 

discussed, followed by results in section 4. Section 5 offers the 
overall work carried out in discussion. This work is concluded 

in section 6. 

2. Proposed Methodology 
2.1. Database  

The experimentation has been carried out on the 

ASVspoof 2017 version 2 database [34, 35]. The genuine 
utterances in this database are from the RedDots corpus [34]. 

As mentioned in [34], natural statements are replayed and 

recorded using various diverse devices and acoustic 

environments for obtaining spoofed utterances. Training, 

development and evaluation are the three non-overlapping 

subsets present in this database. More details on this database 

can be referred to from [34]. Table 3 presents the statistics 

about the ASVspoof 2017 version 2.0 database.  

2.2. System Design       

The block diagram of the proposed system is shown in 

Figure 2. The system design follows the MATLAB-based 

reference given by ASVspoof 2017 organizers [35]. In the 
training phase, features are extracted from genuine and spoof 

data using the ASVspoof 2017 version 2 database train data. 

In the proposed methodology, different components are 

concatenated after the feature extraction step, and the feature 

set cell is given as input to GMM. In the next section, the 

various elements used for analysis are discussed. Two 

different GMMs are trained, one on the training dataset’s 

genuine voice utterances and the other on spoofs. In the 

development phase, features are extracted from development 

data. Given the natural and spoofed speech models, the score 

is calculated as the log-likelihood ratio for the test utterance. 

The algorithm of the proposed work is shown in Figure 2, and 

Figure 3 presents the algorithm for implementing the 
methodology presented in Figure 2. 

2.2.1. Pre-Processing 

Pre-processing of speech signals involves pre-emphasis, 

framing, and windowing. The higher frequencies diminished 

during speech production are boosted using pre-emphasis 

followed by framing. As speech signal is assumed to remain 

stationary for 20-30 milliseconds, the pre-emphasized signal 

is segmented into short segments of 20-30 millisecond frames 

with ten milliseconds overlap. In the next step, the windowing 

of each speech frame is carried out. A hamming window is 

generally preferred. 

2.2.2. Feature Extraction Approaches for Replay Attack 
Detection 

CQCC  

The CQCC feature is more suited to the ASVspoof task 

since it possesses variable spectrum resolution and efficient 

time-frequency representation to identify replayed voices. 

[29]. As a benchmark feature that has been successfully used 

in the ASVspoof system, the CQCC feature is used [29]. The 

constant-Q transform of input discrete time-domain signal 

x(n)is calculated as, 

𝑋𝐶𝑄(𝑘, 𝑛) =  ∑ 𝑥(𝑗)𝑎𝑘
∗ (𝑗 − 𝑛 + 

𝑁𝑘

2
)

𝑛+ 
𝑁𝑘
2

𝑗=𝑛−
𝑁𝑘
2

 (1)          

Where,  

k = 1, 2, . . ., K is the frequency bin index,  

𝑎𝑘
∗  is the complex conjugate of 𝑎𝑘, and 

𝑁𝑘 are variable window lengths 

Geometrically spaced bins ensure a constant Q factor. It 

is a ratio of the centre frequency to the bandwidth [36]. A 

higher frequency resolution at lower frequencies and higher 

temporal resolution at higher frequencies is provided by CQT 

[36]. Next step, the power spectrum of 𝑋𝐶𝑄(𝑘, 𝑛) is computed, 

then followed by a log. Then, using uniform re-sampling, the 

geometric space is transformed into a linear space for cepstral 

analysis. [29]. Last, DCT is computed to get the CQCCs. The 

following equation represents CQCC computation. 
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Fig. 2 Proposed block diagram of speaker recognition system 

Algorithm for Proposed Work: 

1 For N = genuineID from the training set 

2   Read each speech signal from the database path 

3   Pre-processing of genuine speech signal 
4   Extract different speech features 

5   Integrate extracted features 

6   Train GMM for genuine samples from extracted and integrated features. 

7 end  

8 For N = spoofID from the training set 

9   Read each speech signal from the database path 

10   Pre-processing of spoof speech signal 

11   Extract different speech features 

12   Integrate extracted features 

13   Train GMM for spoof samples from extracted and integrated features 

14 end  
15 For N = genuineID or spoofID from the development or evaluation set 

16   Read each speech signal from the database path 

17   Pre-processing of speech signal 

18   Extract different speech features 

19   Integrate extracted features 

20   Compute scores and log-likelihood ratio 

21   Compute Equal Error Rate 

22 end  
Fig. 3 Algorithm of the proposed methodology
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Fig. 4 Block diagram of CQCC feature extraction 

𝐶𝑄𝐶𝐶(𝑟) =  ∑ 𝑙𝑜𝑔𝐿
𝑙=1 |𝑋𝐶𝑄(𝑙)|2cos [

𝑟(𝑙−
1

2
)𝜋

𝐿
]    (2)                           

Where,  
r = 0, 1, . . ., L -1, and  

l is the newly re-sampled frequency bins. 

From [36], details on CQCC feature extraction can be 

referred. Figure 4 shows the block diagram of CQCC feature 

extraction. 

MFCC  

In speech processing, one of the well-known magnitude-

based features is the MFCC [29, 37]. MFCC is based on the 

cepstral analysis using log magnitude spectrum on a mel scale. 

Figure 5 shows the block diagram of MFCC. In the 

computation of MFCC, framing of speech signal is performed. 
Generally, the speech signal is divided into 20-30 milliseconds 

frames with 25-50% overlap. Next, the framed speech signal’s 

windowing (usually hamming) is computed, followed by a fast 

Fourier transform. Using a fast Fourier transform, the power 

spectrum is calculated. The filter bank processing is then done 

using mel-scale on the power spectrum.   The power spectrum 

is translated into a log domain followed by DCT to obtain 

MFCCs. The following equation [38] represents the 
calculation of MFCCs. 

      𝐶𝑛̂= ∑  (𝑙𝑜𝑔 𝑆𝑘)̂𝑘
𝑛=1  cos [𝑛(𝑘 −

1

2
)

𝜋

𝑘
]  (3)          

Where k is the number of Mel cepstrum coefficients,  𝑆𝑘̂  

is the output of the filterbank and  𝐶𝑛̂  is the final mfcc 

coefficient. 

LPC and LPCC 

 By minimizing the mean square error between the input 
speech and estimated speech, the linear prediction approach is 

used to obtain filter coefficients corresponding to the vocal 

tract [38]. LPC represents a current speech as a linear 

combination of previous samples. The following equation in 

[32] describes the LPC calculation. 

𝑥(𝑛) =  ∑ 𝑎𝑘  𝑥(𝑛 − 𝑘)
𝑝
𝑘=1   (4) 

 

 

 

 

 

 

Fig. 5 MFCC feature extraction

 

 

Fig. 6 LPC feature extraction [38] 
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Fig. 7 LFCC feature extraction 

Where,  
The predicted signal is x(n),  

The previous sample is x(n - k), 

The predictor constant is 𝑎𝑘. 

Figure 6 presents the block diagram of LPC. The energy 

residual is obtained in the computation process of LPC. LPC-

calculated spectral envelope is used for the computation of 

cepstral coefficients, namely, Linear Predictive Cepstral 

Coefficients (LPCC) [38, 39].  

LFCC 

Like MFCCs, linearly spaced triangular filters extract 
Linear Frequency Cepstral Coefficients (LFCCs) [40]. Figure 

7 presents a block diagram of LFCC feature extraction. First, 

the integration of the power spectrum with overlapping band-

pass filters is carried out. After this integration, logarithmic 

compression and DCT are performed to compute the cepstral 

coefficients.  

Timbrel Features  

In speech processing applications such as speech 

recognition, zero crossing rate is often used as an audio 

feature. An audio frame’s Zero-Crossing Rate (ZCR) 

measures how frequently the signal’s sign shifts across the 

frame. It is calculated as the number of times the signal’s value 
switches from positive to negative and vice versa, divided by 

the frame’s length. Zero crossing-based feature extraction has 

been demonstrated in [30] for speech recognition. Another 

approach mentioned in [31-33] has proposed using Timbrel 

features for speaker recognition. Even when two sounds are 

presented similarly, a listener can distinguish between 

nonidentical ones because of the multidimensional and 

perceptual quality of the timbre. [32, 41]. One of the Timbrel 

feature zero-cross rates is used for speaker identification of 

whispering speech [31]. This work uses zero cross-rate 

Timbrel features to test the effectiveness of detecting replay 
attacks. Also, zero cross rate is integrated with cepstral 

features (CQCC, MFCC, LFCC, LPCC) and LPC. 

2.2.3. Classifier 

The most often used Classifier is still GMM [15, 22]. As 

a baseline system using a CQCC-based feature, the ASVspoof 

2017 challenge also offered the GMM classifier. As a result, 
in this work, GMM classier is employed to distinguish 

between genuine and replay voice samples. As mentioned in 

the ASVspoof 2017 challenge, two separate GMMs are 

trained on the training dataset’s simple and spoofed speech 

utterances, respectively, with 512-component models trained 

with an Expectation-Maximization (EM) algorithm with 

random initialization. Given the natural and spoofed speech 

models, the score is calculated as the log-likelihood ratio for 

the test utterance. 

2.2.4. Evaluation Metric 

ASVspoof 2017 challenge has provided an evaluation 
metric as an Equal Error Rate (EER) for baseline systems 

using the Bosaris toolkit [42]. When assessing the 

effectiveness of replay detection systems, EER is the primary 

metric employed [22]. The rate at which the False Acceptance 

Rate (FAR) and False Rejection Rate (FRR) are equal is 

known as the Equal Error Rate (EER) (decision threshold). 

The details on FAR and FRR are in [22]. LLR scores are used 

to compute FAR and FRR. The Receiver Operating 

Characteristics Convex Hull (ROCCH) is used to calculate the 

EER in the Bosaris_toolkit, which is used to estimate EERs 

[22]. The percentage EER is calculated as mentioned in the 

following equation,  

% 𝐸𝐸𝑅 = 
𝐹𝐴𝑅+𝐹𝑅𝑅

2
× 100 %  (5) 

3. Experimentation 
To analyze genuine and spoof voices, natural speech 

samples with id T_1000003 and spoof speech sample with id 

T_1001511 is considered from the ASVspoof 2017 version 2 

database. These samples are selected from the training set of 

the database. The genuine and spoofed speech signal is 

analyzed using PRAAT [43] software. Figure 8 and 9 shows 

natural and spoofed speech signal, respectively. From figures 
8 and 9, it is observed that genuine speech signal is relatively 

smooth and periodic as compared to spoofed signal. Also, a 

spoofed signal has a relatively high amplitude with noise 

compared to a simple signal. This differentiation can be 

because recording device properties are added to the original 

speech signal. 
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Fig. 8 Genuine speech signal 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 9 Spoof speech signal 

3.1. CQCC and MFCC Feature Extraction/Computation 

The current authors have evaluated the baseline CQCC, 

MFCC features and integration of CQCC and MFCC features 

on the ASVspoof 2017 version 2 development set the work 

presented in [44]. This work compares the results in [44] with 

the different feature extraction schemes and concatenation 

approaches. More information on CQCC and MFCC 

parameters used in this work is referred from [44]. CQCC and 

MFCC feature extraction techniques calculate the features in 
the form of high-dimensional data, i.e., number of rows * 

number of columns. These dimensions differ depending on 

factors such as the length of the speech signal and the nature 

of the speaker, whether they are uttering fast or slow. 

However, the number of rows representing the number of 

filters or coefficients is kept constant for all speech samples of 

the database. For example, the dimension of CQCC features 

for model T1000003 is 90*177. 

High-dimension data can be visualized using techniques 

such as T-SNE [40]. T-SNE analysis is carried out with 

ninety-dimensional (including delta and double delta) CQCC 

reduced to two -dimensional feature vector. At the same time, 

feature vectors of MFCC are considered with eighty-four 

dimensions (including delta and double delta) reduced to a 
two-dimensional feature vector. MFCC’s eighty-four-

dimensional feature vector is considered by eliminating the 

vectors calculated to zero-valued. This elimination is only 

viewed for data visualization the Figure 10 and 11 T-SNE 

representation of CQCC and MFCC features, respectively.  

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

 
Fig. 10 CQCC feature distribution for genuine and spoof sample 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 11 MFCC feature distribution for genuine and spoof sample 

Figures 10 and 11 show that genuine speech samples of 

MFCC are overlapped with the spoofed speech samples. 

Whereas, in the case of CQCC, this overlap is reduced 
compared to MFCCs. 
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Table 4. LPC parameters 

Parameter Statistics 

Frame Length 512 samples 

Overlap 50 samples 

Window Hamming 

Number of Coefficients 12 

 

3.2. LPC and LPCC Feature Computation 

The LPC coefficients computed in [44] have not 

considered/mentioned pre-processing steps framing, 

overlapping, and windowing for speech signal. This work 

involves prior computation of LPC coefficients, framing, 

overlapping, and windowing of the speech signal.  

Table 4 shows the parameters used in the extraction of 

LPC coefficients. “lpcauto” function from the voicebox 

toolbox [45] is used to compute LPCs based on the 

autocorrelation method. In this work, the first coefficient, “1”, 

is excluded/omitted from the LPC feature vector in all 

experimentations. 

“lpcauto” function computes energy in the residual. In 

this work, power in the residual is also analyzed for replay 

attack detection. Several sub-routines are provided in the 

voicebox toolbox for converting LPC coefficients to various 

forms, including complex coefficients. “lpcar2cc” sub-routine 

is used to extract LPCCs from LPC coefficients. LPC feature 

vector with first coefficient “1” is used to compute LPCC in 

all experimentations.  

Twelve LPCCs are considered for performance 
evaluation. For data visualization in the case of LPC, a ninety-

dimensional feature vector is converted into a two-

dimensional vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 12 LPC feature distribution for genuine and spoof sample 

Figure 12 shows the T-SNE visualization of LPC for 

genuine and spoofed speech signals. T-SNE representation of 

LPC for spoofed speech samples differs from that observed in 

all cases. This indicates that LPC features are more effective 

in non-overlapping between genuine and spoof signals.   

3.3. LFCC Feature Computation 
ASVspoof 2019 organizers provided a baseline system, 

which is evaluated. The LFCC parameters used are the same 

as those offered by ASVspoof 2019 organizers. Table 5 shows 

the parameters used in the LFCC feature extraction. 

The number of filters was considered as 30, which provides 

30 LFCC coefficients, 30 delta and 30 double delta 

coefficients. LFCC features are concatenated with several 

features mentioned in this work. For data visualization in the 

case of LFCC, a ninety-dimensional feature vector is 

converted into a two-dimensional vector.  

The Figure 13 shows the T-SNE visualization of LFCC for 

genuine and spoofed speech signals. Figure 13 shows that the 
LFCC features of genuine speech and spoofed speech show 

significant non-overlap compared to CQCC and MFCC. 

Table 5. LFCC parameters 

Parameter Statistics 

Sampling Frequency in 

Hz 
16000 

Window Length in 

milliseconds 
20 

Number of FFT bins 512 

Number of Filters 30 

Number of Coefficients 
30 Including 0th 

Coefficient + Δ + ΔΔ 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 13 LFCC feature distribution for genuine and spoof sample 
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Fig. 14 Zero crossings for genuine and spoof sample 

3.4. Timbrel Features  

For temporal or time domain features, zero crossings of 

the signal are analyzed. Zero crossings represent the x-axis 

positions of zero crossings [45]. This work uses the “zerocros” 

function provided in the voicebox toolbox. Out of positive and 

negative crossing sample values, the first ninety coefficients 

integrate the features mentioned in this work. The feature 

vector formed is 90*1 dimension. For visualization of zero-

crossings, coefficients are compared in the form of a line chart. 
Figure 14 shows the zero crossings of the genuine and spoofed 

speech signal. The x-axis positions of zero crossings of spoof 

speech samples are significantly higher than that of genuine 

speech. This gives significant non-overlap data representation 

in case of zero crossings. The feature vector formed using 

zero-crossings can more efficiently detect reply attacks. The 

Musical Information Retrieval (MIR) toolbox [46] has timbre 

audio descriptors that are simple to integrate with the Matlab 

framework. In [32], Timbrel features roughness, rolloff, 

irregularity, and brightness demonstrated effective for speaker 

recognition. In this work, along with the Timbrel features 

mentioned in [32], several Timbrel features are also evaluated. 
The Table 6 shows the timbre features used to create a feature 

vector. This work uses twelve different timbre features to 

create a feature vector of size twelve. 

Table 6. Timbre features used from the MIR toolbox and their description 

Sr. No. Timbre Feature Description 

1 Brightness It is the midpoint of the frequency energy distribution [32]. 

2 Entropy This represents Shanon entropy of the input. 

3 Event density It represents the number of events detected per second. 

4 Flatness 
It is the ratio of the geometric mean to the arithmetic mean. It represents 

distribution as smooth or spiky. 

5 Inharmonicity 
It represents the number of partials, not multiples of the fundamental 

frequency. It is a value between 0 and 1. 

6 Kurtosis It returns the (excess) kurtosis of the data. 

7 Pitch Mirpitch extract pitches. 

8 Irregularity This represents variations among successive peaks [32]. 

9 Rolloff 
Rolloff is the frequency below which the significant energy (85% or 95%) is 

concentrated [32] 

10 RMS It represents the global energy of the signal. 

11 Skewness It represents the coefficient of skewness of the data. 

12 Spread It represents the standard deviation of the data 
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Table 7. Performance of CQCC, MFCC, Integration of CQCC and MFCC, LPC feature extraction techniques [44] 

Sr. No. Method Number of Coefficients (Rows) DevEER (%) EvalEER (%) 

1 CQCC 90 11.55 22.8 

2 MFCC 30 18.28 34.42 

3 LPC without Preprocessing 12 23.56 35.34 

4 MFCC + Delta + Double Delta 90 17.08 23.16 

5 
CQCC + MFCC + Delta + Double 

Delta 
90 10.18 20.96 

6 LPC with Preprocessing 12 8.92 35.32 
 

3.5. Integration of Various Features 

Implementing most feature extraction techniques is based 
on a matrix structure consisting of a two-dimensional 

rectangular array of data elements arranged in rows and 

columns. The number of rows is nothing but the number of 

filters or coefficients selected in the feature extraction 

technique’s parameters.  

The compatible sizes of matrices are required for 

concatenation. Horizontal concatenation requires the same 

number of rows among matrices, and vertical concatenation 

requires the same number of rows. Hence, this work selects 

the number of filter coefficients per the matrices’ 

compatibility sizes. If matrix A is [A]m * n and matrix B is [B]m 

* l, then the resultant concatenated matrix will be [A concat 

B]m * (n + l).  

   Where, m is the number of rows and, n is the number of 

columns of matrix A, and matrix B is of size m *l, for matrix 

B, m is the number of rows, l is the number of columns, m is 

the number of rows, and (n + l) is the number of columns of 

the resultant concatenated matrix. For example, suppose 

matrix A = [
𝑎 𝑏
𝑐 𝑑

]  and matrix B = [
𝑥
𝑦] , then concatenation of 

A & B is [A B] = [
𝑎 𝑏 𝑥
𝑐 𝑑 𝑦

]. 

Based on this mathematical model, different features 

extracted in this work are concatenated to form a resultant 

feature vector matrix. For example, as mentioned in, the 

CQCC feature set with 90-dimension is concatenated with 

MFCC features of 90-dimension. Here, ninety is the number 

of rows, representing the number of filter coefficients. 

Subsequent experimentation in this work follows this 

approach for concatenating several features.  

4. Results  

4.1. Results on the Evaluation Set for CQCC, MFCC, and 

LPC Methods 

The work presented in [44] evaluated the performance of 

CQCC, MFCC, and Integration of CQCC and MFCC of the 

ASVspoof 2017 version 2 database development set. This 

work considers the methods presented in [44] on the 

evaluation set. Table 7 shows the performance of these 
evaluations. The best cases are shown in bold cases. DevEER 

(%) presents %EER on the development set in all experiments, 

and EvalEER (%) offers %EER on the evaluation assigned. 

Table 7 shows that LPC features are superior with pre-

processing steps framing, overlapping, and windowing. Also, 

LPC features perform better than integrating CQCC and 

MFCC features on the development set. However, Integrated 

CQCC and MFCC features perform better on the evaluation 

set than LPC features.   

4.2. LPC and Their Integrations with Cepstral Features 

The following experiments integrate LPC features with 
energy in the residual, CQCC, and MFCC. As mentioned in 

[40], the LP order is selected as twelve for the conduction of 

these experiments. Hence, in integrating LPC with CQCC and 

MFCC, the number of cepstral coefficients determined was 12 

for matrix concatenation. Also, in integrating LPC and energy 

in residual with CQCC and MFCC, the cepstral coefficients 

selected were 13 for matrix concatenation. Figure 15 shows 

the performance of these evaluations. 

Figure 15 shows that the performance of LPC features 

slightly improved with the integration of CQCC and MFCC 

features on the development set with an EER of 8.25%. On the 

evaluation set, integration of LPC features, energy in residual, 
MFCC, and CQCC resulted in better performance with EER 

of 33.97% than other combinations. Then, LPCC features are 

evaluated on the database development and evaluation set. 

4.3. LPCC and Their Integrations with Cepstral Features 

Next, LPCC features are integrated with energy in the 

residual, CQCC, and MFCC. Similar to experiments carried 

out for LPC and their integrations, LPCC features were 

considered 12. Therefore, in integrating LPCC with CQCC 

and MFCC, the number of cepstral coefficients selected was 

12 for matrix concatenation. Also, in integrating LPCC and 

energy in residual with CQCC and MFCC, the cepstral 
coefficients determined were 13 for matrix concatenation. The 

results of these experiments are shown in Figure 16. 
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Fig. 15 Performance of integration of LPC with energy in the residual, CQCC and MFCC feature extraction techniques 

 
Fig. 16 Performance of integration of LPCC with energy in the residual, CQCC and MFCC feature extraction techniques 

Figure 16 shows that the performance of LPCC features, 

when integrated with CQCC and MFCC, improves on the 

evaluation set compared to that of LPC features. However, 

LPCC features performance is slightly degraded on the 

development set. It can be inferred that LPCC features are 

more suitable for the evaluation set, and LPC features are ideal 

for the development set. However, the performance 

integrations of CQCC and MFCC features (EER 20.96% 

mentioned in Table 7) are better than integrating LPCC 

features and their integrations with other cepstral features and 

energy in residual. Also, it has been observed that energy in 

the residual extracted from the “lpcauto” function does not 

LPCC
LPCC +

Energy

LPCC +

MFCC

LPCC +

CQCC

LPCC  +

Energy+

MFCC

LPCC +

Energy +

CQCC

LPCC +

MFCC +

CQCC

LPCC +

Energy +

MFCC+

CQCC

DevEER (%) 9.95 9.64 9.25 9.96 9 9.71 8.66 10.13

EvalERR(%) 38.48 38.76 36.88 34.84 37.68 35.92 32.36 32.64

9.95 9.64 9.25 9.96 9 9.71 8.66
10.13

38.48 38.76
36.88

34.84
37.68

35.92
32.36 32.64

0

5

10

15

20

25

30

35

40

E
E

R
 i

n
 %

Methods

LPC
LPC +

Energy

LPC +

MFCC

LPC +

CQCC

LPC +

Energy +

MFCC

LPC +

Energy +

CQCC

LPC +

MFCC +

CQCC

LPC +

Energy +

MFCC +

CQCC

DevEER (%) 8.92 8.34 8.34 8.59 8.59 9.48 8.25 8.78

EvalEER(%) 35.32 37.78 37.82 41.32 37.52 40.93 40.82 33.97

8.92 8.34 8.34 8.59 8.59 9.48 8.25 8.78

35.32 37.78 37.82

41.32

37.52

40.93 40.82

33.97

0

5

10

15

20

25

30

35

40

45
E

E
R

 i
n

 %

Methods



Amol A. Chaudhari et al. / IJEEE, 10(10), 108-125, 2023 

120 

show much improvement because of which, in the next 

experiment, it is not integrated with any feature extraction 

schemes such as LFCC, Timbrel feature and ZCR.   

4.4. LFCC and Their Integrations of Other Cepstral 

Features and Linear Prediction-Based Features 

Further analysis is carried out with the LFCC feature 
extraction technique. Baseline LFCC features provided by 

ASVspoof 2019 organizers are evaluated on the ASVspoof 

2017 version 2 development and evaluation set. To observe 

the performance, LFCC features are also integrated with 

CQCC, MFCC, LPC, and LPCC features.  

From the results obtained till Figure 16, it is evident that 

cepstral features perform better with 90 coefficients. Hence, 

the number of cepstral coefficients for CQCC, MFCC, and 

LFCC was considered 90. Also, the integration of ninety 

cepstral features with ninety linear predication-based 

coefficients was carried out. Figure 17 shows the performance 

of LFCC features and their integration with other features.    

It is observed that baseline LFCC features perform better 

with EER of 7.44% than CQCC features, MFCC features, LPC 

features and several previously mentioned integrations on the 

development set. Further experiments are carried out by 

integrating LFCC with CQCC, MFCC, LPC, and LPCC 

features. As shown in Figure 17, the integration of LFCC with 

CQCC, MFCC, and LPC resulted in an EER of 7.2% on the 

development set, and the integration of LFCC, CQCC, MFCC, 

and LPCC resulted in an EER of 20.51% on the evaluation set. 

From the results observed till now, it is evident that integrating 

multiple features improves the performance.  

4.5. Integration of Timbrel Feature Set with Cepstral 

Features and Linear Prediction-Based Features 

The performance of the feature vector formed using the 

timbre features mentioned in Table 6 is evaluated by 
integrating with all feature extraction schemes used in this 

work. Twelve features mentioned in Table 7 are concatenated, 

and a feature vector is formed. This Timbrel feature vector is 

concatenated with various combinations of CQCC, MFCC, 

LFCC, LPC and LPCC features. The number of cepstral and 

linear prediction-based features for matrix concatenation was 

considered 12. Table 8 shows the performance of the 

development and evaluation set.  From Table 8, it is observed 

that the Timbrel feature set formed using several features 

mentioned in Table 6, when integrated with cepstral features 

and linear prediction-based features, has scope for further 

improvement.  

4.6. Integration of Zero-Cross Rate Timbrel Feature with 

Cepstral Features and Linear Prediction-Based Features 

Next, experiments are carried out by integrating Zero 

Crossings (ZCR), which represent the number of times the 

signal crosses the x-axis and is analyzed with cepstral domain 

features and linear prediction-based features. Zero crossings 

are integrated with CQCC, MFCC, LPC, LPCC and LFCC 

features. Ninety zero-cross rate coefficients were considered 

for integrations with ninety cepstral and linear prediction-

based coefficients.  

Fig. 17 Performance of LFCC features and integration of LFCC features with CQCC, MFCC, LPC, and LPCC features 
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Table 8. Performance evaluation of integration of zero crossings with CQCC, MFCC, LFCC, LPC, and LPCC 

Sr. No. Method Number of Coefficients (Rows) DevEER (%) EvalEER (%) 

1 CQCC + Timbre 12 9.72 34.94 

2 MFCC + Timbre 12 18.81 36.63 

3 CQCC + MFCC +Timbre 12 9.17 33.58 

4 CQCC + MFCC + LPC + Timbre 12 8.8 34.96 

5 LPC + Timbre 12 8.43 35.84 

6 LPC + CQCC + Timbre 12 7.52 35.31 

7 LPC + MFCC + Timbre 12 8.14 36.65 

8 LPCC + Timbre 12 10.11 38.59 

9 LPCC + CQCC + Timbre 12 8.75 37.38 

10 LPCC + MFCC + Timbre 12 10.49 37.38 

11 CQCC + MFCC + LPCC + Timbre 12 8.58 34.51 

12 LFCC + Timbre 12 8.68 37.56 

13 LFCC + CQCC + Timbre 12 9.48 35.52 

14 LFCC + MFCC + Timbre 12 10.76 34.76 

15 LFCC + CQCC + MFCC + Timbre 12 9.77 33.88 

16 LFCC + LPC + Timbre 12 7.45 36.23 

17 LFCC + CQCC + LPC + Timbre 12 7.38 35.2 

18 LFCC + MFCC + LPC + Timbre 12 8.11 35.68 

19 LFCC + CQCC + MFCC + LPC + Timbre 12 7.56 34.16 

20 LFCC + LPCC + Timbre 12 8.63 37.81 

21 LFCC + CQCC + LPCC + Timbre 12 8.05 36.14 

22 LFCC + MFCC + LPCC + Timbre 12 9.97 36.97 

23 LFCC + CQCC + MFCC + LPCC + Timbre 12 10.01 31.27 

 
Table 9. Comparison of achieved results with recent approaches 

Sr. No. Authors Method DevEER (%) EvalEER (%) 

1 
Gupta et al., 

2023 [4] 

Score level fusion of CQCC, CFCC, CFCCIF, 

CFCCIF-ESA, CFCCIF-QESA 
9.21 11.24 

2 
Kamble and Patil 

2021, [10] 
CQCC + LFCC + MFCC + TECC 6.68 10.45 

3 Current Authors LFCC + MFCC + CQCC + LPC 7.2 30.49 

4 Current Authors LFCC + MFCC + CQCC + LPCC 15.54 20.51 

5 Current Authors ZCR + LFCC 6.2 28.88 

6 Current Authors ZCR + CQCC + MFCC 9.08 19.97 

7 Current Authors ZCR + LPC 5.44 31.9 

8 Current Authors ZCR + MFCC + CQCC + LFCC + LPCC 14.37 17.79 
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Fig. 18 Performance evaluation of integration of zero crossings with CQCC, MFCC, LFCC, LPC, and LPCC 

Figure 18 shows these integrations along with 

performance on the development and evaluation set. From 

Figure 18, EER 6.2% is achieved on the development set for 

Zero Cross Rate (ZCR) and LFCC integrations and 19.97% 

on the evaluation set for ZCR, MFCC, and CQCC.  

It has been observed that zero crossings integrated with 

LPC coefficients resulted in better performance with an EER 

of 5.44% on the development set, whereas zero crossings 
integrated with CQCC, MFCC, LPCC, and LFCC resulted in 

an EER of 17.79% on the evaluation set. These results show 

the effectiveness of zero crossings in detecting replay attacks. 

5. Discussion 
From the literature, it is evident that score-level fusion 

and feature fusion approaches are widely preferred for replay 

attack detection. Also, the use of multiple features and 
combining them to achieve improved performance is state-of-

the-art in the area of countermeasures for replay attack 

detection. This work mainly focused on the performance 

evaluation of multiple cepstral and linear-prediction-based 

features.  

Many past approaches have been presented with a focus 

on score-level fusion of multiple features. This work mainly 

focused on integrating multiple features via serial fusion. This 

work evaluated the Timbrel features and found the 

effectiveness of zero-cross-rate timbre features. The results of 

this work demonstrated the effectiveness of cepstral features 

such as LFCC, linear predictive coding feature coefficients 

and Zero-cross rate. It is evident from the results that LPC 

features are effective in the development set, whereas LPCC 

features are effective in the evaluation set of ASVspoof 2017 

version 2. Table 9 presents the comparison of achieved results 

for the best cases of integration of cepstral features, linear 

predication-based features, and Timbrel features zero cross 

rate with recent approaches from the literature. 

From Table 9, it is observed that on the development set, 

proposed integration approaches highlighted in bold cases 

performed better than some recent approaches. EER of 5.44% 

on the development set for zero-cross rate and LPC 

integration. This indicates that the serial feature fusion 

approach also achieves better results.  

LPCs have more decorrelation, representing more non-

overlapping representation (Figure 12) of genuine and spoofed 

speech signals. Also, zero crossings of genuine and spoofed 

speech signals show more differentiation (Figure 14).  

This differentiation has improved performance for 

detecting spoofed signals from genuine signals. On the 
evaluation set, better EER 17.79% is achieved for integration 

of zero-cross rate, MFCC, CQCC, LFCC, and LPCC, among 

others mentioned in this work. There is a scope for 

improvement on the evaluation set, and future work will focus 

on carrying score level fusion for multiple features such as 

teager coefficients.  
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6. Conclusion 
This work has evaluated the performance of CQCC, 

MFCC, LFCC, LPC, and LPCC feature extraction schemes for 

detecting reply attacks on ASV systems. These evaluations are 

carried out on the ASVspoof 2017 version 2 database. Among 

these baseline methods, LFCC features performed better on 

the development set with an EER of 7.44%, and CQCC 

features showed better performance on the evaluation set with 

an EER of 22.8%. Using multiple features and a feature fusion 

approach for improved performance is the state-of-the-art for 

detecting spoofing attacks. In this work, multiple features, 

namely, CQCC, MFCC, LFCC, LPC, and LPCC, are 

integrated, and the performance of various integrations is 
evaluated. On the development set, the integration of LFCC, 

MFCC, CQCC, and LPC features resulted in an EER of 7.41% 

and on the evaluation set, the integration of LFCC, MFCC, 

CQCC, and LPCC features resulted in an EER of 20.51%. 

Further, Timbrel features zero cross rate are integrated 

considering various combinations with cepstral features and 

LPC. An EER of 5.44% is achieved on the development set 

for the integration of zero cross rate and LPC feature, and an 

EER of 17.79% is achieved on the evaluation set for the 

integration of zero cross rate, MFCC, CQCC, LFCC, and 

LPCC features. It found that integrating zero-crossings 

performed better than integrating the feature vector formed 

using various Timbrel features with cepstral features and 

linear prediction-based features. The effectiveness of Timbrel 

features, i.e., zero crossings for replay attack detection, is 
validated from the results achieved. Also, the results show that 

LFCC and LPC features are more effective in the development 

set, and CQCC and LPCC features are effective in the 

evaluation set. This work inferred that multiple different 

features may show improved performance for every database. 

Also, the serial feature fusion approach can be suitable for 

replay attack detection. In future, the effectiveness of 

integrating cepstral coefficients based on teager energy with 

Timbrel features can be tested along with score level fusion.    
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