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Abstract - Speed and area are the primary design concerns in today’s digital age. Increasing the rate at which multiplications 

and additions are performed has always been necessary for developing cutting-edge technologies. Wallace and Dadda 

multipliers are among the fastest multipliers used in many processors to accomplish fast arithmetic operations. A novel 

approach to design a Lookup Table (LUT) multiplier and adder was proposed and implemented in the Finite Impulse 

Response (FIR) filter. To improve the Residue Number System (RNS) based FIR filter’s performance, several adders like 

Carry Look Ahead (CLA) adder, Kogge Stone Adder (KSA) and proposed adder architectures have also been implemented. 

Compared with the 16 taps with 32-bit proposed adder with LUT multiplier, the hardware resource utilization (Logic 

Elements) is decreased by 5.97% and in 32 taps with 16-bit combination, it reduces by 7.60%. Compared with 32 taps with 4-

bit word length, the proposed adder with LUT multiplier in the highlighted combinations, the Fmax is increased by 19.28% 

and in 32 taps with 16-bit, it increases by 29.74%. The Low-pass RNS FIR filter is designed for a cutoff frequency of 50 Hz, 
generated filter coefficients in MATLAB, and implemented to denoise the ECG signal. 

Keywords - FIR filter, Dadda multiplier, Lookup Table, Logic Elements, ECG.

1. Introduction  
The optimized multipliers and adders architectures are 

introduced in the RNS filter to reduce the filter’s area and 

delay. Using optimized adders and multipliers in RNS FIR 
filters can provide several advantages, such as reduced 

hardware complexity, improved performance, and lower 

power consumption. In an FIR filter, the primary operation is 

multiplying the input samples with filter coefficients and 

accumulating these products. Using optimized multipliers, 

such as Wallace multipliers, Dadda multipliers and LUT 

multiplier, can reduce the number of partial products 

required and thus reduce the overall hardware complexity of 

the filter. This, in turn, can result in lower power 

consumption and reduced circuit area [1]. 

Similarly, using optimized adders, like Carry-Look 

Ahead adders, KSA adders, and proposed adders, can 
improve the filter’s performance by reducing the propagation 

delay of carry signals and minimizing the number of levels of 

logic gates in the adder circuit. This will result in faster filter 

operation and reduced power consumption. Overall, using 

optimized adders and multipliers in FIR filters can 

significantly improve performance, power consumption, and 

circuit area, making them a valuable design consideration for 

efficient digital signal processing applications [2]. 

There is a critical need for Digital Signal Processing 

(DSP) expertise due to the decisive nature of its tasks. 

Multiple adders and multipliers are often seen in 

sophisticated DSP systems. Better results may be achieved 

by complicated signal processing techniques with well-

designed adders and multipliers.  

In many scenarios, such as controllers and processing 

chips, adders are one of the essential components. Adders 

may be found in a variety of networks in a variety of blocks. 
The time needed for a carry to propagate through a digital 

adder limits its adding speed. In a traditional ripple adder, the 

total for each bit location is generated sequentially following 

the addition of the preceding bit position and carry transfer 

into the next bit position [3]. 

Multiple Input Multiple Output (MIMO) applications 

extensively use the various parallel solutions developed for 

high throughput systems. The parallel architecture improves 

the system’s throughput, but the L-parallel filter design 

exponentially increases hardware cost and power 

consumption. With this shortcoming of parallel architecture, 
different fast multipliers were implemented with the 

combination of adders [4]. This technique is far more space-

efficient than the standard parallel design, cutting hardware 
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needs in half. Without the multiplier and adder, there 

wouldn’t be much FIR filter. The filter as a whole can only 

achieve its desired processing speed and power dissipation if 

its multiplier and adder block perform as expected.  

Several effective multiplier and adder architectures have 

been created [5]. The research found that the Wallace 
multiplier and Dadda multiplier had excellent results in terms 

of latency compared to other designs. The implementation 

results demonstrate the benefits of the suggested design over 

the standard one, namely more incredible speed and reduced 

power dissipation [6]. 

The following sections of the paper are organized: 

Section 2 offers a comprehensive description of the 

methodologies utilized in prior designs. Section 3 describes 

the different adders and multipliers implemented to design 

the RNS FIR filter, and section 4 represents the results and 

performance analysis of the filter. Section 6 delivers the 

conclusion. 

2. Literature Review 
The Partial Product (PP) reduction phase in 

multiplication operations is known for its substantial energy 

consumption and significant silicon area usage. Hence, three 

primary strategies are typically utilized to design 

approximate multipliers. The first technique involves 
approximations when generating Partial Products (PP).  

Next, truncation is applied within the PP tree. The last 

method approximates the adders and compressors 

accumulating the partial derivatives. Therefore, 

approximation computing was developed to reduce power 

consumption. In this study, they use probabilistic pruning, an 

approximation approach proposed by [7].  

An OR-based error-compensated approximation 

multiplier with input reordered 4:2 compressors was 

presented by [8] for low-energy design. By switching the 

information order, the compressor may function with only 

two of the four inputs, making it more straightforward and 
requiring fewer gates. The suggested method achieves 99.3% 

precision, using just 44.7% of the energy and 31.7% of the 

space of the best existing practices. 

Eight-by-eight approximation multipliers based on high-

order approximation compressors were proposed by [9]. 

Accumulating product terms and decreasing energy 

consumption with few mistakes is achieved using different 

compressors for different weights. To streamline the ‘carry 

chain’s’ logic, higher-order approximation compressors are 

used for the intermediate significance weights, such as 8-to-2 

compressors. To create an error-efficient system, [10] 
proposed the rounding method-based approximation 

multiplier, which involves rounding up the input operands to 

the next power of 2. The transformed inputs are run via an 

arithmetic module that contains subtractor, adder, and shifter 

units. Input operand sizes might be anything from 8 bits up 

to 32 bits. The simulation results show that the delay is 

around 22% and the power use is approximately 57%, both 

of which are improvements over comparable approximation 
multipliers. 

To resolve this problem, [11] presented a rounding 

method that may be adjusted on the fly to serve as an 

approximate multiplier. The suggested multipliers are 

attractive because they reduce implementation complexity 

while improving power efficiency. The proposed technique 

uses 32.5% less energy, has a 50.8% smaller footprint than 

filters using existing multipliers, and has 54.7% less latency. 

To create an approximation multiplier, [12] suggested adding 

an approximate compressor with a single gate. The proposed 
technology consumes 61% less energy and occupies 52% 

less space than current methods.  

An approximation multiplier for unsigned integers was 

suggested by [13] due to its great configurability; it aims to 

reduce all hardware metrics while retaining outstanding 

accuracy. It provides various options for reducing energy use 

by 35–85%, so it may be used in multiple contexts without 
breaking the bank. An approximation multiplier through the 

truncating approach was presented by [14]. The 

approximation multiplier worked by computing the final 

result using scientific-binary representations of the operands 

and truncating the intermediate results. 

Compared to the same multiplier, this one is 89.2 

percent more efficient at conserving energy while taking up 

just 74.9 percent less room on average. This study presents a 
novel approximation adder to be used with an energy-

efficient, high-performance approximate PP accumulation 

tree for a multiplier.  

To avoid ‘carry propagation,’ the proposed 

approximation adder generates an error vector and a rough 

total. The OR gates and approximation adder-based error 

reduction methodologies [15] provide two distinct designs 

for approximate 8X8 multipliers, M1 and M2. It has been 

shown that the power consumption of the suggested 

approximation multipliers is lower than that of a speed-
optimized accurate Wallace multiplier.  

Minimal error margins allow the proposed multipliers to 

achieve high precision. As a bonus, simulations have shown 

that M2, although having a longer delay and using more 

power, is more accurate than M1. Multipliers for the 

proposed approximation are more precise than those used in 

prior approximation models. Compared to older designs that 
prioritized delay and energy savings but had inconsistent 

accuracy, the suggested alternatives provide considerable 

savings while maintaining a high level of precision. 
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3. Proposed Work 
 In this work, the RNS FIR filter is designed to enhance 

the filter’s performance using optimised adders and 

multipliers. In an FIR filter, the primary operation is 

multiplying and accumulating the input samples with filter 

coefficients.  

Using optimized multipliers, such as Wallace 

multipliers, Dadda multipliers, and LUT Multiplier, can 

reduce the number of partial products required and thus 

reduce the overall hardware complexity of the filter. This, in 

turn, can result in lower power consumption and reduced 

circuit area. Similarly, using adders like Carry Look-Ahead 

adder, KSA adder and the proposed adder results in high 
speed by reducing the propagation delay of the carry. These 

optimized adders and multipliers are introduced into the RNS 

FIR filter. 

3.1. Operation of RNS-Based FIR Filter 
The RNS is a method of representing integers using a set 

of residue classes. In RNS, an integer is characterised by its 

remainder modulo, a group of pairwise coprime integers. The 

RNS provides a way to perform modular arithmetic on the 

residues in parallel, which can be advantageous for certain 

digital signal processing operations [18]. 

Modular arithmetic is a crucial technique to convert the 
input word into a series of residues (x1, x2, x3) within an 

FIR filter based on the Residue Number System (RNS). The 

moduli values are consistently represented in the form of 2n-

1, 2n, and 2n+1. When n equals 3, the modulo set takes the 

form of 7, 8, and 9. Applying modular operations on the 

filter coefficients and input signals results in the generation 

of residues. Subsequently, the output of the forward 

converter undergoes a sequence of FIR filters before being 

transmitted to the RNS decoder, as depicted in Figure 1.  

 

 

 

 

 

 
 

Fig. 1 Block diagram of RNS-based FIR filter 

3.2. RNS Encoder Working 

The RNS encoder has three modulus operators, each 

designed for one of the three sets. These operators execute 

modulus operations on the input sequence, creating a residue 

set. This residue set is then fed into the FIR filter, and the 

output of the FIR filters is connected to the RNS decoder.  

The logical diagram of the RNS encoder is visually 

represented in Figure 2.  

 

 
 

 

 
 

 

 
 

Fig. 2 RNS encoder implementation 

For input x[n]=01100100 and moduli set (m1, m2, m3)= 

{7, 8, 9} the residues are given as 

𝑟1  = x[n] % 7 = (01100100) % 7 = 0010 

𝑟2  = x[n] % 8 = (01100100) % 8 = 0100 

r3= x[n] % 9 = (01100100) % 9 = 0001 

The modulus output of residues is (r1, r2, r3) given to the 

FIR circuit shown in Figure 3. The FIR circuit can be a basic 

FIR circuit modified binary DA or a partitioned LUT-based 
FIR filter. The outputs of appropriate residues are given to 

the RNS decoder [17]. 

3.3. FIR Filter Implementation 

The coefficients of the FIR filter are d0, d1, d2, and d3. 

X[n] is the input sequence or a word. The sequence gets 

delayed for each clock cycle, enters the multiplier, and gets 

multiplied with the appropriate coefficients. The output of 

each multiplier is added, resulting in the production. The 

output for 4-tap FIR filter with coefficients d0, d1, d2 and d3 

is given as, 

𝑌[𝑛] = 𝑑0 × 𝑋[𝑛] + 𝑑1 × 𝑋[𝑛 − 1] + 𝑑2 × 𝑋[𝑛 − 2] +
𝑑3 × 𝑋[𝑛 − 3] (1) 

 

 

 
 

 

 

 
 

 
 

Fig. 3 Structure of 4-tap FIR filter 
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3.3.1. Operation of FIR Filter 

Consider an FIR filter with coefficients as 𝑑0= 0010, 𝑑1= 

0100, 𝑑2=0110, 𝑑3=1000 (in binary). Consider the input 

sequence or input word to be X[n] = 0010 (in binary). The 

output of the FIR filter after substituting the filter 
coefficients in equation (1) is, 

Y[n] = 0010* X[n] +0100 * X[n-1] + 0110 * X[n-2] + 

1000 * x[n-3] 

Where X[n-1], X[n-2], X[n-3] are delayed input 

sequence. 

First Clock Cycle 

X[n]= 0010, X[n-1] = 0000, X[n-2] = 0000, X[n-3] 

=0000. Output: Y[n] = 0010*0010 +0000*0100 + 

0000*0110 + 0000*1000 = 00100 (4 in decimal).  

Second Clock Cycle 

X[n]= 0010, X[n-1] = 0010, X[n-2] = 0000, X[n-3] 
=0000. Output: Y[n] = 0010*0010 +0010*0100 + 

0000*0110 + 0000*1000 = 00100 + 01000 = 01100 (12 in 

decimal).  

Third Clock Cycle  

X[n]=0010, X[n-1] = 0010, X[n-2] = 0010, X[n-3] 

=0000. Output: Y[n] = 0010*0010 +0010*0100 + 

0010*0110 + 0000*1000 = 00100 + 01000 + 01100 = 11000 

(24 in decimal).  

Fourth Clock Cycle 

X[n]=0010, X[n-1] = 0010, X[n-2] = 0010, X[n-3] = 

0010. Output: Y[n] = 0010*0010 + 0010*0100 + 0010*0110 

+ 0010*1000= 00100 + 001000 + 01100 + 10000 = 101000 
(40 in decimal).  

3.4. RNS Decoder Working  

The Chinese remainder theorem [19] establishes that 

when the divisors are mutually coprime, it becomes possible 

to uniquely determine the remainder of the division of n by 

the product of these integers if one has the remainders 

resulting from the Euclidean division of an integer by 

multiple integers. This theorem provides a solution to 

systems of linear congruences with several moduli, offering 

an alternative approach to finding a unique solution for a set 

of equations where the variables are integers, and each 
equation is based on a different modulo.  

Let us consider the output of the FIR filter 

(𝑟1′, 𝑟2′, … . . 𝑟𝑡′) with modulo (𝑚1, 𝑚2, … . . 𝑚𝑡) where all 𝑚𝑡 

are mutually prime. 

Let M = (𝑚1 ∗ 𝑚2 ∗ … . . 𝑚𝑡) 

𝑀𝑖 =  𝑀
𝑚𝑖

⁄  (2) 

Let 𝐾𝑖 be the result that (𝑀𝑖 ∗ 𝐾𝑖  )%𝑚𝑖 = 1, then the 

corresponding numbers as 

𝑦 = (∑ (𝑀𝑖𝐾𝑖𝑟𝑖′)
𝑡
𝑖=1 )%𝑀  (3) 

RNS output from equation (3) is 

= (∑(𝑀𝑖 × 𝐾𝑖 × 𝑟𝑖)) %𝑀 

 =((200*272*8)+(80*255*15)+(300*240*9))%4080

=2000 

3.5. Proposed Adder and LUT Multiplier 

The proposed half adder circuit in Figure 4 uses basic 

gates, and the full adder in Figure 5 uses two proposed half-

adders with an OR gate. By using these proposed adders, 

ripple carry adder is designed. 

 

 

 

 
 

 
Fig. 4 Proposed half adder design 

 
 

 

 

 
 

Fig. 5 Proposed full adder design 

An LUT (Lookup Table) multiplier is a digital multiplier 

that uses a table of precomputed values to perform 

multiplication operations. The LUT multiplier is a popular 

multiplication method in digital circuits because it can be 

implemented using simple combinational logic and is area-
efficient. 

 

 

 
 

 

 

 
 

 

 

 
 

Fig. 6 Proposed 2*2 LUT multiplier design  
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When A is assigned a value of 11, the resulting output is 

contingent upon the value of B. The construction of a 4-bit 

multiplier involves the utilization of four 2-bit multipliers, 

which rely on Lookup Tables (LUTs). This 4-bit multiplier 

takes as input two 4-bit values, one for each input operand. 

These 4-bit input values are partitioned into four sets of 2-bit 
segments, each undergoing multiplication via 2-bit 

multipliers based on LUTs. To compute the ultimate output 

of the 4-bit multiplier, the outcomes of these four distinct 

multipliers are fed through a combination of full and half 

adders.  

 

              

 
 

 

 
 

 

 

 
 

 

 
Fig. 7 Proposed 4*4 LUT multiplier design 

Finally, when the input value of A is set to 11, the output 

value depends on the input value of B. A 4-bit multiplier is 

created by employing four 2-bit multipliers based on Lookup 
Tables (LUTs). This 4-bit multiplier takes two 4-bit inputs, 

one for each operand. These 4-bit inputs are divided into four 

pairs of 2-bit segments, and each pair is multiplied using 

LUT-based 2-bit multipliers. To obtain the final output of the 

4-bit multiplier, the results from these four individual 

multipliers are passed through full and half adders.  

3.6. Wallace Multiplier 

A binary multiplier, a digital circuit that multiplies two 

numbers, is realized in hardware as a Wallace multiplier. It 

gradually adds up partial products using a variety of full and 

half adders (the Wallace tree or Wallace reduction) until only 
two numbers remain. Dadda multipliers aim to limit the 

number of gates needed by delaying reduction to higher 

levels, while Wallace multipliers strive to do as much 

reduction as possible on each layer. There are three levels to 

the Wallace tree [20].  

The bits of one argument are multiplied by the bits of the 

second argument. Stacks of full and half adders may be used 

to reduce the number of partial products to two, and then the 

wires can be grouped into two numbers and added using a 

standard adder. Long multiplication has a somewhat different 

form in the Wallace tree. The first thing is multiplying each 

digit (bit) of the first component by each number (bit) of the 

second factor. The weight of each of these partial products is 

the product of its elements. The whole is equal to the total of 

the parts, weighted according to their relative importance 

[21]. 

3.7. Dadda Multiplier 

The Dadda tree or Dadda reduction is a set of full and 

half adders that add up partial products in steps until only 

two integers remain. Design-wise, it’s not too dissimilar 

from the Wallace multiplier. Still, the new reduction tree 

makes it quicker and uses fewer gates (except the smallest 

operand sizes) (for all operand sizes). Dadda multipliers aim 

to minimize input/output latency and the number of gates 

needed, unlike Wallace multipliers, which aim to eliminate 
as much as feasible on each layer. This makes the reduction 

step of Dadda multipliers cheaper, but the resulting numbers 

may be a few bits longer, necessitating somewhat larger 

adders [22]. 

A lot less time and effort has been put into developing 

approximate multipliers. A multiplier consists of a PP 

generator, a PP accumulator, and a carry propagation adder. 
The approximation PP is computed using faulty 22 multiplier 

blocks and then accumulated with correct adders in an adder 

tree. Approximate 44, 88, and 1616 Wallace multipliers [23] 

may be generated using a carry-in-prediction strategy. The 

multiplier’s last addition step is an excellent place to use the 

speculative approximation adders. The error-tolerant nature 

of specific applications informs the design of approximate 

multipliers. The multiplier is segmented into the multiplying 

segment (MSB) and the non-multiplying segment by the 

static-segment multiplier (LSB). These multipliers are 

designed for usage with unsigned data [24]. Most often, a 

Booth algorithm is employed to implement signed 
multiplication. For fixed-width Booth multipliers, 

approximate methods have been proposed using conditional 

probability approaches; these methods may be expanded to 

huge Booth multipliers with widths of more than 32 bits [25].  

The technique outperforms conventional approaches in 

terms of accuracy and space efficiency. By making 

horizontal and vertical cuts in a carry-save adder, an exact 

array multiplier may be transformed into an approximation 
array multiplier. Booth methods in signed 32-bit and 16-bit 

radix-8 and approximation computing using a 2-bit adder are 

used to construct an FIR adaptive filter with low PP and 

minimal accumulation circuitry. Approximation computing 

has become more important to reduce overhead in embedded 

and high-performance systems. Data collection is a crucial 

feature of Wireless Sensor Networks [26-28]. 

3.8. Carry Look-Ahead Adder 

The Carry-Look-Ahead adder’s fundamental principle is 
to produce the carry-in bit for each whole adder circuit based 

on the carry-out bit of the preceding adder circuit, as opposed 
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to waiting for the generation of the carry-out bit before using 

it as the carry-in bit for the following adder circuit. This 

method makes adding large binary integers much faster. The 

Carry-Look-Ahead adder speeds up the addition process by 

concurrently creating the carry bits for each bit position 

rather than sequentially. The Carry Look-Ahead adder 
creates the carry-in bit for each complete adder circuit by 

combining logic gates like AND and OR gates.   

The logic gates produce a ‘create’ signal to determine 

whether the carry bit needs to be generated for the current 

adder circuit and a “propagate” signal to determine whether 

the carry bit is being propagated from the previous adder 

circuit. The carry-in bit for each adder circuit is then 

calculated using extra logic gates to propagate and produce 

signals. Large binary numbers can be added quickly and 

effectively by repeating this procedure for each bit location 

in the binary numbers being added [16]. 

4. Results and Discussion  
The High-speed, low-power design of the FIR filter is of 

utmost importance, which makes to propose implementing 

the FIR filter using the Wallace multiplier, Dadda multiplier, 

and LUT multiplier with CLA adder, KSA adder and 

proposed adders in the suggested work.  

The multiplier will produce high-speed, low-area 

semiconductors by comparing the improved data with other 

multipliers using simulation and synthesis correspondences 

in the Quartus tool. In Table 1, the Logic Elements and 

maximum power dissipation for different multipliers and 
adders for different combinations of input bit sizes were 

implemented and compared. In the proposed adder, the logic 

elements are reduced by 55.86% compared to the KSA adder 

and 59.49% by the CLA adder. The change in power 

consumption was nominal when compared with bit by bit 

individually. 

Table 1. Logic Elements (LEs) and power dissipation comparison for different sizes of adders 

Adder Parameters 4 Bit 8 Bit 16 Bit 32 Bit 64 Bit 

CLA Adder 
LE’s 8 18 38 78 158 

Pdmax (mW) 65.18 66.31 68.56 73.07 82.09 

KSA Adder 
LE’s 8 17 36 74 145 

Pdmax (mW) 65.21 66.28 68.51 72.90 82.05 

Proposed Adder 
LE’s 6 8 16 32 64 

Pdmax (mW) 65.09 66.22 68.47 72.98 81.99 
 

 
Table 2. Logic Elements (LEs) and power dissipation comparison for different sizes of multipliers 

Multiplier Parameters 4×4 8×8 16×16 32×32 

Wallace Multiplier 
LE’s 37 176 758 3126 

Pdmax (mW) 65.47 66.97 70 76.08 

Proposed LUT Multiplier 
LE’s 31 146 623 2567 

Pdmax (mW) 65.47 66.97 69.98 76.06 

Dadda Multiplier 
LE’s 29 144 624 2586 

Pdmax (mW) 65.47 66.97 69.99 76.06 
  

In Table 2, Wallace, Dadda and proposed multipliers 

were compared with 4×4, 8×8, 16×16, and 32×32 bit sizes. 

The Logic Elements and maximum power dissipation for a 

4×4 Wallace multiplier, Dadda multiplier, and proposed LUT 

multiplier are 37, 31, and 29, respectively, whereas for 

32×32 size, they are 3126, 2586, 2567. The power 

dissipation for 4×4 size is the same for Wallace Multiplier, 

Dadda multiplier, and Proposed LUT Multiplier is 65.47mW, 

and for 32×32 size multipliers, it is 76.06mW. In the 

proposed work, the RNS FIR filter was designed with CLA 
adder, KSA adder, and proposed adder with different 

combinations of multipliers like Wallace, Dadda, and LUT 

multiplier. The performance analysis parameters, like area 

(LEs), delay, and Fmax, were compared for different 

combinations of tapping (4, 8, 16, 32, and 64) with varying 

lengths of bit (4, 8, 16, and 32).  

In Table 3, Logic Elements for different combinations of 

adders and multipliers were compared to 64 taps with 32-bit 

word length. RNS FIR filter was designed using a proposed 

adder with LUT multiplier, and the proposed adder with 

vedic multiplier gives better performance in terms of the area 

when compared with other combinations of adders and 

multipliers. The proposed adder with LUT multiplier with 8-
tap saves 6.29% of logic elements for 4-bit RNS FIR filter, 

14.05% of Logic Elements for 8-bit, 28.88% of logic 

elements for 16-bit, and 22.07% of logic elements for 32-bit 

RNS FIR filter.  
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Table 3. Logic Elements (LE’s) comparison of a different combination of fast adders and fast multipliers  

Parameter 
CLA Add 

–Wal Mul 

CLA Add– 

Dadda Mul 

CLA Add -

LUT Mul 

KSA Add- 

Vedic Mul 

Proposed Add-

LUT Mul 

Proposed Add- 

Vedic Mul 

4 Tap 

4 Bit 552 552 546 592 524 554 

8 Bit 785 785 783 834 775 778 

16 Bit 1034 1034 1031 1080 1022 1026 

32 Bit 1525 1525 1522 1572 1517 1521 

8 Tap 

4 Bit 648 654 657 667 625 640 

8 Bit 1031 1031 999 1138 978 993 

16 Bit 1280 1280 1255 1724 1226 1387 

32 Bit 1768 1769 1735 2211 1723 1870 

16 Tap 

4 Bit 1008 1016 1065 1219 1059 1032 

8 Bit 2226 2226 2291 2817 2186 2084 

16 Bit 2539 2539 2475 3019 2427 2257 

32 Bit 3111 3111 2972 3560 2925 2756 

32 Tap 

4 Bit 1616 1647 1741 2006 1785 1644 

8 Bit 4218 4216 4433 5219 4328 3559 

16 Bit 5111 5109 5178 6261 4784 3985 

32 Bit 6470 6470 6218 7082 5482 4883 

64 Tap 

4 Bit 2835 2894 3076 3751 3232 2948 

8 Bit 8542 8136 5475 11752 5251 7609 

16 Bit 11893 11407 12389 11994 11338 9770 

32 Bit 12644 12563 15728 13890 13830 11460 

Table 4. Overall comparison of area (Logic Elements utilization) of proposed results with existing results for 8-tap with an 8-bit combination of input 

word length 

Design/ Parameters Area (Logic Elements) 

G. Reddy Hemantha et al. [3] 4281 

Burhan Khurshid et al. [4] 2789 

Pavel Lyakhov [30] 1388 

D. Kaplun [31] 2456 

C.W. Tung [33] 2637 

KSA Adder, Vedic Multiplier 1138 

CLA Adder – Dadda Multiplier 1031 

CLA Adder –Wallace Multiplier 1031 

CLA Adder, LUT Multiplier 999 

Proposed Adder, Vedic Multiplier 993 

Proposed Adder, LUT Multiplier 978 
 

The overall results for the area in terms of Logic 

Elements utilization produced by the proposed works when 

compared with the existing works are shown in Table 4.  

When compared with the proposed adder with LUT 

multiplier with Reference [3], the area utilization is 

decreased by 77.15% and when compared with the proposed 



M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023 

 

158 

methods, the area utilization is saved by 14.05% in proposed 

adder with LUT multiplier when compared with the KSA 

adder with Vedic multiplier combination. 

In Table 5, the critical path delay for different 

combinations of adders and multipliers was compared up to 

64-tap with 32-bit word length. The RNS FIR filter using 

CLA adder with LUT multiplier takes less critical path delay. 

The CLA adder with LUT multiplier with 8-tap saves 9.92% 

of logic elements for 4-bit RNS FIR filter, 5.25% of Logic 

Elements for 8-bit, 8.99% of Logic Elements for 16-bit, and 

8.11% of Logic Elements for 32-bit RNS FIR filter. 

Table 5. Delay comparison of a different combination of fast adders and fast multipliers 
 

Parameter 
CLA Add 

–Wal Mul 

CLA Add –

Dadda Mul 

CLA Add -

LUT Mul 

KSA Add- 

Vedic Mul 

Proposed Add 

-LUT Mul 

Proposed Add- 

Vedic Mul 

4 Tap 

4 Bit 0.543 0.543 0.501 0.511 0.545 0.507 

8 Bit 0.541 0.541 0.492 0.499 0.491 0.549 

16 Bit 0.514 0.501 0.483 0.551 0.488 0.555 

32 Bit 0.546 0.544 0.491 0.536 0.495 0.517 

8 Tap 

4 Bit 0.544 0.513 0.490 0.506 0.509 0.514 

8 Bit 0.514 0.544 0.487 0.488 0.491 0.498 

16 Bit 0.556 0.549 0.506 0.509 0.505 0.506 

32 Bit 0.542 0.465 0.498 0.475 0.499 0.495 

16 Tap 

4 Bit 0.504 0.500 0.502 0.501 0.493 0.498 

8 Bit 0.496 0.500 0.501 0.498 0.492 0.499 

16 Bit 0.500 0.500 0.505 0.499 0.501 0.499 

32 Bit 0.500 0.500 0.504 0.503 0.494 0.500 

32 Tap 

4 Bit 0.153 0.302 0.488 0.136 0.327 0.183 

8 Bit 0.163 0.149 0.127 0.131 0.197 0.118 

16 Bit 0.186 0.114 0.305 0.344 0.123 0.410 

32 Bit 0.136 0.165 0.202 0.226 0.127 0.113 

64 Tap 

4 Bit 0.147 0.131 0.148 0.124 0.275 0.159 

8 Bit 0.276 0.272 0.354 0.181 0.188 0.174 

16 Bit 0.183 0.130 0.119 0.299 0.184 0.243 

32 Bit 0.191 0.231 0.115 0.456 0.347 0.399 
 

Table 6. Overall comparison of performance analysis of proposed results with existing results for 8-tap with an 8-bit combination of input word 

length 

Design/ Parameters Critical Path Delay (ns) 

Patronik et. al [7] 7.29 

Patronik et. al [7] 7.28 

Patronik et. al [7] 7.07 

Shaheen Khan et.al [2] 6.00 

M Balaji et. al [22] 5.39 

R Kamal et. al [9] 5.23 

Patronik et. al [7] 4.67 

T. K. Shahana et. al [15] 2.55 

CLA Adder – Dadda Multiplier 0.544 

CLA Adder –Wallace Multiplier 0.514 

Proposed Adder- Vedic Multiplier 0.498 

Proposed Adder, LUT Multiplier 0.491 

KSA Adder – Vedic Multiplier 0.488 

CLA Adder- LUT Multiplier 0.487 
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The overall results for the critical path delay produced 

by the proposed works compared to the existing assignments 

for 8-tap with 8-bit combinations are shown in Table 6. 

Compared with the memory-less DA I, CLA Adder with 

LUT Multiplier outfits the critical path delay by 93.83% and 

when compared with T. K. Shahana [15], it decreases by 
80.90%.  

In Table 7, the Fmax for different combinations of 

adders and multipliers was compared up to 64-tap with 32-bit 

word length. When comparing the different combinations for 

16-tap, the CLA adder with LUT multiplier will be the 

appropriate selection to produce the maximum frequency for 

different bit sizes. The Fmax was increased by 11.77% for 
the 4-tap, and the 32-tap increased by 11.59%.    

Table 7. Fmax comparison of a different combination of fast adders and fast multipliers  

Parameter 
CLA Add –

Wal Mul 

CLA Add –

Dadda Mul 

CLA Add-

LUT Mul 

KSA Add- 

Vedic Mul 

Proposed Add-

LUT Mul 

Proposed Add- 

Vedic Mul 

4 Tap 

4 Bit 1355.01 1355.01 1253.13 1138.95 1377.41 1107.42 

8 Bit 1367.99 1364.26 1231.53 1089.32 1242.24 1219.51 

16 Bit 1254.71 1223.99 1215.07 1221.00 1231.53 1231.53 

32 Bit 1375.52 1367.99 1237.62 1196.17 1239.16 1144.16 

8 Tap 

4 Bit 1364.26 1254.71 1201.92 1117.32 1250.00 1119.82 

8 Bit 1254.71 1400.56 1219.51 1085.78 1216.55 1095.29 

16 Bit 1390.82 1390.82 1237.62 592.07 1228.50 1103.75 

32 Bit 1355.01 1162.79 1245.33 878.73 1218.03 1095.29 

16 Tap 

4 Bit 1234.57 1226.99 1236.09 1095.29 1207.73 1090.51 

8 Bit 1226.99 1228.50 1226.99 1092.90 1207.73 1092.90 

16 Bit 1225.49 1231.53 1239.16 1091.70 1225.49 1094.09 

32 Bit 1225.49 1223.99 1237.62 1106.19 1215.07 1094.09 

32 Tap 

4 Bit 780.64 935.45 1225.49 686.81 967.12 553.71 

8 Bit 789.27 778.82 688.71 605.33 821.69 651.04 

16 Bit 713.27 659.63 938.97 880.28 654.88 934.58 

32 Bit 761.61 573.39 819.00 485.20 756.43 667.11 

64 Tap 

4 Bit 630.52 660.94 584.80 584.45 527.43 513.08 

8 Bit 526.59 531.07 500.50 510.20 607.53 462.32 

16 Bit 572.41 593.12 586.85 524.65 558.35 472.14 

32 Bit 540.12 545.55 505.56 547.25 515.76 547.60 
 

Table 8. Overall comparison of Maximum Frequency (Fmax) for 8-tap with 8-bit word length capability 

Design/ Parameters Fmax (MHz) 

D. Kaplun[31] 180.00 

Pavel Lyakhov[30] 285.00 

Burhan Khurshid - Transposed form[4] 525.88 

H.M. Kamboh [29] 535.00 

Burhan Khurshid –Direct form [4] 568.04 

Proposed Adder, LUT Multiplier 1216.55 

CLA Adder, LUT Multiplier 1219.51 

CLA Adder –Wallace Multiplier 1254.71 

KSA Adder, Vedic Multiplier 1085.78 

Proposed Adder, Vedic Multiplier 1095.29 

CLA Adder – Dadda Multiplier 1400.56 
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The overall comparison of the maximum frequency 

produced by the proposed works when compared with the 

existing works is shown in Table 8. The CLA adder with the 

Dadda multiplier gives better results than the Fmax, which is 

increased by a maximum of 87.14% with the existing work 

[31]. Compared with the proposed works, it increases by a 
maximum of 13.14% for 8-tap with 8-bit input word length 

combination. 

5. Practical Implementation of Denoising the 

ECG Signal Using Designed RNS FIR Filter 
Various sources, including external interference from 

power lines or electrical equipment, poor electrode contact or 

skin preparation, and physiological sources, such as muscle 

activity or tremors, can cause high-frequency noise in ECG 

signals. One of the most common techniques for removing 

high-frequency noise from ECG signals is low-pass filtering.  

A low-pass filter facilitates the passage of low-frequency 

signals while suppressing high-frequency ones. Choosing the 

cutoff frequency is crucial when configuring the low-pass 

filter for ECG signal processing [32]. This frequency should 

be set sufficiently high to preserve the integrity of the ECG 
signal and, at the same time, low enough to effectively 

eliminate high-frequency noise from the signal. The design 

process for a digital low-pass FIR filter using the Kaiser 

window method involves specifying the filter specifications, 

choosing the filter length and beta value, calculating the 

normalized cutoff frequency and ideal frequency response, 

computing the Kaiser window coefficients, multiplying the 
desired filter coefficients with the Kaiser window 

coefficients, normalizing the filter coefficients, and 

implementing the filter.  

The binary sequence is derived from ECG signal data, 

utilizing samples from the renowned MIT-BIH Arrhythmia 

database (MIT-BIH-AR). This ECG database is collected 
from PhysioNet, and the signal is plotted using the 

MATLAB tool.  

Figure 8 shows that most ECG signals contain noise and 

interference in the higher frequency range, such as power 

line interference (50 Hz or 60 Hz) and muscle artefacts. 

Applying a low-pass filter with a cutoff frequency of 50 Hz 
can attenuate these unwanted components, improving the 

overall signal quality. Random noise with a frequency of 

more than 50 Hz, shown in Figure  9, is generated in 

MATLAB and added that generated noise to the ECG Signal, 

as shown in Figure 10. 

              

 

 

 

 

 

 

Fig. 8 The ECG signal 

          

 

 

 

 

 

 
 

Fig. 9 The noise signal 
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Fig. 10 The ECG signal with noise  

The generated coefficients from ECG signal added with 

noise are given as inputs to low pass RNS digital FIR filter 

for 4-Tap, 8-Tap, 16-Tap, 32-Tap and 64-Tap. As the 

number of taps in a filter increases, it improves noise 

elimination by enhancing frequency selectivity, improving 

stop-band attenuation. The generated coefficient for ECG 

signal, noise signal and ECG signal added with noise is 

shown in Figure 11. 

 
Fig. 11 The MATLAB generated coefficients of ECG signal with noise 

 
Fig. 12 Simulation of ECG signal denoising for 16-tap low-pass RNS FIR filter 
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Fig. 13 Simulation of ECG signal denoising for 32-tap low-pass RNS FIR filter 

Figure 12 and 13 represent the simulated waveform of a 

16-tap and 32-tap low pass RNS FIR filter along with ECG 

signal, noise signal, and noised ECG signal. The filtered 

signal is obtained by processing the input through a filter 

with 32 coefficients-the 32-tap RNS FIR filter results from 

more nose elimination compared to 4-tap, 8-tap and 16-tap. 

With more coefficients, it can more precisely shape the 

frequency response, allowing for a narrower transition band 

and improved attenuation of unwanted high-frequency 

components. 

6. Conclusion 
The RNS system supports the rapid development of FIR 

filters of varying moduli sets and forward and reverse 

converters. Various design considerations are considered for 

the RNS-based FIR filter, including Logic Elements usage, 

delay, power consumption, maximum operating frequency, 

filter order, and the number of taps. The design modules 

were implemented using Verilog HDL, and their 
functionality was validated through ModelSim. The FPGA 

QUARTUS II 9.0 version was employed to establish the 

RNS design specifications and develop the FIR filter designs 

to meet the requirements of ALTERA CYCLONE III logic 

family devices in the 65nm technology. The proposed adder 

with LUT multiplier with 8-tap saves 6.29% of the hardware 

resource utilization (Logic Elements) for 4-bit RNS FIR 

Filter, 14.05% of Logic Elements for 8-bit, 28.88% of logic 

elements for 16-bit, and 22.07% of Logic Elements for 32-bit 

RNS FIR filter combinations.  

The CLA adder with LUT multiplier with 8-tap saves 
9.92% for 4-bit RNS FIR Filter, 5.25% for 8-bit, 8.99% for 

16-bit, and 8.11% for 32-bit RNS FIR filter combinations in 

terms of critical path delay. The proposed adder with Vedic 

multiplier with 8-tap saves 17.91% for 4-bit RNS FIR filter, 

12.70% for 8-bit, 20.64% for 16-bit, and 19.16% for 32-bit 

RNS FIR filter in terms of maximum frequency.  

The Low-pass RNS FIR filter is designed for a cutoff 

frequency of 50 Hz and generated filter coefficients in 
MATLAB and implemented to denoise the ECG signal. 

Efforts were undertaken to combine the abovementioned 

processes to construct a high-performance RNS FIR filter 

design, which was subsequently applied to ECG denoising. 

The integration of all modules produced encouraging 

outcomes within the filter design process. 
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