
SSRG International Journal of Electrical and Electronics Engineering Volume 10 Issue 10, 151-164, October 2023
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V10I10P115 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Area and Delay Efficient RNS-Based FIR Filter Design

Using Fast Adders and Multipliers

M. Balaji1,2, N. Padmaja2

1Department of ECE, Jawaharlal Nehru Technological University, Ananthapuramu, Andhra Pradesh, India.
2Department of ECE, Sree Vidyanikethan Engineering College, Andhra Pradesh, India.

1Corresponding Author : balajichaitra3@gmail.com

Received: 15 August 2023 Revised: 17 September 2023 Accepted: 14 October 2023 Published: 31 October 2023

Abstract - Speed and area are the primary design concerns in today’s digital age. Increasing the rate at which multiplications

and additions are performed has always been necessary for developing cutting-edge technologies. Wallace and Dadda

multipliers are among the fastest multipliers used in many processors to accomplish fast arithmetic operations. A novel

approach to design a Lookup Table (LUT) multiplier and adder was proposed and implemented in the Finite Impulse

Response (FIR) filter. To improve the Residue Number System (RNS) based FIR filter’s performance, several adders like

Carry Look Ahead (CLA) adder, Kogge Stone Adder (KSA) and proposed adder architectures have also been implemented.

Compared with the 16 taps with 32-bit proposed adder with LUT multiplier, the hardware resource utilization (Logic

Elements) is decreased by 5.97% and in 32 taps with 16-bit combination, it reduces by 7.60%. Compared with 32 taps with 4-

bit word length, the proposed adder with LUT multiplier in the highlighted combinations, the Fmax is increased by 19.28%

and in 32 taps with 16-bit, it increases by 29.74%. The Low-pass RNS FIR filter is designed for a cutoff frequency of 50 Hz,
generated filter coefficients in MATLAB, and implemented to denoise the ECG signal.

Keywords - FIR filter, Dadda multiplier, Lookup Table, Logic Elements, ECG.

1. Introduction
The optimized multipliers and adders architectures are

introduced in the RNS filter to reduce the filter’s area and

delay. Using optimized adders and multipliers in RNS FIR
filters can provide several advantages, such as reduced

hardware complexity, improved performance, and lower

power consumption. In an FIR filter, the primary operation is

multiplying the input samples with filter coefficients and

accumulating these products. Using optimized multipliers,

such as Wallace multipliers, Dadda multipliers and LUT

multiplier, can reduce the number of partial products

required and thus reduce the overall hardware complexity of

the filter. This, in turn, can result in lower power

consumption and reduced circuit area [1].

Similarly, using optimized adders, like Carry-Look

Ahead adders, KSA adders, and proposed adders, can
improve the filter’s performance by reducing the propagation

delay of carry signals and minimizing the number of levels of

logic gates in the adder circuit. This will result in faster filter

operation and reduced power consumption. Overall, using

optimized adders and multipliers in FIR filters can

significantly improve performance, power consumption, and

circuit area, making them a valuable design consideration for

efficient digital signal processing applications [2].

There is a critical need for Digital Signal Processing

(DSP) expertise due to the decisive nature of its tasks.

Multiple adders and multipliers are often seen in

sophisticated DSP systems. Better results may be achieved

by complicated signal processing techniques with well-

designed adders and multipliers.

In many scenarios, such as controllers and processing

chips, adders are one of the essential components. Adders

may be found in a variety of networks in a variety of blocks.
The time needed for a carry to propagate through a digital

adder limits its adding speed. In a traditional ripple adder, the

total for each bit location is generated sequentially following

the addition of the preceding bit position and carry transfer

into the next bit position [3].

Multiple Input Multiple Output (MIMO) applications

extensively use the various parallel solutions developed for

high throughput systems. The parallel architecture improves

the system’s throughput, but the L-parallel filter design

exponentially increases hardware cost and power

consumption. With this shortcoming of parallel architecture,
different fast multipliers were implemented with the

combination of adders [4]. This technique is far more space-

efficient than the standard parallel design, cutting hardware

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:balajichaitra3@gmail.com

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

152

needs in half. Without the multiplier and adder, there

wouldn’t be much FIR filter. The filter as a whole can only

achieve its desired processing speed and power dissipation if

its multiplier and adder block perform as expected.

Several effective multiplier and adder architectures have

been created [5]. The research found that the Wallace
multiplier and Dadda multiplier had excellent results in terms

of latency compared to other designs. The implementation

results demonstrate the benefits of the suggested design over

the standard one, namely more incredible speed and reduced

power dissipation [6].

The following sections of the paper are organized:

Section 2 offers a comprehensive description of the

methodologies utilized in prior designs. Section 3 describes

the different adders and multipliers implemented to design

the RNS FIR filter, and section 4 represents the results and

performance analysis of the filter. Section 6 delivers the

conclusion.

2. Literature Review
The Partial Product (PP) reduction phase in

multiplication operations is known for its substantial energy

consumption and significant silicon area usage. Hence, three

primary strategies are typically utilized to design

approximate multipliers. The first technique involves
approximations when generating Partial Products (PP).

Next, truncation is applied within the PP tree. The last

method approximates the adders and compressors

accumulating the partial derivatives. Therefore,

approximation computing was developed to reduce power

consumption. In this study, they use probabilistic pruning, an

approximation approach proposed by [7].

An OR-based error-compensated approximation

multiplier with input reordered 4:2 compressors was

presented by [8] for low-energy design. By switching the

information order, the compressor may function with only

two of the four inputs, making it more straightforward and
requiring fewer gates. The suggested method achieves 99.3%

precision, using just 44.7% of the energy and 31.7% of the

space of the best existing practices.

Eight-by-eight approximation multipliers based on high-

order approximation compressors were proposed by [9].

Accumulating product terms and decreasing energy

consumption with few mistakes is achieved using different

compressors for different weights. To streamline the ‘carry

chain’s’ logic, higher-order approximation compressors are

used for the intermediate significance weights, such as 8-to-2

compressors. To create an error-efficient system, [10]
proposed the rounding method-based approximation

multiplier, which involves rounding up the input operands to

the next power of 2. The transformed inputs are run via an

arithmetic module that contains subtractor, adder, and shifter

units. Input operand sizes might be anything from 8 bits up

to 32 bits. The simulation results show that the delay is

around 22% and the power use is approximately 57%, both

of which are improvements over comparable approximation
multipliers.

To resolve this problem, [11] presented a rounding

method that may be adjusted on the fly to serve as an

approximate multiplier. The suggested multipliers are

attractive because they reduce implementation complexity

while improving power efficiency. The proposed technique

uses 32.5% less energy, has a 50.8% smaller footprint than

filters using existing multipliers, and has 54.7% less latency.

To create an approximation multiplier, [12] suggested adding

an approximate compressor with a single gate. The proposed
technology consumes 61% less energy and occupies 52%

less space than current methods.

An approximation multiplier for unsigned integers was

suggested by [13] due to its great configurability; it aims to

reduce all hardware metrics while retaining outstanding

accuracy. It provides various options for reducing energy use

by 35–85%, so it may be used in multiple contexts without
breaking the bank. An approximation multiplier through the

truncating approach was presented by [14]. The

approximation multiplier worked by computing the final

result using scientific-binary representations of the operands

and truncating the intermediate results.

Compared to the same multiplier, this one is 89.2

percent more efficient at conserving energy while taking up

just 74.9 percent less room on average. This study presents a
novel approximation adder to be used with an energy-

efficient, high-performance approximate PP accumulation

tree for a multiplier.

To avoid ‘carry propagation,’ the proposed

approximation adder generates an error vector and a rough

total. The OR gates and approximation adder-based error

reduction methodologies [15] provide two distinct designs

for approximate 8X8 multipliers, M1 and M2. It has been

shown that the power consumption of the suggested

approximation multipliers is lower than that of a speed-
optimized accurate Wallace multiplier.

Minimal error margins allow the proposed multipliers to

achieve high precision. As a bonus, simulations have shown

that M2, although having a longer delay and using more

power, is more accurate than M1. Multipliers for the

proposed approximation are more precise than those used in

prior approximation models. Compared to older designs that
prioritized delay and energy savings but had inconsistent

accuracy, the suggested alternatives provide considerable

savings while maintaining a high level of precision.

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

153

3. Proposed Work
 In this work, the RNS FIR filter is designed to enhance

the filter’s performance using optimised adders and

multipliers. In an FIR filter, the primary operation is

multiplying and accumulating the input samples with filter

coefficients.

Using optimized multipliers, such as Wallace

multipliers, Dadda multipliers, and LUT Multiplier, can

reduce the number of partial products required and thus

reduce the overall hardware complexity of the filter. This, in

turn, can result in lower power consumption and reduced

circuit area. Similarly, using adders like Carry Look-Ahead

adder, KSA adder and the proposed adder results in high
speed by reducing the propagation delay of the carry. These

optimized adders and multipliers are introduced into the RNS

FIR filter.

3.1. Operation of RNS-Based FIR Filter
The RNS is a method of representing integers using a set

of residue classes. In RNS, an integer is characterised by its

remainder modulo, a group of pairwise coprime integers. The

RNS provides a way to perform modular arithmetic on the

residues in parallel, which can be advantageous for certain

digital signal processing operations [18].

Modular arithmetic is a crucial technique to convert the
input word into a series of residues (x1, x2, x3) within an

FIR filter based on the Residue Number System (RNS). The

moduli values are consistently represented in the form of 2n-

1, 2n, and 2n+1. When n equals 3, the modulo set takes the

form of 7, 8, and 9. Applying modular operations on the

filter coefficients and input signals results in the generation

of residues. Subsequently, the output of the forward

converter undergoes a sequence of FIR filters before being

transmitted to the RNS decoder, as depicted in Figure 1.

Fig. 1 Block diagram of RNS-based FIR filter

3.2. RNS Encoder Working

The RNS encoder has three modulus operators, each

designed for one of the three sets. These operators execute

modulus operations on the input sequence, creating a residue

set. This residue set is then fed into the FIR filter, and the

output of the FIR filters is connected to the RNS decoder.

The logical diagram of the RNS encoder is visually

represented in Figure 2.

Fig. 2 RNS encoder implementation

For input x[n]=01100100 and moduli set (m1, m2, m3)=

{7, 8, 9} the residues are given as

𝑟1 = x[n] % 7 = (01100100) % 7 = 0010

𝑟2 = x[n] % 8 = (01100100) % 8 = 0100

r3= x[n] % 9 = (01100100) % 9 = 0001

The modulus output of residues is (r1, r2, r3) given to the

FIR circuit shown in Figure 3. The FIR circuit can be a basic

FIR circuit modified binary DA or a partitioned LUT-based
FIR filter. The outputs of appropriate residues are given to

the RNS decoder [17].

3.3. FIR Filter Implementation

The coefficients of the FIR filter are d0, d1, d2, and d3.

X[n] is the input sequence or a word. The sequence gets

delayed for each clock cycle, enters the multiplier, and gets

multiplied with the appropriate coefficients. The output of

each multiplier is added, resulting in the production. The

output for 4-tap FIR filter with coefficients d0, d1, d2 and d3

is given as,

𝑌[𝑛] = 𝑑0 × 𝑋[𝑛] + 𝑑1 × 𝑋[𝑛 − 1] + 𝑑2 × 𝑋[𝑛 − 2] +
𝑑3 × 𝑋[𝑛 − 3] (1)

Fig. 3 Structure of 4-tap FIR filter

FIR Filter

mod m
1

FIR Filter
mod m

2

FIR Filter
mod m

n

RNS
Decoder

RNS

Encoder Input Output

%7

%8

%9

r
1

r
2

r
3

Input Signal

Delay Delay Delay

d[0] d[1] d[2] d[3]

X[n]=r
1

Y[n]=𝑟1
′

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

154

3.3.1. Operation of FIR Filter

Consider an FIR filter with coefficients as 𝑑0= 0010, 𝑑1=

0100, 𝑑2=0110, 𝑑3=1000 (in binary). Consider the input

sequence or input word to be X[n] = 0010 (in binary). The

output of the FIR filter after substituting the filter
coefficients in equation (1) is,

Y[n] = 0010* X[n] +0100 * X[n-1] + 0110 * X[n-2] +

1000 * x[n-3]

Where X[n-1], X[n-2], X[n-3] are delayed input

sequence.

First Clock Cycle

X[n]= 0010, X[n-1] = 0000, X[n-2] = 0000, X[n-3]

=0000. Output: Y[n] = 0010*0010 +0000*0100 +

0000*0110 + 0000*1000 = 00100 (4 in decimal).

Second Clock Cycle

X[n]= 0010, X[n-1] = 0010, X[n-2] = 0000, X[n-3]
=0000. Output: Y[n] = 0010*0010 +0010*0100 +

0000*0110 + 0000*1000 = 00100 + 01000 = 01100 (12 in

decimal).

Third Clock Cycle

X[n]=0010, X[n-1] = 0010, X[n-2] = 0010, X[n-3]

=0000. Output: Y[n] = 0010*0010 +0010*0100 +

0010*0110 + 0000*1000 = 00100 + 01000 + 01100 = 11000

(24 in decimal).

Fourth Clock Cycle

X[n]=0010, X[n-1] = 0010, X[n-2] = 0010, X[n-3] =

0010. Output: Y[n] = 0010*0010 + 0010*0100 + 0010*0110

+ 0010*1000= 00100 + 001000 + 01100 + 10000 = 101000
(40 in decimal).

3.4. RNS Decoder Working

The Chinese remainder theorem [19] establishes that

when the divisors are mutually coprime, it becomes possible

to uniquely determine the remainder of the division of n by

the product of these integers if one has the remainders

resulting from the Euclidean division of an integer by

multiple integers. This theorem provides a solution to

systems of linear congruences with several moduli, offering

an alternative approach to finding a unique solution for a set

of equations where the variables are integers, and each
equation is based on a different modulo.

Let us consider the output of the FIR filter

(𝑟1′, 𝑟2′, … . . 𝑟𝑡′) with modulo (𝑚1, 𝑚2, … . . 𝑚𝑡) where all 𝑚𝑡

are mutually prime.

Let M = (𝑚1 ∗ 𝑚2 ∗ … . . 𝑚𝑡)

𝑀𝑖 = 𝑀
𝑚𝑖

⁄ (2)

Let 𝐾𝑖 be the result that (𝑀𝑖 ∗ 𝐾𝑖)%𝑚𝑖 = 1, then the

corresponding numbers as

𝑦 = (∑ (𝑀𝑖𝐾𝑖𝑟𝑖′)
𝑡
𝑖=1)%𝑀 (3)

RNS output from equation (3) is

= (∑(𝑀𝑖 × 𝐾𝑖 × 𝑟𝑖)) %𝑀

 =((200*272*8)+(80*255*15)+(300*240*9))%4080

=2000

3.5. Proposed Adder and LUT Multiplier

The proposed half adder circuit in Figure 4 uses basic

gates, and the full adder in Figure 5 uses two proposed half-

adders with an OR gate. By using these proposed adders,

ripple carry adder is designed.

Fig. 4 Proposed half adder design

Fig. 5 Proposed full adder design

An LUT (Lookup Table) multiplier is a digital multiplier

that uses a table of precomputed values to perform

multiplication operations. The LUT multiplier is a popular

multiplication method in digital circuits because it can be

implemented using simple combinational logic and is area-
efficient.

Fig. 6 Proposed 2*2 LUT multiplier design

Sum

Carry

A

B

Half

Adder
Half

Adder

Sum

Carry

A

B

Multiplexer

Multiplexer

Output

A[1:0]

B[1:0]

0 00B 0B0

0 3 6 9

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

155

When A is assigned a value of 11, the resulting output is

contingent upon the value of B. The construction of a 4-bit

multiplier involves the utilization of four 2-bit multipliers,

which rely on Lookup Tables (LUTs). This 4-bit multiplier

takes as input two 4-bit values, one for each input operand.

These 4-bit input values are partitioned into four sets of 2-bit
segments, each undergoing multiplication via 2-bit

multipliers based on LUTs. To compute the ultimate output

of the 4-bit multiplier, the outcomes of these four distinct

multipliers are fed through a combination of full and half

adders.

Fig. 7 Proposed 4*4 LUT multiplier design

Finally, when the input value of A is set to 11, the output

value depends on the input value of B. A 4-bit multiplier is

created by employing four 2-bit multipliers based on Lookup
Tables (LUTs). This 4-bit multiplier takes two 4-bit inputs,

one for each operand. These 4-bit inputs are divided into four

pairs of 2-bit segments, and each pair is multiplied using

LUT-based 2-bit multipliers. To obtain the final output of the

4-bit multiplier, the results from these four individual

multipliers are passed through full and half adders.

3.6. Wallace Multiplier

A binary multiplier, a digital circuit that multiplies two

numbers, is realized in hardware as a Wallace multiplier. It

gradually adds up partial products using a variety of full and

half adders (the Wallace tree or Wallace reduction) until only
two numbers remain. Dadda multipliers aim to limit the

number of gates needed by delaying reduction to higher

levels, while Wallace multipliers strive to do as much

reduction as possible on each layer. There are three levels to

the Wallace tree [20].

The bits of one argument are multiplied by the bits of the

second argument. Stacks of full and half adders may be used

to reduce the number of partial products to two, and then the

wires can be grouped into two numbers and added using a

standard adder. Long multiplication has a somewhat different

form in the Wallace tree. The first thing is multiplying each

digit (bit) of the first component by each number (bit) of the

second factor. The weight of each of these partial products is

the product of its elements. The whole is equal to the total of

the parts, weighted according to their relative importance

[21].

3.7. Dadda Multiplier

The Dadda tree or Dadda reduction is a set of full and

half adders that add up partial products in steps until only

two integers remain. Design-wise, it’s not too dissimilar

from the Wallace multiplier. Still, the new reduction tree

makes it quicker and uses fewer gates (except the smallest

operand sizes) (for all operand sizes). Dadda multipliers aim

to minimize input/output latency and the number of gates

needed, unlike Wallace multipliers, which aim to eliminate
as much as feasible on each layer. This makes the reduction

step of Dadda multipliers cheaper, but the resulting numbers

may be a few bits longer, necessitating somewhat larger

adders [22].

A lot less time and effort has been put into developing

approximate multipliers. A multiplier consists of a PP

generator, a PP accumulator, and a carry propagation adder.
The approximation PP is computed using faulty 22 multiplier

blocks and then accumulated with correct adders in an adder

tree. Approximate 44, 88, and 1616 Wallace multipliers [23]

may be generated using a carry-in-prediction strategy. The

multiplier’s last addition step is an excellent place to use the

speculative approximation adders. The error-tolerant nature

of specific applications informs the design of approximate

multipliers. The multiplier is segmented into the multiplying

segment (MSB) and the non-multiplying segment by the

static-segment multiplier (LSB). These multipliers are

designed for usage with unsigned data [24]. Most often, a

Booth algorithm is employed to implement signed
multiplication. For fixed-width Booth multipliers,

approximate methods have been proposed using conditional

probability approaches; these methods may be expanded to

huge Booth multipliers with widths of more than 32 bits [25].

The technique outperforms conventional approaches in

terms of accuracy and space efficiency. By making

horizontal and vertical cuts in a carry-save adder, an exact

array multiplier may be transformed into an approximation
array multiplier. Booth methods in signed 32-bit and 16-bit

radix-8 and approximation computing using a 2-bit adder are

used to construct an FIR adaptive filter with low PP and

minimal accumulation circuitry. Approximation computing

has become more important to reduce overhead in embedded

and high-performance systems. Data collection is a crucial

feature of Wireless Sensor Networks [26-28].

3.8. Carry Look-Ahead Adder

The Carry-Look-Ahead adder’s fundamental principle is
to produce the carry-in bit for each whole adder circuit based

on the carry-out bit of the preceding adder circuit, as opposed

2x2 MUL 2x2 MUL

2x2 MUL 2x2 MUL

A[1:0] B[1:0] A[3:2] B[1:0]

A[3:2] A[3:2] A[3:2] A[1:0]

Adder Elements

O[7:0]

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

156

to waiting for the generation of the carry-out bit before using

it as the carry-in bit for the following adder circuit. This

method makes adding large binary integers much faster. The

Carry-Look-Ahead adder speeds up the addition process by

concurrently creating the carry bits for each bit position

rather than sequentially. The Carry Look-Ahead adder
creates the carry-in bit for each complete adder circuit by

combining logic gates like AND and OR gates.

The logic gates produce a ‘create’ signal to determine

whether the carry bit needs to be generated for the current

adder circuit and a “propagate” signal to determine whether

the carry bit is being propagated from the previous adder

circuit. The carry-in bit for each adder circuit is then

calculated using extra logic gates to propagate and produce

signals. Large binary numbers can be added quickly and

effectively by repeating this procedure for each bit location

in the binary numbers being added [16].

4. Results and Discussion
The High-speed, low-power design of the FIR filter is of

utmost importance, which makes to propose implementing

the FIR filter using the Wallace multiplier, Dadda multiplier,

and LUT multiplier with CLA adder, KSA adder and

proposed adders in the suggested work.

The multiplier will produce high-speed, low-area

semiconductors by comparing the improved data with other

multipliers using simulation and synthesis correspondences

in the Quartus tool. In Table 1, the Logic Elements and

maximum power dissipation for different multipliers and
adders for different combinations of input bit sizes were

implemented and compared. In the proposed adder, the logic

elements are reduced by 55.86% compared to the KSA adder

and 59.49% by the CLA adder. The change in power

consumption was nominal when compared with bit by bit

individually.

Table 1. Logic Elements (LEs) and power dissipation comparison for different sizes of adders

Adder Parameters 4 Bit 8 Bit 16 Bit 32 Bit 64 Bit

CLA Adder
LE’s 8 18 38 78 158

Pdmax (mW) 65.18 66.31 68.56 73.07 82.09

KSA Adder
LE’s 8 17 36 74 145

Pdmax (mW) 65.21 66.28 68.51 72.90 82.05

Proposed Adder
LE’s 6 8 16 32 64

Pdmax (mW) 65.09 66.22 68.47 72.98 81.99

Table 2. Logic Elements (LEs) and power dissipation comparison for different sizes of multipliers

Multiplier Parameters 4×4 8×8 16×16 32×32

Wallace Multiplier
LE’s 37 176 758 3126

Pdmax (mW) 65.47 66.97 70 76.08

Proposed LUT Multiplier
LE’s 31 146 623 2567

Pdmax (mW) 65.47 66.97 69.98 76.06

Dadda Multiplier
LE’s 29 144 624 2586

Pdmax (mW) 65.47 66.97 69.99 76.06

In Table 2, Wallace, Dadda and proposed multipliers

were compared with 4×4, 8×8, 16×16, and 32×32 bit sizes.

The Logic Elements and maximum power dissipation for a

4×4 Wallace multiplier, Dadda multiplier, and proposed LUT

multiplier are 37, 31, and 29, respectively, whereas for

32×32 size, they are 3126, 2586, 2567. The power

dissipation for 4×4 size is the same for Wallace Multiplier,

Dadda multiplier, and Proposed LUT Multiplier is 65.47mW,

and for 32×32 size multipliers, it is 76.06mW. In the

proposed work, the RNS FIR filter was designed with CLA
adder, KSA adder, and proposed adder with different

combinations of multipliers like Wallace, Dadda, and LUT

multiplier. The performance analysis parameters, like area

(LEs), delay, and Fmax, were compared for different

combinations of tapping (4, 8, 16, 32, and 64) with varying

lengths of bit (4, 8, 16, and 32).

In Table 3, Logic Elements for different combinations of

adders and multipliers were compared to 64 taps with 32-bit

word length. RNS FIR filter was designed using a proposed

adder with LUT multiplier, and the proposed adder with

vedic multiplier gives better performance in terms of the area

when compared with other combinations of adders and

multipliers. The proposed adder with LUT multiplier with 8-
tap saves 6.29% of logic elements for 4-bit RNS FIR filter,

14.05% of Logic Elements for 8-bit, 28.88% of logic

elements for 16-bit, and 22.07% of logic elements for 32-bit

RNS FIR filter.

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

157

Table 3. Logic Elements (LE’s) comparison of a different combination of fast adders and fast multipliers

Parameter
CLA Add

–Wal Mul

CLA Add–

Dadda Mul

CLA Add -

LUT Mul

KSA Add-

Vedic Mul

Proposed Add-

LUT Mul

Proposed Add-

Vedic Mul

4 Tap

4 Bit 552 552 546 592 524 554

8 Bit 785 785 783 834 775 778

16 Bit 1034 1034 1031 1080 1022 1026

32 Bit 1525 1525 1522 1572 1517 1521

8 Tap

4 Bit 648 654 657 667 625 640

8 Bit 1031 1031 999 1138 978 993

16 Bit 1280 1280 1255 1724 1226 1387

32 Bit 1768 1769 1735 2211 1723 1870

16 Tap

4 Bit 1008 1016 1065 1219 1059 1032

8 Bit 2226 2226 2291 2817 2186 2084

16 Bit 2539 2539 2475 3019 2427 2257

32 Bit 3111 3111 2972 3560 2925 2756

32 Tap

4 Bit 1616 1647 1741 2006 1785 1644

8 Bit 4218 4216 4433 5219 4328 3559

16 Bit 5111 5109 5178 6261 4784 3985

32 Bit 6470 6470 6218 7082 5482 4883

64 Tap

4 Bit 2835 2894 3076 3751 3232 2948

8 Bit 8542 8136 5475 11752 5251 7609

16 Bit 11893 11407 12389 11994 11338 9770

32 Bit 12644 12563 15728 13890 13830 11460

Table 4. Overall comparison of area (Logic Elements utilization) of proposed results with existing results for 8-tap with an 8-bit combination of input

word length

Design/ Parameters Area (Logic Elements)

G. Reddy Hemantha et al. [3] 4281

Burhan Khurshid et al. [4] 2789

Pavel Lyakhov [30] 1388

D. Kaplun [31] 2456

C.W. Tung [33] 2637

KSA Adder, Vedic Multiplier 1138

CLA Adder – Dadda Multiplier 1031

CLA Adder –Wallace Multiplier 1031

CLA Adder, LUT Multiplier 999

Proposed Adder, Vedic Multiplier 993

Proposed Adder, LUT Multiplier 978

The overall results for the area in terms of Logic

Elements utilization produced by the proposed works when

compared with the existing works are shown in Table 4.

When compared with the proposed adder with LUT

multiplier with Reference [3], the area utilization is

decreased by 77.15% and when compared with the proposed

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

158

methods, the area utilization is saved by 14.05% in proposed

adder with LUT multiplier when compared with the KSA

adder with Vedic multiplier combination.

In Table 5, the critical path delay for different

combinations of adders and multipliers was compared up to

64-tap with 32-bit word length. The RNS FIR filter using

CLA adder with LUT multiplier takes less critical path delay.

The CLA adder with LUT multiplier with 8-tap saves 9.92%

of logic elements for 4-bit RNS FIR filter, 5.25% of Logic

Elements for 8-bit, 8.99% of Logic Elements for 16-bit, and

8.11% of Logic Elements for 32-bit RNS FIR filter.

Table 5. Delay comparison of a different combination of fast adders and fast multipliers

Parameter
CLA Add

–Wal Mul

CLA Add –

Dadda Mul

CLA Add -

LUT Mul

KSA Add-

Vedic Mul

Proposed Add

-LUT Mul

Proposed Add-

Vedic Mul

4 Tap

4 Bit 0.543 0.543 0.501 0.511 0.545 0.507

8 Bit 0.541 0.541 0.492 0.499 0.491 0.549

16 Bit 0.514 0.501 0.483 0.551 0.488 0.555

32 Bit 0.546 0.544 0.491 0.536 0.495 0.517

8 Tap

4 Bit 0.544 0.513 0.490 0.506 0.509 0.514

8 Bit 0.514 0.544 0.487 0.488 0.491 0.498

16 Bit 0.556 0.549 0.506 0.509 0.505 0.506

32 Bit 0.542 0.465 0.498 0.475 0.499 0.495

16 Tap

4 Bit 0.504 0.500 0.502 0.501 0.493 0.498

8 Bit 0.496 0.500 0.501 0.498 0.492 0.499

16 Bit 0.500 0.500 0.505 0.499 0.501 0.499

32 Bit 0.500 0.500 0.504 0.503 0.494 0.500

32 Tap

4 Bit 0.153 0.302 0.488 0.136 0.327 0.183

8 Bit 0.163 0.149 0.127 0.131 0.197 0.118

16 Bit 0.186 0.114 0.305 0.344 0.123 0.410

32 Bit 0.136 0.165 0.202 0.226 0.127 0.113

64 Tap

4 Bit 0.147 0.131 0.148 0.124 0.275 0.159

8 Bit 0.276 0.272 0.354 0.181 0.188 0.174

16 Bit 0.183 0.130 0.119 0.299 0.184 0.243

32 Bit 0.191 0.231 0.115 0.456 0.347 0.399

Table 6. Overall comparison of performance analysis of proposed results with existing results for 8-tap with an 8-bit combination of input word

length

Design/ Parameters Critical Path Delay (ns)

Patronik et. al [7] 7.29

Patronik et. al [7] 7.28

Patronik et. al [7] 7.07

Shaheen Khan et.al [2] 6.00

M Balaji et. al [22] 5.39

R Kamal et. al [9] 5.23

Patronik et. al [7] 4.67

T. K. Shahana et. al [15] 2.55

CLA Adder – Dadda Multiplier 0.544

CLA Adder –Wallace Multiplier 0.514

Proposed Adder- Vedic Multiplier 0.498

Proposed Adder, LUT Multiplier 0.491

KSA Adder – Vedic Multiplier 0.488

CLA Adder- LUT Multiplier 0.487

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

159

The overall results for the critical path delay produced

by the proposed works compared to the existing assignments

for 8-tap with 8-bit combinations are shown in Table 6.

Compared with the memory-less DA I, CLA Adder with

LUT Multiplier outfits the critical path delay by 93.83% and

when compared with T. K. Shahana [15], it decreases by
80.90%.

In Table 7, the Fmax for different combinations of

adders and multipliers was compared up to 64-tap with 32-bit

word length. When comparing the different combinations for

16-tap, the CLA adder with LUT multiplier will be the

appropriate selection to produce the maximum frequency for

different bit sizes. The Fmax was increased by 11.77% for
the 4-tap, and the 32-tap increased by 11.59%.

Table 7. Fmax comparison of a different combination of fast adders and fast multipliers

Parameter
CLA Add –

Wal Mul

CLA Add –

Dadda Mul

CLA Add-

LUT Mul

KSA Add-

Vedic Mul

Proposed Add-

LUT Mul

Proposed Add-

Vedic Mul

4 Tap

4 Bit 1355.01 1355.01 1253.13 1138.95 1377.41 1107.42

8 Bit 1367.99 1364.26 1231.53 1089.32 1242.24 1219.51

16 Bit 1254.71 1223.99 1215.07 1221.00 1231.53 1231.53

32 Bit 1375.52 1367.99 1237.62 1196.17 1239.16 1144.16

8 Tap

4 Bit 1364.26 1254.71 1201.92 1117.32 1250.00 1119.82

8 Bit 1254.71 1400.56 1219.51 1085.78 1216.55 1095.29

16 Bit 1390.82 1390.82 1237.62 592.07 1228.50 1103.75

32 Bit 1355.01 1162.79 1245.33 878.73 1218.03 1095.29

16 Tap

4 Bit 1234.57 1226.99 1236.09 1095.29 1207.73 1090.51

8 Bit 1226.99 1228.50 1226.99 1092.90 1207.73 1092.90

16 Bit 1225.49 1231.53 1239.16 1091.70 1225.49 1094.09

32 Bit 1225.49 1223.99 1237.62 1106.19 1215.07 1094.09

32 Tap

4 Bit 780.64 935.45 1225.49 686.81 967.12 553.71

8 Bit 789.27 778.82 688.71 605.33 821.69 651.04

16 Bit 713.27 659.63 938.97 880.28 654.88 934.58

32 Bit 761.61 573.39 819.00 485.20 756.43 667.11

64 Tap

4 Bit 630.52 660.94 584.80 584.45 527.43 513.08

8 Bit 526.59 531.07 500.50 510.20 607.53 462.32

16 Bit 572.41 593.12 586.85 524.65 558.35 472.14

32 Bit 540.12 545.55 505.56 547.25 515.76 547.60

Table 8. Overall comparison of Maximum Frequency (Fmax) for 8-tap with 8-bit word length capability

Design/ Parameters Fmax (MHz)

D. Kaplun[31] 180.00

Pavel Lyakhov[30] 285.00

Burhan Khurshid - Transposed form[4] 525.88

H.M. Kamboh [29] 535.00

Burhan Khurshid –Direct form [4] 568.04

Proposed Adder, LUT Multiplier 1216.55

CLA Adder, LUT Multiplier 1219.51

CLA Adder –Wallace Multiplier 1254.71

KSA Adder, Vedic Multiplier 1085.78

Proposed Adder, Vedic Multiplier 1095.29

CLA Adder – Dadda Multiplier 1400.56

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

160

The overall comparison of the maximum frequency

produced by the proposed works when compared with the

existing works is shown in Table 8. The CLA adder with the

Dadda multiplier gives better results than the Fmax, which is

increased by a maximum of 87.14% with the existing work

[31]. Compared with the proposed works, it increases by a
maximum of 13.14% for 8-tap with 8-bit input word length

combination.

5. Practical Implementation of Denoising the

ECG Signal Using Designed RNS FIR Filter
Various sources, including external interference from

power lines or electrical equipment, poor electrode contact or

skin preparation, and physiological sources, such as muscle

activity or tremors, can cause high-frequency noise in ECG

signals. One of the most common techniques for removing

high-frequency noise from ECG signals is low-pass filtering.

A low-pass filter facilitates the passage of low-frequency

signals while suppressing high-frequency ones. Choosing the

cutoff frequency is crucial when configuring the low-pass

filter for ECG signal processing [32]. This frequency should

be set sufficiently high to preserve the integrity of the ECG
signal and, at the same time, low enough to effectively

eliminate high-frequency noise from the signal. The design

process for a digital low-pass FIR filter using the Kaiser

window method involves specifying the filter specifications,

choosing the filter length and beta value, calculating the

normalized cutoff frequency and ideal frequency response,

computing the Kaiser window coefficients, multiplying the
desired filter coefficients with the Kaiser window

coefficients, normalizing the filter coefficients, and

implementing the filter.

The binary sequence is derived from ECG signal data,

utilizing samples from the renowned MIT-BIH Arrhythmia

database (MIT-BIH-AR). This ECG database is collected
from PhysioNet, and the signal is plotted using the

MATLAB tool.

Figure 8 shows that most ECG signals contain noise and

interference in the higher frequency range, such as power

line interference (50 Hz or 60 Hz) and muscle artefacts.

Applying a low-pass filter with a cutoff frequency of 50 Hz
can attenuate these unwanted components, improving the

overall signal quality. Random noise with a frequency of

more than 50 Hz, shown in Figure 9, is generated in

MATLAB and added that generated noise to the ECG Signal,

as shown in Figure 10.

Fig. 8 The ECG signal

Fig. 9 The noise signal

4

3

2

1

0

-1

-2

-3
200 300 400 500 600 700 800 900

Time (s)
1000 100 0

A
m

p
li

tu
d

e

1250

1200

1150

1100

1050

1000

950

900

850
0 500 1000 1500 2000 2500 3000 3500

Time (s)
4000

A
m

p
li

tu
d

e

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

161

Fig. 10 The ECG signal with noise

The generated coefficients from ECG signal added with

noise are given as inputs to low pass RNS digital FIR filter

for 4-Tap, 8-Tap, 16-Tap, 32-Tap and 64-Tap. As the

number of taps in a filter increases, it improves noise

elimination by enhancing frequency selectivity, improving

stop-band attenuation. The generated coefficient for ECG

signal, noise signal and ECG signal added with noise is

shown in Figure 11.

Fig. 11 The MATLAB generated coefficients of ECG signal with noise

Fig. 12 Simulation of ECG signal denoising for 16-tap low-pass RNS FIR filter

1250

1200

1150

1100

1050

1000

950

900

850
0 500 1000 1500 2000 2500 3000 3500

Time (s)
4000

A
m

p
li

tu
d

e

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

162

Fig. 13 Simulation of ECG signal denoising for 32-tap low-pass RNS FIR filter

Figure 12 and 13 represent the simulated waveform of a

16-tap and 32-tap low pass RNS FIR filter along with ECG

signal, noise signal, and noised ECG signal. The filtered

signal is obtained by processing the input through a filter

with 32 coefficients-the 32-tap RNS FIR filter results from

more nose elimination compared to 4-tap, 8-tap and 16-tap.

With more coefficients, it can more precisely shape the

frequency response, allowing for a narrower transition band

and improved attenuation of unwanted high-frequency

components.

6. Conclusion
The RNS system supports the rapid development of FIR

filters of varying moduli sets and forward and reverse

converters. Various design considerations are considered for

the RNS-based FIR filter, including Logic Elements usage,

delay, power consumption, maximum operating frequency,

filter order, and the number of taps. The design modules

were implemented using Verilog HDL, and their
functionality was validated through ModelSim. The FPGA

QUARTUS II 9.0 version was employed to establish the

RNS design specifications and develop the FIR filter designs

to meet the requirements of ALTERA CYCLONE III logic

family devices in the 65nm technology. The proposed adder

with LUT multiplier with 8-tap saves 6.29% of the hardware

resource utilization (Logic Elements) for 4-bit RNS FIR

Filter, 14.05% of Logic Elements for 8-bit, 28.88% of logic

elements for 16-bit, and 22.07% of Logic Elements for 32-bit

RNS FIR filter combinations.

The CLA adder with LUT multiplier with 8-tap saves
9.92% for 4-bit RNS FIR Filter, 5.25% for 8-bit, 8.99% for

16-bit, and 8.11% for 32-bit RNS FIR filter combinations in

terms of critical path delay. The proposed adder with Vedic

multiplier with 8-tap saves 17.91% for 4-bit RNS FIR filter,

12.70% for 8-bit, 20.64% for 16-bit, and 19.16% for 32-bit

RNS FIR filter in terms of maximum frequency.

The Low-pass RNS FIR filter is designed for a cutoff

frequency of 50 Hz and generated filter coefficients in
MATLAB and implemented to denoise the ECG signal.

Efforts were undertaken to combine the abovementioned

processes to construct a high-performance RNS FIR filter

design, which was subsequently applied to ECG denoising.

The integration of all modules produced encouraging

outcomes within the filter design process.

References
[1] Grande Naga Jyothi, Kishore Sanapala, and A. Vijayalakshmi, “ASIC Implementation of Distributed Arithmetic Based FIR Filter Using

RNS for High-Speed DSP Systems,” International Journal of Speech Technology, vol. 23, no. 2, pp. 259-264, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Shaheen Khan, and Zainul Abdin Jaffery, “Modified High-Speed FIR Filter Using DA-RNS Architecture,” International Journal of

Advanced Science and Technology, vol. 29, no. 4, pp. 554-570, 2020. [Google Scholar] [Publisher Link]

[3] G. Reddy Hemantha, S. Varadarajan, and M.N. Giri Prasad, “FPGA Implementation of Speculative Prefix Accumulation-Driven RNS

for High-Performance FIR Filter,” Innovations in Electronics and Communication Engineering, pp. 365-375, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Burhan Khurshid, and Roohie Naaz Mir, “An Efficient FIR Filter Structure Based on Technology-Optimized Multiply-Adder Unit

Targeting LUT-Based FPGAs,” Circuits System and Signal Processing, vol. 36, pp. 600-639, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[5] E. Chitra, T. Vigneswaran, and S. Malarvizhi, “Analysis and Implementation of High Performance Reconfigurable Finite Impulse

Response Filter Using Distributed Arithmetic,” Wireless Personal Communications, vol. 102, no. 4, pp. 3413-3425, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1007/s10772-020-09683-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ASIC+implementation+of+distributed+arithmetic+based+FIR+filter+using+RNS+for+high-speed+DSP+systems%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ASIC+implementation+of+distributed+arithmetic+based+FIR+filter+using+RNS+for+high-speed+DSP+systems%2C&btnG=
https://link.springer.com/article/10.1007/s10772-020-09683-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modified+High-Speed+FIR+Filter+Using+DA-RNS+Architecture&btnG=
http://sersc.org/journals/index.php/IJAST/article/view/4601
https://doi.org/10.1007/978-981-13-3765-9_38
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Speculative+Prefix+Accumulation-Driven+RNS+for+High-Performance+FIR+Filter&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+Implementation+of+Speculative+Prefix+Accumulation-Driven+RNS+for+High-Performance+FIR+Filter&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-3765-9_38
https://doi.org/10.1007/s00034-016-0312-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+FIR+Filter+Structure+Based+on+Technology-Optimized+Multiply-Adder+Unit+Targeting+LUT-Based+FPGAs&btnG=
https://link.springer.com/article/10.1007/s00034-016-0312-9
https://doi.org/10.1007/s11277-018-5375-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+and+implementation+of+high+performance+reconfigurable+finite+impulse+response+filter+using+distributed+arithmetic&btnG=
https://link.springer.com/article/10.1007/s11277-018-5375-4

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

163

[6] Lavanya Maddisetti, Ranjan K. Senapati, and J.V.R. Ravindra, Image Multiplication with a Power-Efficient Approximate Multiplier

Using A 4:2 Compressor, Advances in Image and Data Processing Using VLSI Design, Smart Vision Systems, 13th ed., IOP Publishing

Ltd, pp. 13-15, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Piotr Patronik, and Stanisław J. Piestrak, “Hardware/Software Approach to Designing Low-Power RNS-Enhanced Arithmetic Units,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 5, pp. 1031-1039, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Yufeng Xu, Yi Guo, and Shinji Kimura, “Approximate Multiplier Using Reordered 4–2 Compressor with OR-Based Error

Compensation,” 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, pp. 1-4, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[9] Raj Kamal et al., “Efficient VLSI Architecture for FIR Filter Using DA-RNS,” 2014 International Conference on Electronics,

Communication and Computational Engineering (ICECCE), Hosur, India, pp. 184- 187, 2014. [CrossRef] [Google Scholar] [Publisher

Link]

[10] E. Jagadeeswara Rao, and P. Samundiswary, “Error-Efficient Approximate Multiplier Design Using Rounding Based Approach for

Image Smoothing Application,” Journal of Electronic Testing, vol. 37, pp. 623-631, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Bharat Garg, and Sujit Patel, “Reconfigurable Rounding Based Approximate Multiplier for Energy Efficient Multimedia Applications,”

Wireless Personal Communications, vol. 118, pp. 919-931, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] Seyed Amir Hossein Ejtahed, and Somayeh Timarch, “Efficient Approximate Multiplier Based on a New 1-Gate Approximate

Compressor,” Circuits Systems and Signal Processing, vol. 41, pp. 2699-2718, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Mostafa Abbasmollaei et al., “A Power Constrained Approximate Multiplier with a High Level of Configurability,” Microprocessors

and Microsystems, vol. 90, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Shaghayegh Vahdat et al., “LETAM: A Low Energy Truncation-Based Approximate Multiplier,” Computers & Electrical Engineering,

vol. 63, pp. 1-17, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[15] T.K. Shahana et al., “Performance Analysis of FIR Digital Filter Design: RNS Versus Traditional,” 2007 International Symposium on

Communications and Information Technologies, Sydney, NSW, Australia, pp. 1-5, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[16] Jia Miao, and Shuguo Li, “A Novel Implementation of 4-Bit Carry Look-Ahead Adder,” 2017 International Conference on Electron

Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, pp. 1-2, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[17] Srinivasan Narayanamoorthy et al., “Energy-Efficient Approximate Multiplication for Digital Signal Processing and Classification

Applications,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180-1184, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[18] Nikolay N. Kucherov et al., “A High-Speed Residue-to-Binary Converter Based on Approximate Chinese Remainder Theorem,” 2018

IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg,

Russia, pp. 325-328, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[19] H. Toyoshima, K. Satoh, and K. Ariyama, “High-Speed Hardware Algorithms for Chinese Remainder Theorem,” 1996 IEEE

International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, Atlanta, GA, USA, vol. 2, pp.

265-268, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[20] S. Chinnapparaj, and D. Somasundareswari, “Incorporation of Reduced Full Adder and Half Adder into Wallace Multiplier and

Improved Carry-Save Adder for Digital FIR Filter,” Circuits and Systems, vol. 7, no. 9, pp. 2467-2475, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[21] G. Anusha, and P. Deepa, “Design of Approximate Adders and Multipliers for Error Tolerant Image Processing,” Microprocessors and

Microsystems, vol. 72, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] M. Balaji, and N. Padmaja, “High-Speed DSP Pipelining and Retiming techniques for Distributed-Arithmetic RNS-based FIR Filter

Design,” WSEAS Transactions on Systems and Control, vol. 17, pp. 549-556, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] S. Madhavi et al., “Implementation of Programmable FIR Filter Using Dadda Multiplier and Parallel Prefix Adder,” 2018 International

Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 585-589, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[24] H.R. Mahdiani et al., “Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing

Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[25] K. Vijetha, and B. Rajendra Naik, “High Performance Area Efficient DA Based FIR Filter for Concurrent Decision Feedback

Equalizer,” International Journal of Speech Technology, vol. 23, no. 2, pp. 297-303, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[26] A. Uma, P. Kalpana, and T. Naveen Kumar, “Design of DA-Based FIR Filter Architectures Using LUT Reduction Techniques,”

Proceedings of the International Conference on Microelectronics, Computing & Communication Systems, Springer, Singapore, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1088/978-0-7503-3919-3ch13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+multiplication+with+a+power-efficient+approximate+multiplier+using+a+4%3A2+compressor&btnG=
https://iopscience.iop.org/book/edit/978-0-7503-3919-3/chapter/bk978-0-7503-3919-3ch13
https://doi.org/10.1109/TCSI.2017.2669108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hardware%2FSoftware+Approach+to+Designing+Low-Power+RNS-Enhanced+Arithmetic+Units&btnG=
https://ieeexplore.ieee.org/document/7878558
https://doi.org/10.1109/ASICON47005.2019.8983625
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximate+multiplier+using+reordered+4%E2%80%932+compressor+with+OR-based+error+compensation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximate+multiplier+using+reordered+4%E2%80%932+compressor+with+OR-based+error+compensation&btnG=
https://ieeexplore.ieee.org/document/8983625
https://doi.org/10.1109/ICECCE.2014.7086656
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+VLSI+architecture+for+FIR+filter+using+DA-RNS&btnG=
https://ieeexplore.ieee.org/document/7086656
https://ieeexplore.ieee.org/document/7086656
https://doi.org/10.1007/s10836-021-05971-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Error-efficient+approximate+multiplier+design+using+rounding+based+approach+for+image+smoothing+application&btnG=
https://link.springer.com/article/10.1007/s10836-021-05971-z
https://doi.org/10.1007/s11277-020-08051-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reconfigurable+rounding+based+approximate+multiplier+for+energy+efficient+multimedia+applications&btnG=
https://link.springer.com/article/10.1007/s11277-020-08051-1
https://doi.org/10.1007/s00034-021-01902-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+approximate+multiplier+based+on+a+new+1-gate+approximate+compressor&btnG=
https://link.springer.com/article/10.1007/s00034-021-01902-7#:~:text=In%20this%20paper%2C%20an%20approximate,to%20other%20conventional%20approximate%20designs.
https://doi.org/10.1016/j.micpro.2022.104519
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+power+constrained+approximate+multiplier+with+a+high+level+of+configurability&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S014193312200076X
https://doi.org/10.1016/j.compeleceng.2017.08.019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LETAM%3A+A+low+energy+truncation-based+approximate+multiplier&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790616306310
https://doi.org/10.1109/ISCIT.2007.4391974
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TK+Shahana+et+al%2C+Performance+analysis+of+FIR+digital+filter+design%3A+RNS+versus+traditional&btnG=
https://ieeexplore.ieee.org/abstract/document/4391974
https://doi.org/10.1109/EDSSC.2017.8126457
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+implementation+of+4-bit+carry+look-ahead+adder&btnG=
https://ieeexplore.ieee.org/document/8126457
https://doi.org/10.1109/TVLSI.2014.2333366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Efficient+Approximate+Multiplication+for+Digital+Signal+Processing+and+Classification+Applications&btnG=
https://ieeexplore.ieee.org/document/6858039
https://doi.org/10.1109/EIConRus.2018.8317098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+High-Speed+Residue-to-Binary+Converter+Based+on+Approximate+Chinese+Remainder+Theorem&btnG=
https://ieeexplore.ieee.org/document/8317098
https://doi.org/10.1109/ISCAS.1996.541697
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-speed+hardware+algorithms+for+Chinese+remainder+theorem&btnG=
https://ieeexplore.ieee.org/document/541697
http://dx.doi.org/10.4236/cs.2016.79213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Incorporation+of+Reduced+Full+Adder+and+Half+Adder+into+Wallace+Multiplier+and+Improved+Carry-Save+Adder+for+Digital+FIR+Filter&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Incorporation+of+Reduced+Full+Adder+and+Half+Adder+into+Wallace+Multiplier+and+Improved+Carry-Save+Adder+for+Digital+FIR+Filter&btnG=
https://www.scirp.org/journal/paperinformation.aspx?paperid=68864
https://doi.org/10.1016/j.micpro.2019.102940
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+approximate+adders+and+multipliers+for+error+tolerant+image+processing&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0141933119302200
https://doi.org/10.37394/23203.2022.17.60
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-Speed+DSP+Pipelining+and+Retiming+techniques+for+Distributed-Arithmetic+RNS-based+FIR+Filter+Design&btnG=
https://wseas.com/journals/articles.php?id=7452
https://doi.org/10.1109/ICIRCA.2018.8597249
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+Programmable+FIR+Filter+Using+Dadda+Multiplier+and+Parallel+Prefix+Adder&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+Programmable+FIR+Filter+Using+Dadda+Multiplier+and+Parallel+Prefix+Adder&btnG=
https://ieeexplore.ieee.org/document/8597249
https://doi.org/10.1109/TCSI.2009.2027626
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+imprecise+computational+blocks+for+efficient+VLSI+implementation+of+soft-computing+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+imprecise+computational+blocks+for+efficient+VLSI+implementation+of+soft-computing+applications&btnG=
https://ieeexplore.ieee.org/document/5371902
https://doi.org/10.1007/s10772-020-09695-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+Performance+Area+Efficient+DA+Based+FIR+Filter+for+Concurrent+Decision+Feedback+Equalizer&btnG=
https://link.springer.com/article/10.1007/s10772-020-09695-x
https://link.springer.com/article/10.1007/s10772-020-09695-x
https://doi.org/10.1007/978-981-10-5565-2_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+DA-Based+FIR+Filter+Architectures+Using+LUT+Reduction+Techniques&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-5565-2_20

M. Balaji & N. Padmaja / IJEEE, 10(10), 151-164, 2023

164

[27] Grande Naga Jyothi, and Sriadibhatla Sridevi, “Low Power, Low Area Adaptive Finite Impulse Response Filter Based on Memory Less

Distributed Arithmetic,” Journal of Computational and Theoretical Nanoscience, vol. 15, no. 6-7, pp. 2003-2008, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[28] N. Sathya, “An Area Efficient Denoising Architecture Using Adaptive Rank Order Filter,” International Journal of Recent Engineering

Science, vol. 1, no. 4, pp. 11-14, 2014. [Publisher Link]

[29] Hamid M. Kamboh, and Shoab A. Khan, “An Algorithmic Transformation for FPGA Implementation of High Throughput Filters,” 2011

7th International Conference on Emerging Technologies, Islamabad, Pakistan, pp. 1-6, 2011. [CrossRef] [Google Scholar] [Publisher

Link]

[30] Pavel Lyakhov et al., “High-Performance Digital Filtering on Truncated Multiply-Accumulate Units in the Residue Number System,”

IEEE Access, vol. 8, pp. 209181-209190, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[31] Dmitry Kaplun et al., “Optimization of the FIR Filter Structure in Finite Residue Field Algebra,” Electronics, vol. 7, no. 12, pp. 1-14,

2018. [CrossRef] [Google Scholar] [Publisher Link]

[32] Veerabomma Supraja, Pasumarthy Nageswara Rao, and Mahendra Nanjappa Giri Prasad, “Supervised Learning-Based Noise Detection

to Improve the Performance of Filter-Based ECG Signal Denoising,” SSRG International Journal of Electronics and Communication

Engineering, vol. 10, no. 6, pp. 35-51, 2023. [CrossRef] [Publisher Link]

[33] Che-Wei Tung, and Shih-Hsu Huang, “A High-Performance Multiply-Accumulate Unit by Integrating Additions and Accumulations

into Partial Product Reduction Process,” IEEE Access, vol. 8, pp. 87367-87377, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1166/jctn.2018.7397
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low+Power%2C+Low+Area+Adaptive+Finite+Impulse+Response+Filter+Based+on+Memory+Less+Distributed+Arithmetic&btnG=
https://www.ingentaconnect.com/content/asp/jctn/2018/00000015/f0020006/art00032;jsessionid=1rnkdb3j83u0p.x-ic-live-02
https://ijresonline.com/archive/ijres-v1p103
https://doi.org/10.1109/ICET.2011.6048450
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Algorithmic+Transformation+for+FPGA+Implementation+of+High+Throughput+Filters&btnG=
https://ieeexplore.ieee.org/document/6048450
https://ieeexplore.ieee.org/document/6048450
https://doi.org/10.1109/ACCESS.2020.3038496
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-Performance+Digital+Filtering+on+Truncated+Multiply-Accumulate+Units+in+the+Residue+Number+System&btnG=
https://ieeexplore.ieee.org/document/9261396
https://doi.org/10.3390/electronics7120372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+the+FIR+filter+structure+in+finite+residue+field+algebra&btnG=
https://www.mdpi.com/2079-9292/7/12/372
https://doi.org/10.14445/23488549/IJECE-V10I6P105
https://www.internationaljournalssrg.org/IJECE/paper-details?Id=458
https://doi.org/10.1109/ACCESS.2020.2992286
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+high-performance+multiply-accumulate+unit+by+integrating+additions+and+accumulations+into+partial+product+reduction+process&btnG=
https://ieeexplore.ieee.org/document/9085995

