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Abstract - In recent years, smart household appliances have led to an increase in residential electricity usage. Peak loads are 

created by these appliances in residential distribution systems. At peak times, residential distribution power consumption 

exceeds grid power. The imbalance in power demand results in low voltage in the distribution system, affecting household 

appliances. Increasing or decreasing grid power demand is necessary to protect these household appliances. The authors 

implemented renewable energy sources to address this issue, increasing grid power and demand-side management techniques 

to reduce energy consumption. Despite various research on optimal peak and cost reduction, a lack of different nature-inspired 

optimization techniques has been evident. The present paper proposes a demand-side load-shifting algorithm for peak load 

control in a residential building. This multi-objective load-shifting algorithm employs nature-inspired optimization techniques, 

including MBO, CSO, and AFSO, to reduce the utility’s peak load and the consumer’s electricity cost simultaneously. A 

comparison is made between the above-mentioned nature-inspired optimization approaches in this paper. Finally, the MBO’s 
results are superior to other nature-inspired optimization methods. 

Keywords - Peak Load Management (PLM), Demand Side Management (DSM), Load Shifting Algorithm (LSA), Monarch 

Butterfly Optimization (MBO), Crow Search Optimization (CSO), Artificial Fish Swarm Optimization (AFSO).

1. Introduction 
The reliance on electricity in modern society is 

widespread, as it is used for all activities. The invention of 
electricity has made life easier for people today because they 

can use it for various daily tasks, including lighting, heating, 

cooling, and using various electrical appliances. Throughout 

history, people have consumed increasing amounts of energy 

as technology advances. Initially, the average daily 

consumption was about 3 kWh per person. US and German 

citizens’ daily electricity consumption 2020 was about 202 

and 110 kWh, respectively. But, the daily energy 

consumption of an Indian is just 18 kWh in 2020 [1].  

The demand for energy met by India also stands at a 

record high of 4,700 million units. There were 21 million 

units of electricity shortfall, with a peak deficit of 578 MW. 
During peak hours, energy management needs to be focused 

on reducing this deficit. As part of energy management, 

energy production and consumption units are planned and 

operated, and energy distribution and storage systems are set 

up for continuous and smooth operation.  Consumers use 

energy for various activities at home, including watching 

television, washing clothes, heating, bathing, and using 

computers. Globally, residential energy use accounts for 

approximately forty percent of total energy use. Therefore, it 

is necessary to emphasize energy management in dwellings. 

Peak load management is lowering the demand for electricity 

at peak times, which can save a lot of money. If numerous 

buildings used all of their powered gadgets simultaneously, 

but there was insufficient electricity in the grid to match this 

demand, the power from the grid may be overdrawn, resulting 

in disastrous brownouts, blackouts, and other unexpected 
outages. PLM and Demand Response (DR) are concerned 

with reducing energy demand at a specific time. DR is a 

programme that requires participants to respond to utility 

requests when demand is excessive, and insufficient energy 

satisfies the grid’s peak.  

S. Yilmaz et al. [2] evaluated the effects of energy 

efficiency policies and measures, such as minimum energy 

performance criteria, on peak load using time-use data. After 

modelling fourteen different types of appliances and 

replacing them with the most energy-efficient labels, the 

study found that the highest potential for reducing evening 
peak demand was achieved by changing light bulbs to LED. 

This change resulted in a 38% reduction in peak electricity 

consumption during the evening and a 21% reduction during 

noon. The results indicate a significant decrease in electricity 
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demand across various domains. There was an 18.8% 

decrease in appliance electricity demand, a 14.2% decrease 

in overall residential electricity demand, and a 5.0% decrease 

in national electricity demand. Olawale Popoola et al. [3] 

proposed a peak load control technique that utilized an event 

detection algorithm to control the User’s Preferred Appliance 
(UPA) and found that it resulted in a peak demand reduction 

of 3% to 20% and an overall energy savings of at least 14.5%. 

In addition to being completely optional, PLM significantly 

impacts the Sustainable Development Goals (SDGs), 

particularly SDG-07, which targets 7.3 to double energy 

efficiency by 2030.  

The UN adopted the Sustainable Development Goals 

(SDGs), also called the Global Goals 2015. By 2030, these 

goals aim to solve many global concerns, including 

eliminating poverty, creating a sustainable environment, and 

promoting prosperity and peace. The SDGs recognize the 

interconnectivity of various issues and emphasize the need 
for a balanced approach considering social, economic, and 

environmental sustainability. Countries have pledged to 

prioritize progress for those nations that are lagging in 

achieving these goals. The Sustainable Development Goals 

(SDGs) aim to tackle various global challenges, including 

poverty, hunger, AIDS, and gender inequality. Achieving 

these goals requires a collaborative effort, with society 

utilizing its collective creativity, knowledge, technology, and 

financial resources. Nihit Goyal et al. [4] performed 

bibliometric and computational text analyses on over 2,700 

articles related to India’s energy policy research to identify 
primary themes, geographical locations, and policy features.  

Evaluating the effects of demand-side management on 

technology, well-being, behaviour, and sustainability is 

critical for effective policy implementation and fostering 

long-term growth.  The HEM problem was modelled with 

mixed integer linear and nonlinear programming, and various 

case studies and scenarios were considered. The case studies 

were separated into three categories: without renewables and 

battery, with renewables and without battery, and with 

renewables and battery. The scenarios were divided into three 

categories for single houses and multi-household buildings: 

minimizing only the consumer’s power costs, minimizing 
only the system’s peak demand, and minimizing both the 

consumer’s electricity and the system’s peak demand. These 

scenarios were implemented separately for single houses and 

multiple houses. This author did not use a meta-heuristic 

optimization approach to solve their HEM problem.  

This paper uses various meta-heuristic optimization 

techniques to implement the proposed load model. Bruno 

Canizes et al. [5] proposed a genetic algorithm-based load-

shifting model in a 236-bus residential distribution network 

to maintain the voltage limit. Also, due to this voltage profile 

implementation, consumers’ energy consumption costs are 
reduced considerably. The proposed model was implemented 

in 20 loads with a time interval of 15 minutes, which is 96 

periods/day. As a result, system reliability and service quality 

were improved, network stress was reduced, and component 

life was extended. Alwyn Mathew et al. [6] proposed a deep 

reinforcement learning model for demand response on five 

residential consumers to reduce the consumer’s electricity 
bill and the grid’s peak load. The proposed model was 

implemented using a mixed integer linear programming 

method, and the results were compared both before and after 

DSM implementation.  

In the future, the article will be extended to include 

selecting the preferred time for each appliance and 

identifying devices with power ratings as low as 0.1 kW. 

Milad Afzalan et al. [7] investigated a data-driven approach 

for applying load-shifting algorithms in deferrable loads like 

EVs, dryers, washing machines, dishwashers, and AC. This 

investigation was conducted with scenarios like the 

maximum potential of load shifting/shedding and user 
compliance modelling in Austin, TX, households. The 

electricity consumption in that household area was observed 

to be reduced to 160MWh, which is only 20% of household 

participation. Swati Sharda et al. [8] explored the practical 

challenges of implementing DSM for IoT-enabled HEMS 

due to its stochastic nature. They emphasised employing 

various optimisation strategies to address the multi-objective 

energy management problem. The different optimization 

strategies were thoroughly compared to various DSM 

techniques and load models, with only a few nature-inspired 

algorithms explored in the context of HEMS.  

As a result, this article implements the three nature-

inspired algorithms in HEMS. Subhasis Panda et al. [9] 

conducted a detailed review of Residential Demand-Side 

Management (RDSM) models, analysing different 

optimization techniques such as classical optimization, 

uncertainty-based optimization, evolutionary or meta-

heuristic optimization, game theory, and soft-computing-

based optimization. As a result, nature-inspired optimization 

techniques were seldom utilized in RDSM models, and the 

combination of load shifting and Time of Use (TOU) 

techniques was rarely explored. Further, none of the reviewed 

articles selected the objective function of simultaneously 
minimizing consumer electricity costs and utility peak loads. 

This article introduces three different optimization 

techniques applied to residential demand-side management.  

These techniques aim to minimize consumer electricity 

costs and peak loads for utilities. The combined DSM 

techniques of load-shifting and time-of-use tariff are utilized 

to achieve these goals. The nature-inspired optimization 

approach, MBO, CSO, and AFSO, are implemented as a 

multi-objective problem. Finally, the results are compared, 

and the MBO optimization method showed the best among 

the other optimization techniques. This author reviewed peak 
energy management in various fields, including techniques, 
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applications, and ancillary services. The author also 

discussed peak load reduction in low-voltage Microgrid 

systems to manage the voltage of the distribution system. 

This paper is divided into the following sections. Section 2 

discusses the residential peak load management architecture 

and mathematical modelling. Section 3 describes the 
different nature-inspired optimization techniques like MBO, 

CSO and AFSO. The results and discussions are discussed 

with graphs in Section 4. Finally, Section 5 concludes the 

residential peak load management with future extensions. 

2. Residential Peak Load Management 

Architecture and Modelling  
The domestic distribution transformers become 

overloaded during peak hours due to the daily rise in the 

demand for electricity in residential homes. For this reason, 

peak load management is mandatory for all residential 

houses. The RPLM architecture and its mathematical 

modelling are described in detail in this section. 

 
2.1. RPLM Architecture 

The proposed Residential Peak Load Management 

architecture is shown in Figure 1. The article divides 

residential loads into three categories based on their 

characteristics. These are Essential Running Appliances 

(ERAs), Time-Adjustable Appliances (TAAs) and 

Rechargeable Appliances (RCAs). ERAs are categorized as 

uncontrollable appliances in residential households, such as 

fans, lights, televisions, refrigerators and air conditioners. 

TAAs are controllable but uninterruptible appliances such as 

washing machines, dishwashers, water heaters, mixer 

grinders, electric kettles, iron boxes, vacuum cleaners, water 
pumps, water purifiers, and microwave ovens.  

RCAs such as laptops, mobile phones, and battery banks 

have a maximum and minimum power limit. Consumers 

decide their daily energy requirements and preferred periods. 

Through power lines and communication media, Wi-Fi-

enabled smart meters connect the utility grid to residential 

consumers. The centralized DSM controller sends 

instructions to the Wi-Fi smart meter about when and which 

to connect various household appliances.  

The electric grid provides the hourly cost data to this 

DSM controller, which also receives information from 

residential customers about different home appliances and 
preferred times. Using various nature-inspired scheduling 

strategies, other home appliances are efficiently planned 

based on the data gathered. This optimal scheduling 

information is sent to the Wi-Fi-enabled smart meter to 

control multiple household appliances. The residential 

consumer’s preferred load data is listed in Table 1. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Fig. 1 Architecture of residential peak load management 
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Table 1. Residential house load data 

ERAS Suggested Time Period Running Time (hr) Power Rating (kW) 

Fan-1 5 pm to 10 pm 6 0.072 

Fan-2 6 am to 8 am 3 0.072 

Light-1 6 pm to 10 pm 5 0.022 

Light-2 6 am to 7 am 2 0.022 

Television (TV) 8 pm to 10 pm 3 0.135 

Refrigerator (RF) 12 am to 12 pm 24 0.107 

Air Conditioner (AC) 10 pm to 6 am 9 1.8 

TAAs Suggested Time Period Running Time (hr) Power Rating (kW) 

Heater 11 am to 2 pm 0.25 3 

Washing Machine (WM) 10 am to 2 pm 1 0.5 

Water Pump (WP) 10 am to 4 pm 2 0.75 

RO Water Purifier 11 am to 3 pm 0.5 0.04 

Vacuum Cleaner (VC) 10 am to 4 pm 1 1.4 

Grinding Machine (GM) - Mixer 10 am to 4 pm 0.1 0.75 

RCAs Suggested Time Period Everyday Energy Requirement Power Limit (kW) 

Computing Devices (CD) - Laptop 6 pm to 10 pm 1.0 kWhr 0.1 – 0.3 

Renewable Battery Bank (RBB) 12 am to 5 am 1.8 kWhr 0.2 – 0.4 

Electric Bike (EV) - Hero Nyx E5 8 pm to 6 am 1.344 kWhr 0.1 – 0.35 

 

2.2. Mathematical Modelling of RPLM 

This paper develops a multi-objective RPLM problem 

with nature-inspired optimization to minimize utility peak 

load and customer electricity cost. The following are the 

objective functions and constraints [10]. 

2.2.1. Objective Function 

The objective function Equation (1) describes the 

minimization of utility peak demand, and Equation (2) 

indicates the minimization of consumers’ electricity bills. 

These two objective functions are combined through a 
weighted sum approach in the Equation (15). 

 Minimization of utility peak load demand 

𝑀𝑖𝑛 𝐹1 = 𝑀𝑎𝑥(𝐿1, 𝐿2, … , 𝐿𝑡 , … 𝐿𝑇); ꓯ t Є T  (1) 

 Minimization of consumers’ electricity bill 

𝑀𝑖𝑛 𝐹2 = ∑ 𝐶(𝑡)𝑇
𝑡=1   (2) 

𝐶(𝑡) = 𝜏. 𝐿𝑡 . 𝜌(𝑡)  (3) 

𝐿𝑡 = 𝐿𝐷
𝑡    ꓯ t Є T  (4) 

𝐿𝐷
𝑡 = ∑ [𝐿𝑒𝑟𝑎,𝑎

𝑡 + 𝐿𝑡𝑎𝑎,𝑎
𝑡 + 𝐿𝑟𝑐𝑎,𝑎

𝑡 ];  ꓯ t Є T𝑁
𝑎=1  (5) 

𝐿𝐷 = [𝐿1, 𝐿2, … , 𝐿𝑇];  (6) 

 

2.2.2. Constraints 

The scheduling of the total load demand constraint is 

indicated in Equation (7), and Equation (8) explains the 

equality constraint of the total energy required per day of 

each appliance. Equations (9) and (10) give the power 

demand of essential running and time-adjustable appliances 

at each time period, respectively. The power limit of 

rechargeable appliances is illustrated in Equation (13), and 

Equation (14) represents the minimum load demand 

inequality constraint at each time period. 

 Total load demand at time t, 

𝐿𝐷
𝑡 = ∑ [𝐿𝑒𝑟𝑎,𝑎

𝑡 + 𝐿𝑡𝑎𝑎,𝑎
𝑡 + 𝐿𝑟𝑐𝑎,𝑎

𝑡 ];  ꓯ t Є T𝑁
𝑎=1   (7) 

 Total energy required per day of appliance a, 

∑ 𝐿𝑎
𝑡 = 𝐷𝑅𝑎;𝑇

𝑡=1 ꓯ a Є N  (8) 

 Power demand of essential running appliances at time t, 

𝐿𝑎
𝑡 = 𝑃𝑟𝑎𝑡,𝑎;  ꓯ a Є ER𝐴𝑠, ꓯ t Є [𝑡𝑎

𝑠 , … , 𝑡𝑎
𝑒]  (9) 

 Power demand of time adjustable appliances at time t, 

𝐿𝑎
𝑡 = 𝑈𝑎,𝑡𝑎𝑎 ∗ 𝑃𝑟𝑎𝑡,𝑎;  ꓯ a Є TA𝐴𝑠  (10) 

Where,  
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Status of time adjustable appliance a, 

𝑈𝑎,𝑡𝑎𝑎 = [𝑢𝑎
1 , 𝑢𝑎

2 , … , 𝑢𝑎
𝑇];  (11) 

Constraint for status of appliance a at time t, 

𝑢𝑎
𝑡  Є {0,1};ꓯ t Є T  (12) 

 Power limit constraint for rechargeable appliance a, 

𝑃𝑎,𝑡
𝑚𝑖𝑛 ≤ 𝐿𝑎

𝑡 ≤ 𝑃𝑎,𝑡
𝑚𝑎𝑥;ꓯ t Є [𝑡𝑎

𝑠 , … , 𝑡𝑎
𝑒];ꓯ a Є RC𝐴𝑠 (13) 

 Hourly power demand constraint, 

𝐿𝐷
𝑡 ≥ 0  (14) 

 The multi-objective function is finally combined using 
the weighted sum method, which is given below, 

Min F = w1 x F1 + w2 x F2  (15) 

Where,  

w1 and w2 are the weighting factors of the utility’s peak 

demand and consumer’s electricity cost, here, w1 and w2 are 

chosen as 0.6 and 0.4, respectively. 

3. Optimization Methodologies 
The following section discusses some of the nature-

inspired optimization methodologies used in this article. The 

nature-inspired optimization techniques are classified into 

Ant Colony Optimization (ACO), Simulated Annealing (SA), 

Differential Evolution (DE), Particle Swarm Optimization 

(PSO), Biogeography-Based Optimization, Cultural 

Algorithms etc. Three different nature-inspired optimization 

techniques are described, which are not implemented in 

RPLM problems such as MBO, CSO, and AFSO. 

3.1. Monarch Butterfly Optimization  

The MBO algorithm’s technique is based on the behavior 
of Monarch butterflies. The approach is built to be 

straightforward, obtaining butterfly position updates through 

migration and adjustment operators rather than more 

complicated computations and operators. As a result, the 

reactions will be noticeably quicker.  

The total number of monarch butterflies is considered as 

a population (NP) where these populations are divided into 

two subpopulations (Land-1(NP1=p*NP) and Land-

2(NP2=NP-NP1)) based on migration period. Migration and 

butterfly adjusting operators are used to update the revised 

positions of subpopulations in Land-1 and Land-2. The 
movement of individual i in subpopulation1 (Land-1) on the 

kth dimension can be expressed mathematically as follows 

[11]: 

𝑥𝑖,𝑘
𝑡+1 = {

𝑥𝑟1,𝑘
𝑡  ,   𝑖𝑓 𝑟 ≤ 𝑝

𝑥𝑟2,𝑘
𝑡  ,   𝑒𝑙𝑠𝑒        

    (16) 

Where,  

𝑥𝑖,𝑘
𝑡+1  – kth dimension of xi at generation t+1 

r1, r2  – Integer index randomly selected in  

subpopulation-1 and 2 

p  – Adjusting ratio 

r  – rand * peri 

Where, 

rand  – [0, 1] – Random number between 0 & 1 

peri  – Migration period 

In subpopulation 2, the new individual is generated as 

follows: 

𝑥𝑖,𝑘
𝑡+1 = {

𝑥𝑏𝑒𝑠𝑡,𝑘
𝑡                                     𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝                              

𝑥𝑟3,𝑘
𝑡                                        𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑝 & 𝑟𝑎𝑛𝑑 ≤ 𝐵𝐴𝑅

𝑥𝑖,𝑘
𝑡+1 + 𝛼 ∗ (𝑑𝑥𝑘 − 0.5)    𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑝 & 𝑟𝑎𝑛𝑑 > 𝐵𝐴𝑅

  (17) 

Where,  

𝑥𝑏𝑒𝑠𝑡,𝑘
𝑡   – kth component of generation ‘t’s current  

global optimum 

r3  – Randomly generated integer from  

subpopulation -2 
BAR  – Butterfly Adjusting Rate 

α & dx  – Weighting factor 

Smax  – Max walk a step 

dx = Levy (𝑥𝑗
𝑘) 

α = Smax / t2 

In the Monarch Butterfly Optimization (MBO) 

algorithm, the best fitness value for the monarch population 

is updated by comparing the parent’s previous fitness value 

with the child’s new fitness value. If the child’s fitness value 
improves, it replaces the last best fitness value. This essential 

step ensures the algorithm maintains the most effective 

solutions discovered during optimization. Furthermore, 

MBO utilizes a method to consolidate the best fitness values 

from different subpopulations within the algorithm. These 

values are recombined to create an integrated and refined 

fitness measure, offering a comprehensive understanding of 

the fitness landscape.  

This strategy enhances the algorithm’s ability to 

converge toward optimal solutions by leveraging the 

collective knowledge of various subpopulations. Sukhwinder 
Singh Dhillon et al. [12] applied Monarch Butterfly 

Optimization to address frequency deviations in a three-area 

power system with mixed-generation sources, yielding 

positive outcomes. Pushpendra Singh et al. [13] utilized 

Monarch Butterfly Optimization to optimize the integration 

of distributed energy resources, resulting in significant 

performance enhancements. Vivek Yadav et al. [14] 

harnessed the Monarch Butterfly Optimization algorithm to 
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enhance the optimal power flow in IEEE standard test power 

systems, surpassing other methods regarding fuel expenses, 

voltage deviation, and power loss. Given the remarkable 

performance of the Monarch Butterfly Optimization 

algorithm in diverse power system applications, it was 

chosen for implementation in residential peak load 
management, marking a novel and promising approach that 

has not been previously applied to this crucial challenge. 

3.2. Crow Search Optimization  

The swarm intelligence system was developed and used 

on Crow Search Optimisation (CSO) based on crow food-

hiding behaviour. The population’s fitness is assessed and 

stored, and the crow’s position is updated if the awareness 

probability exceeds the random value; otherwise, it moves to 

a random position. The step-by-step process of the crow 

search optimization algorithm is described below [15]:  

Step 1: Initialize the Problem and Parameters: Set up the 

optimization problem and initialize critical 
parameters such as flight length, flock size, 

awareness probability, and maximum number of 

iterations. 

Step 2:  Initialize the Crow Positions and Memory: Start by 

creating a population of N crows and place them 

randomly in a d-dimensional space, representing 

their positions with an N x d matrix. 

Simultaneously, initialize the memory of each crow, 

which includes essential information about the 

environment and past experiences to aid in decision-

making during optimization. 
Step 3:  Fitness Evaluation: For each crow’s existing 

position, determine the fitness value by assessing 

the objective function. This fitness value quantifies 

the solution’s quality based on the problem’s 

defined criteria. 

Step 4:  Follow and Discover: Each crow selects another 

crow randomly from the flock and follows it to 

explore new positions by learning from its 

discoveries. All crows in the population repeat this 

pattern, searching for better positions within the 

search space collectively. 

Step 5: Examine Feasibility: Verify the feasibility of each 
crow’s newly generated position. The crow adjusts 

its existing position if it decides that the new 

position is feasible. If the new position is 

impossible, the crow retains its current location and 

refrains from moving to the generated place. 

Step 6:  Compute New Fitness: Determine the fitness value 

for each newly created crow position. 

Step 7:  Memory Updating: Compare the fitness value of the 

new position for each crow with the value 

previously stored in memory. If the new situation 

improves, update the memory; otherwise, retain the 
same position. 

Step 8: Termination Criterion: Repeat Steps 4–7 until the 

maximum iteration is reached. When the 

termination criterion is met, report the best position 

stored in memory, corresponding to the optimisation 

problem’s solution based on the objective function 

value. 

Oscar Danilo Montoya et al. [16] effectively estimated 

photovoltaic module parameters using the Crow Search 

Algorithm (CSA) with manufacturer data, demonstrating 

efficient and robust results. Surender Reddy Salkuti [17] 

proposed the CSA to optimize reactive power dispatch, 

improving power losses and voltage stability.  

Teena Johnson et al. [18] compared CSA to traditional 

methods like Binary Integer Linear Programming (BILP) and 

Particle Swarm Optimization (PSO) for PMU placement, 

with CSA providing multiple optimal solutions. Murilo E. C. 

Bento et al. [19] introduced a CSA-based approach for 

calculating load margins considering small-signal and 
voltage stability. Notably, CSA has been successfully applied 

in various applications, but it is being implemented for the 

first time in Residential Peak Load Management Problems in 

this article. 

3.3. Artificial Fish Swarm Optimization  

The AFSO algorithm, a very effective optimization tool 

in swarm intelligence, was inspired by fish movement and 

social behaviours. The benefits of this method included faster 

convergence, fault tolerance, high accuracy, and flexibility. 

The flowchart of the AFSO algorithm is shown in Figure 2. 

Surender Reddy Salkuti [20] utilized the global search 
capabilities of the Artificial Fish Swarm Optimization 

Algorithm (AFSOA) to tackle the power system state 

estimation problem.  

The algorithm’s performance was demonstrated on a six-

bus test system, showcasing its effectiveness compared to 

existing approaches. CH. Hariprasad et al. [21] introduced the 

application of the Ant Colony Optimization Technique 

(ACOT) and Artificial Fish Swarm Optimization Technique 

(AFSOT) for optimizing the allocation of Distributed 

Generation (DG) sources in IEEE 14 and 33 bus distribution 

systems.  

Additionally, K. Prakash Kumar et al. [22] proposed 
day-ahead generating unit scheduling, jointly considering 

battery and renewable energy sources within a microgrid 

system using Artificial Fish Swarm intelligence techniques. 

Notably, the Artificial Fish Swarm Algorithm is not typically 

employed in residential peak load management problems, but 

the author introduces this algorithm’s application in this 

article. 
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Fig. 2 Flow chart of artificial fish swarm optimization algorithm 
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4. Results and Discussion 
This session explores the validation of the proposed 

RPLM model using single and multi-objective functions. The 

objective functions are minimizing the consumer’s electricity 

cost and the utility’s peak load. There are three cases in this 

RPLM model that evaluate single objective functions 

individually. 

 
4.1. Single-Objective Approach 

Minimizing costs and peak demand separately. In this 

case, the single objective function is considered as a 

minimization of the consumer’s electricity cost in the RPLM 

model. Figure 3 shows the consumer’s electricity cost and the 

maximum peak demand consumption for a residential house. 

In that graph, the consumer’s electricity consumption cost in 

the MBO method is around $ 8.285, lower than other nature-

inspired optimization techniques.  

 

 

 

 

 

 

 

 

 

 
Fig. 3 Electricity Cost and Maximum Peak Demand for Cost 

Minimization 

 

 

 

 

 

 

 

 

 

Fig. 4 Daily load curve for cost minimization 

 

 

 

 

 

 

 

Fig. 5 Electricity cost and maximum peak demand for load minimization 
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In this case, the maximum peak demand for residential 

houses increases when the MBO method is used. This is 

because the maximum load is occupied during low electricity 

cost periods. The average of the fifty best results is calculated 

by repeating this nature-inspired optimization technique 

many times. Based on these average values, a graph 
comparing electricity costs and peak demand between nature-

inspired optimization techniques is drawn. Figure 4 shows a 

typical daily load curve based on different nature-inspired 

optimization techniques for residential buildings. 

Furthermore, maximum peak demand minimization is 

considered a single objective function. A radar chart is shown 

in Figure 5 to show the electricity cost and maximum power 

demand values for the various nature-inspired optimization 

techniques. The daily maximum peak demand of the MBO 
method is 2.413 kW. It is less than other traditional nature-

inspired optimization methods. The daily load curve for 

minimizing maximum power demand is shown in Figure 6.

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Daily load curve for load minimization 

4.2. Multi-Objective Approach 

Minimizing costs and peak demand together. This 

session considers the minimization of consumer’s electricity 

cost and minimization of maximum power demand as multi-

objective functions. Figure 7 shows the bubble charts of 

fitness values obtained from the best ten iterations using 

various nature-inspired optimization techniques. A 

comparison of the MBO results with other nature-inspired 

optimization methods shows that MBO results are less in both 

maximum peak demand and consumer electricity costs. In the 

bubble charts populated by the Pareto front, most of the 

fitness values are MBO values. In the peak period, the MBO 

method reduces peak load by at least 4.5%. Figure 8 

illustrates a sample daily load curve for a multi-objective 

function where the AFSO algorithm achieves maximum peak 

loads.

 

 

 

 

 

 

 
Fig. 7 Comparison of electricity cost and maximum peak demand in multi-objective optimization 
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Fig. 8 Daily load curve for multi-objective optimization 

5. Conclusion 
The results of this study indicate that the Monarch 

Butterfly Optimization (MBO) method is highly effective in 

implementing Residential Peak Load Management (RPLM) 

in residential households. The MBO method reduces 

consumer electricity costs, and utility peak demand more 

efficiently than other nature-inspired optimization techniques 

such as CSO and AFSO. According to this study, the MBO 

method and demand-side management strategies such as load 
shifting and time-of-use pricing effectively reduce electricity 

costs and peak electricity consumption in residential 

households.  

The MBO nature-inspired optimization technique 
effectively reduces peak loads by 4.5% during peak times 

while considering multiple objectives. The MBO method will 

be integrated with the CSO method to create a hybrid nature-

inspired optimization technique for implementing RPLM 

solutions. Because the MBO and CSO methods consistently 

provide the best results compared to the AFSO method. 
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