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Abstract - This research presents a significant advancement in inverter technology, potentially greatly enhancing voltage 

quality and reducing harmonic distortions in power systems. This research introduces a novel Pulse Width Modulation (PWM) 

strategy to improve the operational efficiency of a 7-Level Unequal Source Inverter (7LUSI) employing two DC sources in a 

1:2 sequence. In contrast to the conventional Sinusoidal Pulse Width Modulation (SPWM) technique, this innovative PWM 

approach is intricately designed to improve voltage quality and overall harmonic spectra. The gate signal generation for this 

proposed PWM technique involves a modified PWM scheme that combines a Trapezoidal waveform with a Rectangular one 
(TAR) alongside a traditional triangular carrier waveform. These TAR level-shifted PWM schemes generate triggering pulses 

for the 7LUSI. Various performance metrics are evaluated across different modulation indices, and comparative results are 

presented in contrast to conventional PWM methods. The findings consistently demonstrate the superior performance of the 

proposed TAR PWM method over traditional SPWM. The simulation study is conducted using MATLAB-SIMULINK as the 

primary computational tool. This research represents a significant advancement in inverter technology, offering substantial 

potential to enhance voltage quality and reduce harmonic distortions in power systems. 

Keywords - MLI, PWM, SPWM, TAR, THD. 

1. Introduction  
Multilevel inverters are characterized by their ability to 

generate output voltages with more than two levels across 

their poles. This distinctive feature places Multilevel Inverters 

(MLIs) in the category of high-power inverters, as they can 

exceed the typical voltage levels of power semiconductor 

switches, offering advantages such as reduced distortion, 

lower dv/dt stress, and mitigation of common-mode voltage 

issues [1-4]. 

The cascaded H-bridge inverter stands out among various 

MLI topologies due to its modular structure. Nevertheless, it 

has a notable drawback: it requires many isolated DC supplies 

[5-8].  

To address this limitation, the concept of hybrid 

multilevel inverters has emerged. These hybrid systems are 

constructed by cascading smaller, dissimilar inverter circuits, 

allowing for higher voltage levels without a proportional 

increase in the number of H-bridge cells in the cascade 

topology [9-12]. In recent developments [13], a multilevel 

inverter was designed by connecting sub-multilevel inverters 

in series, classifying it as „Unequal‟.  

In this setup, varying DC sources were utilized within 
these sub-multilevel inverters. Another significant 

contribution [14] introduced an efficient hybrid optimal 

modulation technique tailored for multilevel inverters. A 

multi-carrier PWM-based single-phase inverter was 

developed, with real-time implementation using Xilinx 

FPGA.  

Simultaneously, [15] introduced a hybrid multilevel 

inverter with fewer switches designed for PV power 

conditioning systems, while [16] presented a modified 

multilevel inverter design, effectively reducing the number of 

switches involved.  

In [17], various carrier pulse width modulation 

techniques were explored to minimize Total Harmonic 

mailto:devrajt@gmail.com


T. Devaraju et al. / IJEEE, 10(10), 207-217, 2023 

 

208 

Distortion (THD) and enhance inverter output voltages. 

Finally, in [18], novel multilevel inverter topologies were 

investigated, strategically reducing the multitude of power 

switches compared to traditional configurations. This 

innovative approach harnesses the potential of floating input 

DC sources, each capable of making a unique contribution, 
independently or collectively in series with other sources, for 

the intricate synthesis of multilevel waveforms [19-23]. This 

article focuses on investigating a single-phase 7LUSI 

employing a TAR modulating strategy.  

The study encompasses comprehensive simulations using 

MATLAB-SIMULINK, including harmonic analysis and 

evaluating various performance metrics under varying 

modulation indices. The research findings are then 
meticulously reported and discussed. 

2. Arrangement of 7LUSI

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Developed 7LUSI system 

An asymmetric Multilevel Inverter (MLI), while sharing 

some similarities with the traditional cascaded H-bridge 

multilevel inverter, exhibits distinct characteristics that result 

in several significant advantages. Chief among these is its 

ability to expand significantly the available output voltage 
range, offering several valuable benefits: 

 Reduced DC Sources: Notably, it accomplishes this with 

fewer DC sources, simplifying the system‟s overall 

complexity. 

 Minimal Switching Loss: Asymmetric MLIs minimize 

switching loss, leading to improved efficiency in the 

conversion process. 

 High Conversion Efficiency: This design naturally lends 

itself to high conversion efficiency, a crucial factor in 

power electronics. 

 Output Standard Flexibility: The asymmetric setup 

provides a high degree of flexibility, allowing for 
adjustments in output standards to suit various 

applications. 

 Reduced Circuit Complexity and Cost: With fewer 

components and switches, asymmetric MLIs can 

significantly reduce circuit complexity and overall cost. 

In this study, we focus on a specific configuration 

known as the 7LUSI, composed of sub-multilevel inverters 

(referred to as low-power cells) in conjunction with an H-

bridge inverter (serving as the high-power cell). These sub-

multilevel inverters can be interconnected in a series 

arrangement to achieve the desired voltage levels.  

Each sub-multilevel inverter has its dedicated DC source 

labelled as VDC and 2VDC and is constructed with two power 

devices: S1 and D1 for the first sub-multilevel inverter, and S2 

and D2 for the second sub-multilevel inverter, as depicted in 

Figure 1. It‟s worth noting that switches S1 to S2 operate at 

lower voltage levels, using MOSFET technology, while the 

switches within the H-bridge (A1, A2, B1, B2) function at 

higher voltage levels, employing GTO technology. 

The output voltage generated by the sub-multilevel 

inverters, either individually or in series, remains positive or 

zero. To function as an inverter, it is essential to reverse the 

voltage polarity in each half cycle. To achieve this, an H-

bridge inverter is added to the output of the series of sub-

multilevel inverters.  

It‟s crucial to emphasize that the H-bridge switches must 

be designed to withstand higher voltage levels, a critical 

consideration in the inverter‟s design process. However, it‟s 

important to note that these switches undergo a single 

toggling event within a fundamental cycle, indicating their 

operation as high-voltage, low-frequency switches. The sub-

multilevel inverter predominantly generates voltage levels 

around zero and in the positive domain. To attain zero output 
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voltage, switches A1 and B1 are simultaneously activated. In 

contrast, the various other voltage levels are produced by 

precisely manipulating the switch states, as detailed in Table 

1, which provides the switch configurations required for 

generating each specific output voltage level. 

Table 1.  Switching positions corresponding to positive levels  

S1 S2 D1 D2 A1 A2 B1 B2 Vout 

  Х Х   Х Х +3 VDC 

 Х Х    Х Х +2 VDC 

Х      Х Х +1 VDC 

 

3. Employing the TAR PWM Method 
In the proposed methodology, the generation of firing 

pulses for a 7-Level Unequal Source Inverter (7LUSI) relies 

on a rectified trapezoidal combined with a rectangular 
reference waveform, coupled with a triangular carrier, as 

visually depicted in Figure 2. What distinguishes this TAR 

PWM technique is its efficiency, as it necessitates only seven 

carriers tailored for the 7LUSI configuration. These carriers 

all operate at a consistent frequency, yet each possesses a 

distinct maximum magnitude compared to the others. 

Notably, the reference waveform is intentionally positioned 

exclusively above the zero-time line. Consequently, each 
carrier signal undergoes continuous comparison with the 

reference waveform. An initial driving pulse is generated 

whenever the modulating waveform surpasses the amplitude 

of the carrier signal. By employing appropriate logical 

circuits, these initial driving pulses are further processed to 

yield the precise firing pulses necessary for the operation of 

the 7LUSI.  

In this study, we have considered various Pulse Duration 

(PD), Amplitude Pulse Overlap Duration (APOD), Common 

Offset (CO), and Variable Frequency (VF) level-shifted 
PWM techniques. These techniques play a pivotal role in 

shaping the performance and behaviour of the 7LUSI, 

enhancing the depth and versatility of our investigation. 
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Fig. 2 TAR reference and carrier configurations of a) PD, b) APOD, c) CO, and d) VF approach.  

4. Simulation and Experimental Results 
In this research, we conducted a comprehensive 

simulation of a 7-Level Unequal Source Inverter (7LUSI) 

using MATLAB‟s SIMULINK, incorporating the power 

system block set. As previously discussed, the study 

generated switching signals through various multi-carrier 

unipolar Pulse Width Modulation (PWM) techniques. 

Simulations were carried out across a range of modulation 

indices (ma) from 0.8 to 1.  

The primary focus of the analysis was to evaluate the 

Total Harmonic Distortion (% THD) and Root Mean Square 

(RMS) values of the output voltage, with results tabulated for 

comparative purposes.  

The essential simulation parameters included Vdc = 100V, 

R = 100 ohms (load), fc = 2000 Hz, and fm = 50 Hz. We 

employed the TAR PWM method and used conventional 

Sinusoidal PWM (SPWM) for reference.  

We presented the simulation results as PWM output 

waveforms and Fast Fourier Transform (FFT) plots for the 

chosen 7LUSI configuration. To effectively illustrate the 
findings, we selected results for a sample ma at 0.9 for all the 

considered references, emphasizing the PWM strategy with 

the least THD. Figures 3(a) and 3(b) depict the voltage output 

produced by the VF-PWM method, accompanied by its FFT 

plot. 

Similarly, Figures 4(a) and 4(b) present the 7-level output 

voltage generated by APOD-PWM and its FFT plot. Figure 5 

illustrates the prototype model of the proposed inverter. 

Additionally, Figure 6 showcases the output voltage achieved 

through CO-PWM and its FFT plot.  

Lastly, Figures 7 and 8 reveal the output voltage obtained 
through Variable Frequency (VF-PWM) alongside its FFT 

plot. We summarized the THD results in Table 2, providing 

further insight into the Root Mean Square (VRMS) of the 
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7LUSI output in Table 3 and the output voltage‟s Distortion 

Factor (% DF) in Table 4. For experimental validation, it has 

scaled down the simulation values to align with laboratory 

conditions. The peak-to-peak output voltage was measured at 

36V in the lab, as demonstrated in Figures 7-10 and detailed 

in Tables 5 to 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3(a) Voltage output produced using VF-PWM technique with SPWM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3(b) Voltage FFT using VF-PWM 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4(a) Voltage output produced using VF-PWM technique with SPWM with TAR 
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Fig. 4(b) Voltage FFT

Table 2. %THD in output voltage 

ma 
Sine Reference TAR Reference 

PD-PWM APOD-PWM CO-PWM VF-PWM PD-PWM APOD-PWM CO-PWM VF-PWM 

1 17.29 18.22 22.49 16.58 15.53 15.67 21.16 14.15 

0.95 20.41 20.22 25.21 18.85 19.14 19.08 23.55 17.94 

0.9 22.10 22.04 27.6 21.15 21.54 21.19 26.01 20.45 

0.85 23.41 23.22 29.81 23.55 23.52 23.42 28.35 23.13 

0.8 24.22 24.15 32.36 24.53 24.71 24.82 30.43 25.21 

Table 3. Output voltage of RMS 

ma 
Sine Reference TAR Reference 

PD-PWM APOD-PWM CO-PWM VF-PWM PD-PWM APOD-PWM CO-PWM VF-PWM 

1 212.31 212.11 218.32 212.112 223.42 223.18 225.61 222.82 

0.95 201.41 201.62 209.35 202.34 212.32 211.79 217.43 212.45 

0.9 191.21 190.92 199.83 191.54 200.54 200.65 207.93 202.42 

0.85 180.61 180.33 189.91 180.36 189.67 189.46 198.26 190.56 

0.8 169.73 169.74 179.93 169.78 178.58 178.48 188.97 178.58 

Table 4. Output voltage of DF 

ma 
Sine Reference TAR Reference 

PD-PWM APOD-PWM CO-PWM VF-PWM PD-PWM APOD-PWM CO-PWM VF-PWM 

1 0.030 0.022 0.204 0.104 0.180 0.176 0.311 0.025 

0.95 0.018 0.013 0.256 0.071 0.175 0.174 0.341 0.023 

0.9 0.039 0.016 0.395 0.068 0.160 0.174 0.428 0.022 

0.85 0.036 0.018 0.556 0.072 0.165 0.171 0.572 0.020 

0.8 0.024 0.029 0.700 0.064 0.180 0.170 0.705 0.015 
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Significantly, Table 2 underscores that the VF-PWM 

approach utilizing the TAR reference achieves the lowest 

harmonic content in the output voltage.  

Additionally, Table 3 reveals that the Carrier 
Overlapping (CO-PWM) technique with TAR reference 

optimizes the utilization of the DC bus, in contrast to other 

strategies that exhibit relatively lower utilization rates. 

Furthermore, Table 4 emphasizes that the VF-PWM method 

with TAR reference consistently maintains lower harmonics, 

significantly beyond the second-order attenuation, as 

indicated by % DF. We calculated the Crest Factor (CF) for 

all the strategies across various modulation indices to assess 
the stress imposed on the devices.  

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

Fig. 5 Prototype representation of 7LUSI

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Voltage output produced through PD-PWM method 

 

 
 

 

 

 
 

 

 
 

 
 

Fig. 7 Voltage FFT with PD-PWM  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Voltage FFT with APOD-PWM 
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                           Fig. 9 Voltage FFT with CO-PWM                                                                      Fig. 10 Voltage FFT with VF-PWM 

Table 5. %THD of output voltage with experimental results 

ma PD-PWM APOD-PWM CO-PWM VF-PWM 

1 8.1 8.4 9.3 8 

0.95 8.6 8.8 9.8 8.4 

0.9 8.9 9 10.7 8.9 

0.85 9.5 10 10.9 9.5 

0.8 9.7 10.2 11.1 9.7 

 

 

 

 

 

 

 

 

Fig. 11 Total Harmonic Distortion percentage in output voltage as a function of output current (experimental data) 

Table 6. Output voltage RMS concerning output current 

ma PD-PWM APOD-PWM CO-PWM VF-PWM 

1 9.5 8.5 9.7 8.4 

0.95 8.6 8.6 8.7 7.8 

0.9 7.7 7.7 7.8 7.5 

0.85 7.6 7.5 7.60 7.4 

0.8 7.4 7.2 7.55 7.1 
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Fig. 12 Root Mean Square output voltage (fundamental component) concerning output current (experimental data) 

Table 7. DF of output voltage with experimental results 

ma PD-PWM APOD-PWM CO-PWM VF-PWM 

1 0.090 0.085 0.087 0.082 

0.95 0.091 0.092 0.084 0.087 

0.9 0.104 0.101 0.094 0.099 

0.85 0.100 0.102 0.100 0.101 

0.8 0.100 0.105 0.104 0.102 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Percentage of distortion factor in output voltage as a function of output current (experimental data)

Table 5, in conjunction with Figure 11, underscores the 
notably reduced harmonic content in the output voltage 

achieved by the VF-PWM strategy. In contrast, Table 6 and 

Figure 12 demonstrate that the VRMS output voltage of the 

CO-PWM strategy surpasses that of the other PWM 

strategies.  

Lastly, Table 7, complemented by Figure 13, indicates 

that the VF-PWM strategy exhibits a lower % DF. These 

collective results offer valuable insights into the performance 
and attributes of diverse PWM strategies when applied to the 

7LUSI configuration under examination. 

5. Conclusion 
This study demonstrates the 7-Level Unequal Source 

Inverter (7LUSI) employing the TAR PWM method. The 

results highlight that this recommended inverter reduces 

switching demands and yields significantly higher output 
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voltage levels while concurrently minimizing harmonic 

distortions. A comprehensive assessment of several 

performance metrics, encompassing Total Harmonic 

Distortion (% THD), Voltage Root Mean Square (VRMS), 

Crest Factor (CF), Form Factor (FF), and Distortion Factor 

(DF), was meticulously conducted, reported, and subjected to 
thorough scrutiny. The Comparative Offset (CO-PWM) 

strategy emerged as the frontrunner, delivering notably 

higher fundamental RMS voltage output and remarkably 

lower % THD values than the Variable Frequency (VF-

PWM) strategy. Interestingly, all PWM techniques exhibited 

nearly identical CF and FF results. However, the VF-PWM 

technique demonstrated a relatively low DF. Both simulation 

and prototype results affirmed the feasibility of the 7LUSI 

configuration and the proposed advanced PWM method.  

Furthermore, the study underscores the effectiveness of 

the TAR PWM approach in enhancing the inverter‟s 

performance and improving the harmonic spectra of the 
resulting output voltage, in stark contrast to the conventional 

Sinusoidal PWM (SPWM) technique. This research 

showcases promising advancements in inverter technology, 

promising greater efficiency and improved voltage quality 

for various applications. 
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