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Abstract - Drones are the new disruption technology at present owing to their use in many areas like transport, agriculture, 

security, surveillance, surveying & mapping, etc., to handle various critical tasks with less complexity and cost-effectively. In 

this research, drone usage in air surveillance, especially as a counter drone technique, is considered which is a significant 

threat today at borders. Transfer learning-based multiclass drone detection and classification were implemented using 

pretrained ResNet-50, VGG-16, Inception and Xception nets. Drone detection and classification performance for drone, bird, 

helicopter, and aeroplane classes are validated using accuracy, precision, F-score and recall metrics. Xception net is 

performing well over other nets with an accuracy of 0.98. 
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1. Introduction 
The drone industry has witnessed significant growth due 

to wide emerging applications of drones in many areas, such 

as medicine, agriculture, security, etc., due to the policy 

taken by the government. Several industries, like 

construction and the medical domain, are more dependent on 
drone technology to observe the works and carry drugs and 

organs, despite being in the infant stage.  

As per regulations of DGCA, people can hire a drone 

and obtain a UID number license. Safety and security 

concerns are significant when individuals also utilize drones. 

Few are probing drones for unethical works such as carrying 

and dropping explosives, drug smuggling, chemical 

weapons, surveillance into prohibited areas, etc. Detection 

technologies are now being researched, each with its own set 

of tradeoffs in complexity, range, and capability [20]. As a 

result, security teams require a method of detecting drones in 

the air and being aware of what is flying in their area. 
Acoustic devices, lasers, infrared sensors, LIDAR, and 

RADARs are existing technologies for detecting, localizing, 

and identifying small drones. Targets can be removed once 

detected by using birds trained to catch drones and jamming 

target-detected drones, laser guns, water cannons, and laser 

guns. Drones, on the other hand, can be employed to counter 

malicious drones. In recent times, academicians and industry 

working on computer vision-based techniques like object 

classification and detection methods have been implemented 

in deep learning-based Convolutional Neural Network 

(CNN) architectures, which are amicable solutions in 

surveillance.  

In this research, ResNet-50 and VGG-16-based drone 

detection and classification models were dispensed for the 

detection of drones and to reduce criminal activities in the 

geofencing areas. It is more challenging to classify the drone 

and bird in critical real-time situations like low contrast, less 

visibility, high range, etc., and even more complicated to use 

an algorithm to classify drone and bird with maximum 
accuracy. When flying, the drone should not collide with 

other birds or drones. Hence, this research concentrates on 

the detection and classification methods of drones from 

birdsVGG-16, ResNet-50, Inception V3, and Xception nets, 

which are employed with greater accuracy and less loss.  

2. Related Works 
Many researchers are working in this domain, and a few 

state-of-the-art works are mentioned as follows. Mohammed 

Javed et al. [12] investigated a ResNet-50 and faster RNN-

based real-time drone surveillance system, achieving 79% 

accuracy. It also uses four distinct object detectors, which 

detect faces and weapons. Tamer Khattab [13] proposed a 

model for tracking traffic and various RF signals from drones 

and classifying them into 2, 4, and 10 classes utilizing DNN 
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techniques. Dong Kyu [11] et al. proposed a model of a 

drone detection and identification system with an accuracy of 

89 percent using AI and OpenCV. This system was equipped 

with a camera, which infers position via machine 

classification. In 2016, Dinesh Kumar Behra [4] proposed a 

deep-learning model for drone identification and 
classification with an accuracy of 97.4%.  

Senthilnath et al. proposed deep learning-based spectral-

spatial methods such as splitting and merging in hierarchical 

categorization for vegetation analysis. R. Girshick proposed 

RCNN [16] for object detection. It effectively classified the 

object and was nine times faster in testing. Daniel Tan Wei 

Xun, Yoke Lin Lim et al. [1] used YOLOv3 and machine 

learning for drone detection, which had an average accuracy 

of 88.9% in 2021. 

3. Proposed Method 
Multiclass drone detection and classification are 

proposed and implemented using pre-trained deep neural 

networks such as VGG-16, ResNet-50, InceptionV3, and 

Xception networks. 

3.1. VGG-16 Architecture 

VGG-16 CNN model is a deep, sequential net with 16 
layers, as shown in Figure 1. This allows an input image of 

224×224×3. It incorporates thirteen convolution layers [14] 

of fixed filter size (3×3), five pooling layers of 2×2 filter 

size, and three fully connected layers with about 138 million 

parameters. But it has the problem of vanishing gradients. 

3.2. ResNet Architecture 

ResNet-50 is a form of exotic architecture, as shown in 
Figure 1, unlike sequential nets like Lenet and VGG net, 

where macro architecture is formed by replicating residual 

modules known as ResNet modules. It is a pre-trained net 

that can distinguish 1000 classes and consists of 48 

convolution layers, a max pool layer, and an average pool 

layer [10], which takes an input image of size 224×224. It 

solves the problem of overfitting by using skip connections, 

and higher-level layers’ performance is as good as lower-

level layers’ due to bypass connections. 

The primary inception module is a variant of ResNet, 

with a multi-level feature extractor, as shown in Figure 1, by 

computing 1×1, 3×3, and 5×5 convolutions within the same 

network module and feeding them to the output. It uses the 
split-transform-merge principle to obtain the feature map by 

using a point-wise grouped convolutional layer, which 

divides its input into groups of feature maps and performs 

standard convolution. Model capacity is determined by using 

parameter cardinality. 
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Fig. 1 Pre-trained architectures 
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4. Implementation 
The proposed drone identification and classification 

methodology is displayed in Figure 2, which uses photos 

from Kaggle. They are pre-processed before being separated 

into training and testing datasets in an 80:20 ratio, then 

blended and spewed with pictures and labels.The model is 

then built by adjusting hyper-parameters, regularisation, and 

optimization approaches.  

The testing dataset is used to assess the model’s 
performance, whereas the training dataset is used to train the 

model. Accuracy, precision, recall, and the F1-score measure 

performance. Pre-trained CNN networks such as VGG-16 

and ResNet-50, Inception, and Xception are implemented in 

tensor flow with the Keras API for drone detection as a black 

box solution for multiclass classification in this paper using 

four as shown in Table 2 and Table 3. Net is initialized with 

the ImageNet weights trained with 40 epochs and a batch 

size 32. Data augmentation is used on models to avoid 
overfitting due to sample restrictions. Dropout is introduced 

during training to reduce the problem of overfitting and 

acceleration of the training phase. Fully Connected (FC) and 

the softmax layers used will perform classification. This 

research dataset is prepared using around 2000 images of 

drones, birds, helicopters, and aeroplanes. Details are 

represented in Table 1. 

 

 

 

 

 

 

 

 

Fig. 2 Methodology for the drone detection 

Table 1. Dataset details 

Parameter VGG-16 ResNet-50 Inception V3 Xception 

Image Shape 224x224 224x224 224x224 224x224 

Dropout Rate 0.5 0.4 0.4 0.4 

Classifier Softmax Softmax Softmax Softmax 

Optimizer RMS Prop Adam RMS Prop Adam 

Loss Function CCE CCE CCE CCE 

Regularization Nil BN BN BN 

Batch Size 32 32 32 32 

Epochs 40 40 40 40 

 
Table 2. Hyperparameters for classification 

Class 
No. of Image Used for 

Training Testing Total 

Drone 431 143 574 

Bird 429 144 573 

Aero Plane 105 60 165 

Helicopter 152 100 252 

Total 1117 447 1564 
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4.1. Performance Metrics 

The following Equations (1-4) provide the accuracy, 

precision, recall, and F1-score metrics for evaluating the 

performance of the models generated by VGG-16, ResNet-

50, Inception V3, and Xception for the categorization of 

drones from birds, airplanes, and helicopters. The following 
Equations (1-4) provide the accuracy, precision, recall, and 

F1-score metrics for evaluating the performance of the 

models generated by VGG16, ResNet-50, Inception V3, and 

Xception for the categorization of drones from birds, 

airplanes, and helicopters.  

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

F1 Score = 2*
𝑅𝑒𝑐𝑎𝑙𝑙𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (4) 

Where, 

True Positive (TP) refers to the number of accurately 

predicted true cases. 

True Negative (TN) is the total number of incorrectly 

predicted false cases. 

The total number of correctly predicted true cases is 
referred to as the False Negative (FN). 

False Positive (FP) refers to the total number of cases 

accurately predicted but false. 

4.2. Confusion Matrix  
Confusion matrices of VGG-16, ResNet-50, Inception, 

and Xception nets are shown in Figure 3(a)-(d), respectively. 

In this case, each network was learned with one thousand 

four hundred-three samples of the training dataset were 

validated with a test data set of 447 samples. The aeroplane 

class is correctly classified without confusion in the 

exception network. VGG-16 and ResNet-50 performances 

are the same, and the other two functions are the same.  

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Confusion matrix of various network models 
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(a) Confusion matrix of VGG-16 
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(b) Confusion matrix of ResNet-50 
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(c) Confusion matrix of Inception v3 
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In the case of drones, VGG-16 produced more 

misclassifications due to the gradients vanishing problem. 

This problem is addressed in ResNet50, as shown in Table 3. 

Due to extended multi-scale feature characteristic 

performance further improved in xception architecture, the 

false rate was also reduced. 

Table 3. Performance comparison 

Method Class TP TN FP FN Accuracy Precision Recall F1 Score 

VGG-16 

Airplane 58 385 2 1 0.99 0.98 0.96 0.97 

Bird 140 296 4 6 0.97 0.95 0.97 0.96 

Drone 137 298 6 5 0.97 0.96 0.95 0.96 

Helicopter 100 346 - - 1.0 1.0 1.0 1.0 

ResNet-50 

Airplane 60 374 - 12 0.97 0.83 1.0 0.90 

Bird 144 300 - 2 0.99 0.98 1.0 0.99 

Drone 129 303 14 - 0.96 1.0 0.90 0.94 

Helicopter 100 346 - - 1.0 1.0 1.0 1.0 

Inception 

Airplane 59 386 1 0 0.99 1.0 0.98 0.99 

Bird 140 299 4 3 0.98 0.97 0.97 0.97 

Drone 140 297 3 6 0.97 0.95 0.97 0.96 

Helicopter 99 346 1 0 0.99 1.0 0.99 0.99 

Xception 

Airplane 60 386 0 0 1.0 1.0 1.0 1.0 

Bird 142 299 3 2 0.98 0.97 0.98 0.98 

Drone 140 300 3 3 0.98 0.97 0.97 0.97 

Helicopter 99 346 1 0 0.99 1.0 0.99 0.99 

5. Performance Evaluation 
The performance of the proposed work is compared with 

the help of accuracy and loss functions, as shown in Figure 4 

and Table 4, respectively. Xception net with higher accuracy 

has high entropy loss. Inception net is moderate in terms of 

accuracy and loss. VGG-16’s net loss is shallow. The 

accuracy and loss functions of four proposed networks for 40 

epochs are shown in Figure 4. 

 

Table 4. Accuracy and loss of four models 

Parameters VGG-16 ResNet-50 InceptionV3 Xception 

Accuracy 0.97 0.96 0.97 0.98 

Loss 0.47 0.57 0.48 0.65 
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Fig. 4 Training and testing accuracy and loss functions of proposed methods 
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Table 5. Performance comparison with the state of work

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
Fig. 5 Performance comparison of four models

6. Performance Comparison 
The proposed work is compared with the state-of-the-art 

work, as shown in Table 5. The proposed method with 

Xception architecture can classify drones with high detection 

accuracy. 

7. Conclusion 
This study suggests two pre-trained models, VGG-16 

and ResNet-50, for binary and multiclass classification. 

These models divide objects into four separate categories: 

drones and birds for binary classification and aeroplanes and 

helicopters for Multiclass classification based on their shape.  

For multiclass classification, the accuracies for the 

VGG-16 and ResNet-50 models are 0.97 and 0.96, 
respectively, while the accuracies for binary classification are 

0.9 and 1.0 for each model. 

The ResNet-50 model outperformed the VGG-16 model 

in binary classification due to skip connections in the 

residual block that decrease overfitting and because lower-

dimensional layers operate equally well as higher-
dimensional layers. Because fewer kernels exist in the 

ResNet-50 than in the VGG net, its computational 

complexity is likewise lower. InceptionV3 and Xception 

have better accuracies of 0.97 and 0.98. 
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