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Abstract - Next-generation wireless communication systems (5G/6G)  are intended to offer extensive features and capabilities. 

Higher data rates, more mobility, reduced latency, and improved service quality are the primary criteria for 5G/6G. The 

various services and applications expected for 5G/6G will have different expectations for the network’s design. The 5G 

network is necessary to support massive data traffic and an enormous variety of remote connections. Orthogonal Frequency 

Division Multiplexing (OFDM) was the most effective choice for 4G networks. However, OFDM has a high Peak to Average 

Power Ratio (PAPR) and Out of Band (OoB) leakage. More improved Multi-Carrier Modulation (MCM) methods are 

necessary to meet the expected needs of 5G/6G. So, other MCM approaches are offered to overcome the drawbacks of OFDM. 

Filtered MCM techniques give feasible solutions for future mobile networks. Multiple access techniques, such as Filter-Bank 

Multi-Carrier (FBMC), Universal-Filtered Multi-Carrier (UFMC), and Generalized Frequency-Division Multiplexing 
(GFDM), can be used to analyze the enormous data offered by 5G/6G systems. This paper examines the performance of 5G/6G 

MCM methods such as FBMC, UFMC and GFDM. After that, we evaluate the results in terms of PAPR, Power Spectral 

Density (PSD), Computational Complexity (CC), Bit Error Rate (BER) and Spectral Efficiency (SE). 

Keywords - 5G, 6G, Bit Error Rate, Computational Complexity, FBMC, GFDM , Multi-Carrier Modulation, OFDM, Power 

Spectral Density, Spectral Efficiency, UFMC. 

1. Introduction  
Wireless communications systems have existed for over 

a decade, beginning with the 1G communication 

technologies. Over time, new advancements towards 2G, 3G, 

and 4G wireless communication technologies have occurred.  

All of these offered digital modulation methods [1]. All of 

these factors have considerably increased the progress of 

utilizing smart devices daily. Data rates, bandwidth 

allocation, and other parameters have been enhanced from 

1G to 4G. A typical client is expected to download 1TB 

of data every year.  

Long-Term Evolution (LTE) systems are being 

investigated for new research using Multiple Input Multiple 
Outputs (MIMO), Hetnets, small cells, and multiple antennas 

to improve capacity and data rates. This traffic growth is 

unlikely to be supported by 4G LTE. As data traffic grows, 

so does the demand for the 5G/6G system. LTE technologies 

are utilized in 4G networks. However, developing newer 

apps in 4G is not the most possible [2-3]. Global 5G network 

deployment was projected to be finished by 2025, with extra 

high capacity connections, excellent reliability, and 

extremely low latency. 

Nevertheless, the capabilities of 5G are expected to face 

challenges in fulfilling the diverse range of anticipated uses 

beyond the year 2030. Moreover, the 6G network is expected 

to offer an expanded spectrum, improved cost-efficiency, and 

enhanced security measures to optimize coverage and reduce 
energy usage. Many technological advancements are utilised 

to address these requirements within the context of a 6G 

network, such as waveform design, multiple access 

approaches, channel coding techniques, novel antenna 

technologies, network slicing, and cloud edge computing. 

Four crucial future development keys are impacted by 6G: 

global coverage, diverse spectra, innovative applications and 

services, and excellent security. Figure 1 represents the 

development of cellular mobile communications. 

OFDM is flexible to multipath fading and easy to 

implement because it utilizes FFT/IFFT frameworks, reduces 
multi-carrier interference, and is simple to combine with 
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adaptive modulation and multiple antenna systems. So, 

OFDM is extensively used in various wireless systems, 

including LTE and IEEE 802.11 families [5, 6]. Because 

OFDM is the most widely used modulation technology in 

today’s wireless networks, it has several inherent limitations.  

High Out-of-Band (OoB) emission, low Spectral 
Efficiency (SE) caused by adding a Cyclic Prefix (CP) and 

high PAPR affect system efficiency [7]. To address these 

drawbacks, several new MCM techniques, including FBMC, 

UFMC, filtered OFDM and GFDM, have recently been 

proposed [8]. 

Much research has been conducted to assess the 

performance of various prospective MCM approaches. [9] 

provides a complete review of modulation and different 

access techniques for 5G networks. The authors present an 

overview of Orthogonal and Non-Orthogonal Multiple 

Access (OMA and NOMA) systems. The performance is 

compared in terms of OoB emission and BER. They 
demonstrate that NOMA improves throughput and extensive 

connectivity while improving SE. A comparison of study 

provides the study of OFDM and FBMC. BER, SE, PSD, 

and Computational Complexity (CC) of OFDM and FBMC 

are investigated. 

The article discusses the disadvantages of OFDM and 

suggests that FBMC could serve as an alternate option. The 

authors of [10] compare UFMC and OFDM. They prove that 

UFMC outperformed OFDM. [11] compares the 

performance of UFMC with CP-OFDM based on PSD and 

PAPR. They demonstrate that UFMC has higher PSD than 
OFDM and almost equal PAPR. [12] compares the 

performance of FBMC, GFDM  and UFMC in terms of PSD, 

SE, Computational Complexity and PAPR. According to the 

authors, UFMC has equivalent spectral efficiency to OFDM. 

Only the AWGN channel is used for SE comparison. [13] 

investigated the operation of Full Duplex-FBMC. The 

OFDM system’s effectiveness regarding spectral leakage has 

been described.  

5G waveform possibilities were studied in [14].  PAPR, 

SE, computat ional complexity and latency were used to 

measure performance. According to the results, FBMC and 

UFMC offered more potential cohabitation than other 

techniques. The authors of [15] analyzed MIMO systems 

based on OFDM, UFMC, and FBMC. Their effectiveness 

was evaluated using BER, PSD, data rate, and SE. According 

to outcomes, UFMC provided the most significant data rate, 

while FBMC provided the lowest PSD. This paper examines 

the modulation schemes OFDM, FBMC, GFDM, and 

UFMC. We begin by reviewing the fundamental concepts 

and properties of each waveform. The various waveforms’ 
PSD, CC, BER, PAPR, and SE are then compared.  

The remaining part of the article is structured as follows. 

In section 2, we explained about 5G and 6G. Section 3 

covers the fundamentals of multi-carrier modulation 

methods. Section 4 contains performance analysis 

parameters.  Section 5 describes the simulation results, and 

conclusions are provided in section 6. 

2. 5G/6G Communication System 
This section discusses 5G and 6G basics such as 

evolution, applications, development, capabilities, and 

features. The mobile communication system has experienced 

significant change since the first wireless network was built 

over 40 years ago. 

 

 

 

 

 

 

 

 

 

Fig. 1 The evolution from 1G to 6G [5] 
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2.1. 5G 

Compared to earlier wireless systems, 5G is an 

important advancement and a framework for digital 

transformation. Users will benefit from three new services as 

a result of 5G: extreme Mobile Broadband (MBB), extreme 

Machine Type Communication (MTC), and Ultra-Reliable 
Low Latency Communication (URLLC). eMBB offers 

consumers fast internet, higher bandwidth, reduced latency, 

and UltraHD streaming movies [16].  

The eMTC provides high-speed, high-bandwidth MTC 

across extensive distances while consuming little power. The 

URLLC is the developed 5G for minimal latency and 

extremely reliable connectivity. 5G technology offers 

consumers infinite internet access while enhancing 

reliability, flexibility, and energy efficiency. 5G employs two 

primary frequency ranges: sub-6 GHz and millimeter (mm) 

wave [17]. 

All wireless networks employ a spectrum ranging from 

300 MHz to 3GHz. However, the current scope has become 

overloaded with traffic, making it difficult to overcome. The 

issue of high-frequency bandwidth has emerged as a crucial 
element in developing 5G wireless networks.  

These networks explore using an underutilized spectrum 

inside the mmWave (mmW) band, spanning frequencies 

from 3GHz to 300GHz. Figure 2 illustrates the accessibility 

of the mmW range. The 5G general physical architecture is 

shown in Figure 3. The key features of 5G are illustrated in 

Figure 4. The various applications of 5G are represented in 

Figure 5. The security issues with 5G are shown in Figure 7. 

 

 

 

 

 

Fig. 2 mm spectrum: 3GHz to 300GHz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 General 5G physical architecture [18-23] 
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Fig. 4 Key features of 5G [24] 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

Fig. 5 Applications of 5G technology 

 

 

 

 

 

 

 

 

 

 

Fig. 6 5G as a key enabler for oil and gas digitalization [25] 
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Fig. 7 Security issues with 5G [26] 

2.2. 6G 
For new 6G services, there will be an increased demand 

and require higher network capacity than present 5G. 
Therefore, future 6G services will require higher network 
capacity than 5G. Future wireless networks will play an 
essential role in our lifestyles, businesses, and society. 
Wireless networks will connect people and intelligent 
machines. So, researchers and industry should work together 
to develop these networks further to achieve a common 
objective [27].  

Wireless communication will have significantly 
advanced by 2030. The current era is anticipated to see a 
substantial transformation towards automation, wherein the 
emergence of 6G technology is expected to assume a pivotal 
position as a fundamental infrastructure for information and 
communication. The potential of achieving ubiquitous and 

uninterrupted communication across all locations and 
timeframes is anticipated by implementing 6G technology. 
Due to increasing application needs, the future development 
of wireless systems should achieve numerous aspects to 
match these services’ QoS. 

Moreover, we may expect the following development to 
continue with increased demands that wireless technologies 
should serve on the way to 2030. To handle highly 
demanding applications such as virtual, enhanced, mixed 
reality and remote management of critical activities, future 
generations should enable high data rates, extremely low 
end-to-end latency, increased reliability, large cell capacity, 
and expanded coverage area [28]. The features of 6G are 
shown in Figure 8. Figure 9 depicts the new situations that 
are emerging in 6G networks. Figure 10 represents the 
applications, trends, and enabling technologies of 6G. 
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Fig. 9 Scenarios of 6G beyond 2030 [4] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 10 6G: applications, trends, and technologies [29] 

3. Multi-Carrier Modulation (MCM) schemes 
MCM is a new developing technique in 5G for changing 

the physical-layer technique. The MCM is being deployed to 

operate mMIMO base stations. Candidate waveforms are 

used to use the restricted frequency range best. The 

accessibility of the frequency spectrum creates a tremendous 
demand in WCS. Because of the rapid expansion of WCS, 

the frequency spectrum is becoming an essential resource. 

So, MCM methods are employed in the 5G system. The 

existing issues of MCM include difficulty in design, 

reliability, flexibility, OoB emission and PAPR. Therefore, 

new MCM methods are being developed to defeat these 

issues. The principle of MCM is to divide significant signals 

with high symbol rates into smaller signals with lower rates. 

Smart City 

Smart Services

 

Online Services 

Virtual Machines 

Remote 

Maintenance 

Condition Monitoring 

Predictive  Maintenance 

Traceability 
Smart Production

 Industry .5 

Smart Factory 

 

I 4.0 

Remote Control 

Data Exchange 

Self-Optimizing 

Individualization 

Intelligent User 

Interface 

Smart Factory 

Smart Transportation 

Multisensory 
XR 

Applications 

Connected Robotics 
and 

Autonomous 

Systems 

Wireless Brain-

Computer 

Interactions 

Blockchain and 

Distributed 

Ledger 

Technologies 

More Bits, 

Spectrum, 

Reliability 

From Spatial to 

Volumetric 

Spectral and 

Energy Efficiency 

Emergency of Smart 

Surfaces and 

Environments 

Massive 

Availability of 

Small Data 

From SON to Self 

Sustaining 

Networks 

Convergence of 

Communication, 

Sensing, Control, 

Localization, and 

Computing 

End of the 

Smartphone Era 

Above 6GHz 

for 6G 
Mobile 

mmWave and 

THz 

Transreceivers 

with Integrated 

Frequency 

Bands  

Communication 

on with Large 

Intelligent 

Surfaces 

Edge AI Integrated 

Terrestrial 

Airborne, and 

Satellite Networks  

Energy Transfer  

and Harvesting 

Beyong 6G 

6G: Driving Applications 

6G: Driving Trends 

6G: Enabling Technologies 



N. Sivapriya et al. / IJEEE, 10(11), 100-114, 2023 

 

106 

Orthogonal narrow-band subcarriers are currently being 

utilised to modify lower-rate transmissions. This supports 

simultaneous data transfer via the channel. Dividing wide-

band signals into small-band orthogonal signals provides 

excellent SE. The more potential MCM approaches for the 

next generation of networks include OFDM, GFDM, FBMC, 
and UFMC. The key differences among these modulation 

schemes are the MCM block, CP insertion, and filtering 

process.  

3.1. CP-OFDM 

OFDM is a modulation and multiplexing technique. It is 

frequently utilized in LTE and LTE-A networks. The method 

mentioned above pertains to encoding digital information 
among multiple carrier systems. A significant quantity of 

closely spaced orthogonal subcarrier signals are utilised to 

facilitate data transmission across several concurrent data 

streams over various channels.  

Each subcarrier is modulated using a typical modulation 

method such as QAM or PSK. As a result, the symbol rate 

will be low. These digital modulation methods are used to 

map the digital input. These modulation methods are used to 

generate complex symbols. The orthogonal sub-carriers are 

utilized for mapping utilizing IFFT.  

The IFFT converts a signal from the Frequency Domain 

(FD) to the Time Domain (TD). CP is used to prevent 
transmitted symbols from overlapping. The CP is introduced 

to offer greater resilience to signal propagation. Instinct CP is 

used to solve the ISI and ICI issues.  

The end of transmitted symbols attached to its beginning 

is essentially a duplicate of additional CP. The key criterion 

of the CP-OFDM system is channel estimation. The 

increased CP causes poor SE. Another con of CP-OFDM is 

the loss of bandwidth caused by the insertion of CP. Figure 

11  depicts the CP-OFDM block diagram. 

The signal representation of the OFDM system is 
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Where, convolution operation is  , symbol duration is 

 , impulse function is ( )t ,  prototype filter f(t), subcarrier 

index is m, subcarriers are K, Sn,m is complex data symbol of 

mth subcarrier and nth OFDM symbol, subcarrier spacing is 

∂f. 

3.2. FBMC 
A set of filters in FBMC performs standard input to 

produce an expected output.  SFB is constructed using an 

IFFT followed by a Poly-Phase Network (PPN) structure, 

whereas AFB uses a PPN followed by an FFT. The filter 

bank allows the response to the frequency of the transmitted 

signal to be controlled. As a result, many filter design 

approaches have been developed, including FMT, CMT, and 

SMT [30].  

The primary distinction between OFDM and FBMC is 

the kind of filter employed. In the context of OFDM, a 

rectangular filter is applied to facilitate the transmission of 

each subcarrier. However, in FBMC, a pulse-shaping filter is 

utilized to enhance the spectral features by reducing the 

occurrence of OoB radiation. Following the OQAM pre-

processing stage, data symbols are transmitted across the 

SFB set. Using the prototype filter facilitates the effective 

management of nearby spectral leakage and frequency 

localization.  

The transmitted signals are routed through a series of 

AFB at the receiver to achieve optimal signal reconstruction, 
followed by OQAM post-processing. Because of self-

interferences, FBMC compatibility with MIMO is relatively 

complicated. When the interference becomes controlled, this 

will be compatible with MIMO. In OFDM systems, it is 

imperative to retain orthogonality across all subcarriers. The 

orthogonality criteria are observed between the neighbouring 

subcarriers in FBMC, as stated in [31]. In OQAM, the 

complex signal is decomposed into its constituent real and 

imaginary components. The signs are partitioned in the 

temporal dimension by 50% of the symbol duration, 

enhancing frequency spectrum utilisation. The FBMC system 
is shown in Figure 12. 

The FBMC-QAM signal is  
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3.3. UFMC 
To achieve asynchronous reception and transmission, a 

novel waveform is needed for future wireless communication 

networks, utilizing non-orthogonal waveforms to enhance SE 

and reduce latency. UFMC has been proposed as a novel 
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waveform design that represents a generalization of this 

approach to collect the benefits while avoiding the 

drawbacks of previous modulation schemes.  

UFMC is a technique that combines the benefits of 

orthogonality in OFDM along with the filter bank idea in 

FBMC. However, sub-bands of carriers are filtered rather 
than filtering every carrier like in FBMC. Every sub-band 

comprises many carriers, and the length of the filter is 

determined by the sub-band width [32]. The entire band of 

the OFDM  is divided into N sub-carriers. The N subcarriers 

are separated into subbands and then filtered.  

FD signals are converted into TD by employing N-point 

IFFT conversion. A bandpass filter filters the transmitted 

symbols, which are summed; subsequently, the signal is 

propagated over a multipath fading channel. The serial 

data/signal is converted into parallel data at the receiver side 

using the serial-to-parallel converter [33]. These signals are 

filtered and converted from TD to FD using an FFT block. 
The demodulated signal is sent to the demapper block, a 

demodulator responsible for extracting the data bits from the 

received symbols. Figure 13 shows the block diagram of 

UFMC. 

3.4. GFDM 
GDFM is a powerful multi-carrier system that may be 

used for various 5G applications. The fundamental limitation 

of the GFDM system is high PAPR. Linear power amplifiers 

are used at the transmitter section of the system. High Power 

Amplifiers (HPA) are placed on the transmitter side to 

improve communication. Because HPA must be functioning 

saturation region, the operating point will be in the nonlinear 

region. Switching the operating point into the nonlinear 

region causes non-linearities in the output signal.  

To address this, we must raise the dynamic range of the 
HPA  to keep the operating point in the linear region, which 

affects efficiency and raises the power amplifier price [34]. 

As a result, there is a trade-off between efficiency and 

nonlinearity. Transferring a powerful PAPR signal through 

the HPA saturates the device, producing OoB radiation; the 

BER increases. To improve the efficiency of the HPA, we 

should reduce the PAPR value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 CP-OFDM 
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Fig. 13 UFMC block diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 GFDM block diagram 
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describes the GFDM block diagram. 

4. Performance Analysis Parameters 
The performance of MCM schemes is evaluated using 

several parameters, like PSD, SE, BER, Computational 

Complexity (CC) and PAPR. PSD and SE are considered on 

the transmitter side; BER and CC are used to measure 

performance at the receiver section. 

4.1. PSD 

The PSD is the frequency domain distribution of the 

average power of a signal. The PSD demonstrates the 

magnitude of energy changes with frequency. It proves 

which frequencies have high energy variations and which 

have small energy variations. Adding the PSD of each 

subcarrier provides the PSD of MCM schemes. Furthermore, 
the PSD  can also be used to measure the sidelobe radiation.  

The PSD of OFDM and FBMC signals may be 

calculated as follows: 
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Where, overlapping factor  l= 4, the coefficient of 

PHYDYAS filter is Fc, and the standard deviation of Sn,m is 

s . 

4.2. BER 

BER is an essential aspect in determining the 

performance of data channels. The BER is a metric that 
quantifies the ratio of bit errors to the total amount of bits 

transferred during a particular period. Noise and multipath 

propagation are the primary causes of transmission 

degradation in quality and BER. To analyze the BER 

characteristics of the MCM schemes, we assume that the 

noise has a Gaussian distribution and that the propagation 

model has a Rayleigh distribution.  

4.3. Spectral Efficiency-SE (Bandwidth Efficiency) 
The most significant amount of data that may be 

transferred to a certain number of users/second is SE. SE 

generally determines the effectiveness of the digital 

modulation technique. The combination of time efficiency 

and modulation efficiency gives SE. 
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Where, t  
is the time efficiency m modulation 

efficiency of MCM schemes, St indicates the samples on the 
transmitted signal, Soh is the overhead sample due to CP, μ is 
transmitted symbols in a burst, FFT size is N, and the 
number of loaded bits in each subcarrier is m, overlapping 
factor is K, length of CP is Lcp, length of filter Lf and length 
of ZP is Lzp.  

4.4. Computational Complexity (CC) 

The quantity of real-valued multiplications and additions 

is used to determine computational complexity.  The overall 

CC of any MCM approach is computed by summing the 

number of additions and multiplications on both the 

transmitter and receiver sides. Table 1 indicates the required 

reserves and multiplications of various MCM schemes. 
OFDM has a relatively low complexity. FBMC is around six 

times higher in complexity than OFDM. GFDM is roughly 

12 times greater in complexity than OFDM. UFMC has the 

highest level of complexity. 

Table 1. Comparison of CC for various MCM schemes 

Parameter No. of Additions No. of Multiplications 

FFT 3 log - 3 4
2

FFT N N N

   *

log - 3 4
2

FFT N N N   

OFDM Tx Side 3 log 2 4
2

N N L Ncp    log 4 4
2

N N L Ncp    

OFDM Rx Side 3 log 2 2 4
2 0

N N L N Ncp     log 4 3 4
2 0

N N N N    

FBMC Tx Side 6 log 10 4 2 8
2 0

N N N NK N     2 log 6 8 4 4
2 0

N N N N NK     

FBMC Rx Side 6 log 10 8 4 2 4
2 0 0

N N N N L N NKeq      2 log 6 8 4 4
2 0

N N N N L NKeq     

UFMC Tx Side 4 ( 1) 3 ( ) 2 ( )N D DN FFT N FFT
sb sb

 
    * *

3 ( ) 8 2 ( )D FFT DN N FFT
sb

   

UFMC Rx Side 2 ( ) 2
0

N FFT N


  *
2 ( ) 4

0
N FFT N  
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Where N is subcarriers (N-point FFT), N0 is symbols, 

poly-phase filters length of Lp = KN, data blocks are D, and 

IFFT size on each sub-band is NSB. 

5. Results 
This section analyses a comparison of the following 

performance parameters: PAPR, BER, CC, and SE. The 
MATLAB tool was used to evaluate the performance of 
MCM with variations in design parameters. Table 2 shows 
the simulation parameters used in this research. The 
simulation parameters may be different depending on the 
comparison measures. 

Figure 15 illustrates the PSDs of MCM schemes. A 
compromise exists between Leakage Suppression (LS), and 

spectral resolution. The CP-OFDM roll-off rate is lower than 
the others, indicating poor spectrum LS. Furthermore, the 
sidelobe level is not much reduced. As a result, a significant 
quantity of power is transferred in the not-utilised spectrum. 
W-OFDM has a lower sidelobe level than CP-OFDM. As a 
result, W-OFDM provides superior LS. Furthermore, the 
roll-off rate is visibly larger, indicating a quick reduction in 
PSD in the sidelobes. CP-OFDM has the lowest overall roll-
off rate, while FBMC has the most significant rate after F-
OFDM, UFMC, and W-OFDM. As a result, FBMC has a 
substantial depth at the sidelobe level. So, it provides better 
leakage suppression compared to other schemes.  At a 
normalized frequency of 0.5, the PSD amplitude values are 
33.12 81.64. 136.02, 72.43, and 160.13dBW/Hz for CP-
OFDM, W-OFDM, F-OFDM, UFMC and FBMC, 
respectively. 

Table 2. Simulation parameters 

MCM Parameter Value 

FFT 

Subcarriers with Spacing 15 kHz 

FFT Size 1024 / 64 

Modulation QAM 

Noise Gaussian Distribution 

Propagation Model Rayleigh Distribution 

UFMC Parameters 

Filter Length 73 

Subband Size/Block Size 12 

Guard Interval 72 

Filter Dolph-Chebyshev Filter 

Stop-Band Attenuation 40dB 

length of padding 72 

Size of FFT 64 

FBMC Parameters 

Prototype Filter PHYDYAS filter 

Filter with Length N.K 

Overlapping Factor 4 

OFDM Length of CP 72 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 15 PSD of MCM schemes 
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Fig. 16 Symbols/burst vs SE 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 17 SNR vs SE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18 SNR vs BER 
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Figure 16 compares the spectral efficiency of several 

MCM approaches to the number of multi-carrier symbols in 

each burst. The overall SE of OFDM and FOFDM decreases 

by 10%. It can also be shown that as the burst size 

approaches 5, the overall SE of FBMC comes from that of 

OFDM, and it demonstrates superior efficiency when the 
burst size exceeds five multi-carrier symbols. Based on the 

analysis, it can be concluded that UFMC and GFDM exhibit 

more excellent suitability for short-burst transmissions than 

other MCM systems. FBMC is more suitable for transmitting 

long bursts than short burst communication when its 

efficiency is limited. Unlike UFMC or OFDM, FBMC does 

not use additional guard interval insertion to address the 

frequency selectivity of the channel. Consequently, FBMC 

exhibits channel-type independence. Figure 17 compares our 

proposed MCM technique to SNR and SE. Figure 18 

represents the BER analysis of various MCM schemes. The 

GFDM scheme improves BER performance more than 

OFDM, UFMC, and FBMC. At a BER of 0.001, the SNR of 

OFDM is 19.1dB, FBMC is 17.2dB, UFMC is  15dB, and 

GFDM is 11.5 dB. Therefore, it is identified that GFDM 

reduces BER more effectively than other MCM approaches.  

The GFDM scheme provides better BER performance. 
Figure 19 shows the PAPR analysis of various MCM 

schemes. The PAPR of the OFDM method is very high. The 

explained MCM methods can address the problem of 

PAPR and generate results that outperform OFDM. The 

PAPR of OFDM is 11.7dB at a CCDF of 0.001.  When 

CCDF=0.001, the PAPR values are 11.2dB, 9.8dB, 8.7dB, 

and 8.3dB for F-OFDM, FBMC, UFMC and GFDM, 

respectively. Compared to OFDM, the PAPR reduction is 

0.5dB, 1.9dB, 3dB, and 3.4dB for F-OFDM, FBMC, UFMC 

and GFDM, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19 PAPR analysis 

Table 3. MCM schemes comparison 

Parameter OFDM FBMC UFMC GFDM 

PAPR H H H M 

OBE H L L L 

SE L H H H 

CC L H H H 

CP Y N N N 
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Fragmented spectrum N Y Y Y 
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CFO resiliency P G G G 

Reliability M H H L 
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6. Conclusion 
This article investigates all potential candidate 

waveforms for 5G wireless communication systems and 

analyses the performance of FBMC, OFDM, GFDM, and 
UFMC concerning PSD, CC, BER, and SE. Among these, 

GFDM provides better performance. The results indicate that 

FBMC exhibits less OOB by using pulse-shaping filters.  

FBMC is remarkably unaffected by multiuser 

interference. The complexity of UFMC and FBMC is more 

than that of OFDM. UFMC provides lower OOB leakage 

than OFDM due to block filtering. Simulation results show 

that the GFDM system is the most suitable for 5G. The 

GFDM approach reduces PAPR effectively, improves BER 
performance and has an excellent spectral efficiency. 
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