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Abstract - Emotion recognition from Electroencephalogram (EEG) signals has emerged as a crucial area of research with a 

broad spectrum of applications. To enhance the accuracy and effectiveness of emotion classification, this study presents an 

innovative approach that combines advanced signal processing and deep learning techniques. The proposed methodology is 

structured into several distinct phases for optimal performance. Initially, EEG signals are preprocessed using a Fractional Order 

Butterworth (FOB) filter, which exhibits flexibility, allowing for precise control over the trade-off between preserving relevant 

emotional information and mitigating unwanted interference. The Short Time Fourier Transform (STFT) is applied to extract 

time-frequency representations from the preprocessed EEG signals. This transformation captures dynamic changes in spectral 

content, providing a comprehensive view of the emotional state over time. A hybrid approach is employed to optimize the feature 

set and enhance the efficiency of emotion classification. This approach combines the Improved Artificial Fish Swarm algorithm 

with Particle Swarm Optimization (IAFS-PSO). Combining these algorithms efficiently navigates the solution space to select the 

most informative features, ensuring the subsequent classification process is based on a highly relevant and discriminative set of 

features. Emotion recognition is accomplished using a hybrid attention-based Convolutional Neural Network combined with 

Long Short-Term Memory (CNN-LSTM) networks. The CNN component captures spatial features in the EEG data, while the 

LSTM component is adapted to modelling temporal dependencies. The hybrid architecture is further enhanced with attention 

mechanisms, allowing the model to focus on critical segments of the EEG data, thereby improving classification accuracy. The 

evaluation of this approach is conducted rigorously, and the results of this study highlight the proposed methodology’s 

effectiveness and efficiency in accurately classifying emotional states from EEG signals. 

Keywords - EEG, Fractional Order Butterworth filter, Hybrid attention CNN-LSTM, Hybrid IAFS-PSO, Short Time Fourier 

Transform.

1. Introduction 
Brain-Computer Interface (BCI) technology makes the 

brain’s capability to communicate through peripheral devices 

feasible, profoundly affecting everyday human activities [1]. 

In Human–Computer Interaction (HCI) and computer 

intelligence, emotional recognition is an essential realm of 

research [2]. EEG emotion recognition is a significant BCI 

technique frequently applied to decision-making, 

interpersonal communication, and the diagnosis of mental 

illnesses [3, 4]. It simplifies human-machine interaction in 

real-world initiatives, and robots can communicate and 

comprehend human emotions [5]. Since emotional awareness 

helps track and improve students’ academic performance, it 

has become essential for daily living. It aids in the detection 

and management of a variety of psychological illnesses in 

medical studies, including autism spectrum disorders and 

depression [6]. The complete flow of the EEG recognition of 

emotions framework is shown in Figure 1.  

During the recording stage, the signals must be 

preprocessed, and the resulting brain signals are often 

distorted and noisy. The artifacts  are eye blinks, eye 

movements, and heartbeat. Brain signals are also unorganized 

due to muscular action and power line interferences. Artifacts  

are removed using Common Average Referencing (CAR) [7], 

Common Spatial Patterns (CSP) [8-10], Independent 

Component Analysis (ICA) [11, 12], Principal Component 

Analysis (PCA) [13], Frequency Evaluation [14, 15].  

However, these methods have several limitations, such as 

the necessity for many computations for decomposition. The 

average and skull exposure analysis is hindered by the limiting 

density of samples and inadequate head coverage, and 

electrode placement changes influence classification 

accuracy. These concerns are overcome by employing 

Fractional Order Butterworth (FOB) filter, which is effective 

for signals and artifacts  whenever spectrum overlap.

http://www.internationaljournalssrg.org/
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:manojprasatht@gmail.com


T. Manoj Prasath & R. Vasuki / IJEEE, 10(11), 128-141, 2023 

129 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 General flow of human emotion detection 

The most significant aspects of the brain signals are 

collected after obtaining noise-free data from the EEG signal 

enhancement stage. To extract features from EEG data, 

techniques which include Adaptive Auto Regressive 

parameters (AAR) [16], Wavelet Transformations (WT) [17-

19], and Wavelet Packet Decomposition (WPD) are 

implemented [20]. However, these approaches have poor time 

localization, which leads to failure in every application, and 

establishing the representation’s features for EEG signals is 

difficult and irrelevant to signals that aren’t stationary. As a 

result, in this study, a Sort Time Fourier Transform (STFT) is 

proposed, together with a unique IFSA-PSO, to perform 

efficient feature extraction and feature selection, which 

efficiently selects the most desirable features.  

Following feature extraction and selection, the signals are 

categorized into several sections using various classifiers. 

Nearest neighbour classifiers, nonlinear Bayesian classifiers, 

Support Vector Machine (SVM) [21], Artificial Neural 

Networks (ANN) [22] and CNN [23] are examples of 

classifiers for EEG-based emotion detection. However, 

producing a precise forecast for a suitable category likelihood 

is very complicated and impossible. The concerns described 

above are addressed by implementing an attention-based 

CNN-LSTM classifier. It is also employed to broaden the 

features of the linear framework that predicts human emotions 

from brain signals. Henceforth, the significant contribution of  

the proposed work is summarized as follows: 

 Advanced EEG signal analysis based emotion recognition 

using deep learning algorithm with novel hybrid feature 

selection approach. 

 Adopting the Fractional Order Butterworth (FOB) filter 

eliminates the EEG artifacts  including ocular activity or 

eye movements, muscle activity, and cardiac activity. 

 The time-frequency features are extracted from the 

preprocessed EEG signal using the Sort Time Fourier 

Transform (STFT) approach. 

 Using the novel hybrid Improved Fish Swarm Algorithm- 

Particle Swarm Optimization (IFSA-PSO), the optimal 

features are retrieved for easy classification processing. 

 Finally, the proposed Attention-based CNN-LSTM 

classifier efficiently categorizes human emotions, 

including valence, arousal and dominance. 

2. Proposed System Description 
Among the main challenges in emotional computing, 

emotion recognition offers several application possibilities 

and significant research value. However, due to its constraints, 

emotion detection in the actual situation suffers from low 

accuracy of emotion recognition classification. In response to 

this issue, this work proposes a deep learning-based 

expression-EEG emotion identification approach that 

integrates (Attention based) CNN with LSTM. Figure 2 

illustrates human emotion identification using the Attention 

based CNN-LSTM classifier. The initial component of 

BCI signal acquisition is responsible for obtaining and 

recording the signals generated by brain activity. It also 

forwards these signals to the preprocessing part for 

improvement and artifact elimination. Various artifacts , such 

as power line disturbances, eye movement, and skeletal 

muscle contractions, constantly contaminate the raw EEG 

data.
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Fig. 2 EEG based emotion detection using attention-based CNN-LSTM 

To ensure accurate data analysis, unwanted artifacts  

are removed, but various noise reduction techniques 

significantly affect the EEG signal’s structure and unique 

latency, values and amplitude. Consequently, the FOB filter is 

applied in the present study to minimize noise starting from 

the EEG data processing stage. EEG signals are divided into 

gamma, alpha, theta and beta frequency bands employing the 

FOB filtering.  

The STFT approach feature extraction has been used to 

identify the signals’ highest discriminatory properties, 

including time-frequency. Following that, using the unique 

hybrid PSO-IFSA algorithm, the foremost desired features 

from the time-frequency domain are picked. Lastly, the 

Attention-based CNN-LSTM classifier detects emotions 

based on the emotion model. This attention-based CNN-

LSTM’s primary goal is to evaluate the data and identify 

relevant emotional patterns thoroughly. The following 

contains detailed descriptions of each part of the proposed 

system. 

2.1. EEG Signal Preprocessing Using Fractional Order 

Butterworth Filter 

The process of transforming the initial EEG signal into 

clean EEG data by eliminating unwanted noise and artifacts  

and putting it into a format appropriate for additional analysis 

is known as EEG data preprocessing. This work proposes a 

FOB filter to eliminate noises such as muscle, blinking and 

eye movement, interference with other devices, and power line 

interference.  

Figure 3 depicts the fundamental circuitry for the 

suggested Fractional Order Butterworth filter structure. A 

resistor, a fractional inductor & a capacitor with order ∝, 𝛽 

and a DVCC as the functional building piece make up the 

proposed circuit. The subsequent relationships outline the four 

terminating present mode active analogue components of the 

DVCC, explaining their terminal current and voltage 

characteristics. 

 [

𝐼𝑌+

𝐼𝑌−

𝑉𝑋

𝐼𝑍

] = [

0 0 0 0
0 0 0 0
1
0

−1
0

0
1

0
0

] [

𝑉𝑌+

𝑉𝑌−

𝐼𝑋
𝑉𝑍

]  (1) 

As a result, the following is the transfer equation of the 

filter: 

 𝑇(𝑠) =
𝑘3

𝑆∝+𝛽+𝑘1𝑠∝+𝑘2
  (2) 

Where 𝑘2 = 𝑘3 = 1/𝐿𝐶 and 𝑘1 = 𝑅/𝐿. The following is 

the formula that is characteristic of the system mentioned 

above: 

𝐷𝑇(𝑗𝜔,𝜎,𝛽) = 𝜔(∝+𝛽)𝑐𝑜𝑠
(∝+𝛽)𝜋

2
 + 𝑘1𝜔

∝ 𝑐𝑜𝑠
∝𝜋

2
 + 

𝑘2 + 𝑗 {𝜔(∝+𝛽)𝑠𝑖𝑛
(∝+𝛽)𝜋

2
+ 𝑘1𝜔

∝ 𝑠𝑖𝑛
∝𝜋

2
}  (3) 

The equivalent cutoff frequency and the power multiplied 

by the FOB filter reaction are provided by (4) and (5), 

respectively. 

|𝐷𝐵(𝑗𝜔,𝜎,𝛽)|
2 ≜ 𝐾2

2 + 𝜔2(∝+𝛽)  (4) 

𝑓𝑐 =
1

2𝜋
𝐾2

1
(∝+𝛽)⁄

  (5) 

If the squared value of the characteristic formula equals 

the multiplied value of the proposed filter given in (4), then 
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the system illustrated in (2) operates like a FOB filter. (6) 

gives the magnitude squared of the system stated in (3). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Layout of FOB filter 
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2 = 𝜔2(∝+𝛽) + 𝐾2

2 + 𝐾1
2𝜔2∝  + 2𝑘1𝜔

2∝+ 𝛽𝑐𝑜𝑠
𝛽𝜋

2
 

+2𝑘2𝜔
∝ {𝜔𝛽 𝑐𝑜𝑠

(∝+𝛽)𝜋

2
+ 𝑘1𝑐𝑜𝑠

∝𝜋

2
} (6) 

Consequently, (7) specifies the conditions under which 

the system characterized by (4) functions as a FOB filter. 

𝐾1
2𝜔2∝  + 2𝑘2𝜔

∝ {𝜔𝛽 𝑐𝑜𝑠
(∝+𝛽)𝜋

2
+ 𝑘1𝑐𝑜𝑠

∝𝜋

2
} + 

2𝑘1𝜔
2∝+ 𝛽𝑐𝑜𝑠

𝛽𝜋

2
= 0 (7) 

As a result, the circumstance of the Butterworth filter 

relies on both the fractional orders ∝ and 𝛽as well as on 𝑘1 

and 𝑘2 . This increases the amount of independence and 

adaptability in system layout. At cutoff frequency response, 

the situation given by (6) is streamlined as indicated by (8). 
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(
2∝
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  (8) 

The proposed filter must satisfy both the requirements 

and be sufficient to exhibit the Butterworth or maximal flat 

response. 

2.2. EEG Signal Feature Extraction Using Short Time 

Fourier Transform 

Analyzing the frequency characteristics of time series is 

frequently done using the Fourier Transform (FT). It cannot 

determine when every frequency component emerges; instead, 

it gives the frequency characteristics aggregated throughout 

the entire signal time duration. As a result, the frequency 

domain of two signals that differ significantly in the temporal 

domain may have the same spectrum. Assuming implies that 

FT appears to make the incorrect assumption that the time 

sequences are stationary when it encounters EEG signals. The 

time series ought to be divided into small sections for these 

non-stationary signal analyses, and the signal waves inside 

every segment are essentially conceived of as static signals 

utilized in FT. The idea, or STFT, involves a series of 

windowed signal Fourier transforms employed to examine 

variations in a non-stationary signal’s frequency spectrum. 

Gives time-localized frequency data in scenarios where the 

frequency elements of a signal change over time. 

The definition of the STFT computation is: 

 𝑋(𝜏, 𝑤) = ∫ 𝑥(𝑡)𝜔(𝑡 − 𝜏)𝑒−𝑗𝑤𝑡𝑑𝑡
∞

−∞
 (9) 

Where 𝜔(𝑡) denotes the window function, including the 

hanning window as illustrated in (10) and 𝑥(𝑡) denotes the 

initial signal. It is a linear arrangement of modulating 

rectangular windows and is commonly employed when low 

aliasing and decreased spectrum leakage are necessary. 

 𝑤(𝑛) =
1

2
(1 − 𝑐𝑜𝑠 (

2𝜋𝑛

𝑁−1
)) (10) 

Where the window length is indicated by 𝑛  and the 

sampling number is defined by 𝑁. In the case of discrete time 

series, the data could be separated into subsections. In 

matrices that store frequency and magnitude at every point in 

time, the complex result of the Fourier transformation of each 

segment is added. The following formula can be used to 

calculate STFT for discrete time series: 

 𝑋(𝑚,𝑤) = ∑ 𝑥[𝑛]𝜔[𝑛 − 𝑚]𝑒−𝑗𝑤𝑛∞
𝑛=−∞   (11) 

Where the window function is 𝜔[𝑛]and the time series is 

𝑥[𝑛]. 

2.3. EEG Signal Feature Selection Using Hybrid IAFS-PSO 

Approach 

A hybrid technique is deployed to maximize the feature 

set and enlarge the effectiveness of emotion categorization. 

This method combines Particle Swarm Optimization (PSO) 

and the Improved Artificial Fish Swarm Algorithm (IAFS-

PSO). By successfully navigating the solution space and 

choosing the most informative features, the combination of 

these algorithms ensures that the ensuing classification 

process is founded on a significantly discriminative and 

applicable set of features, explained in the fourth section. 

2.3.1. Particle Swarm Optimization (PSO) 

PSOs are classified as swarm-based metaheuristic 

optimization techniques. The technique employed in PSO to 

determine the global optimum is population-based exploring. 

Moving the particles across the exploration field yields the 

optimum population that best solves the challenge, inspired by 
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the birds’ actions. Particles are generated in a 

multidimensional exploration region, and each particle adjusts 

its location according to its own experiences and those of its 

adjacent particles. The optimal site that a particle and its 

neighbouring particles have attained also serves as its guide. 

The PSO’s strengths include its simplicity of use and lack of 

requirement for numerous variable adjustments. The steps that 

follow are utilized when establishing a change in the velocity 

item: 

If 𝑥 > 𝑝𝑏𝑒𝑠𝑡𝑥, 𝑣𝑥 − 𝑟𝑎𝑛𝑑𝑥𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑣𝑥 = 𝑣𝑥 +
𝑟𝑎𝑛𝑑𝑥𝑎. 

If 𝑦 > 𝑝𝑏𝑒𝑠𝑡𝑦, 𝑣𝑦 − 𝑟𝑎𝑛𝑑𝑥𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑣𝑦 = 𝑣𝑦 +

𝑟𝑎𝑛𝑑𝑥𝑎. 

The best position ever attained is denoted by 𝑝𝑏𝑒𝑠𝑡. A is 

the constant that adjusts velocity, and 𝑟𝑎𝑛𝑑  is a random 

number in the interval [0, 1]. The following criteria need to be 

followed when updating the velocity. 

If 𝑥 > 𝑔𝑏𝑒𝑠𝑡𝑥, 𝑣𝑥 − 𝑟𝑎𝑛𝑑𝑥𝑏, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑣𝑥 = 𝑣𝑥 +
𝑟𝑎𝑛𝑑𝑥𝑎. 

If 𝑦 > 𝑔𝑏𝑒𝑠𝑡𝑦, 𝑣𝑦 − 𝑟𝑎𝑛𝑑𝑥𝑏, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑣𝑦 = 𝑣𝑦 +

𝑟𝑎𝑛𝑑𝑥𝑎. 

Where 𝑔𝑏𝑒𝑠𝑡  is the current best location of the entire 

swarm. The velocity-adjusting constant is denoted by 𝑏 .On 

the other hand, slow convergence and local optima trapping 

are PSO’s two critical problems that adversely affect its 

performance.  

Moreover, this method drastically underperforms on 

high-dimensional issues. In this work, IFSOA is combined 

with PSO to solve the drawbacks of both algorithms, including 

low optimization accuracy and the incapacity to consider both 

local and global information. 

2.3.2. Improved Fish Swarm Optimization Algorithm 

The global search capabilities of the Artificial Fish 

Swarm algorithm are limited by its later stages’ delayed 

convergence, resulting in many fake fish doing pointless 

searches and wasting time. Considering this, a better algorithm 

is proposed based on swallowing behaviour. The population’s 

range describes the level of dispersal of the fisher swarm. A 

representation of diversity is going to be 𝛼 = [𝛼1, 𝛼2 … . 𝛼𝑛). 

In the area where𝛼𝑖 is fake fish exhibit adaptive variety. 

𝛼𝑖 =
𝑚𝑖𝑛(𝑓, 𝑓𝑎𝑣𝑔)

𝑚𝑎𝑥(𝑓, 𝑓𝑎𝑣𝑔)
⁄ , 

𝛼𝑖 ∈ (0.1), 𝑖 = 1,2, … . , 𝑛  (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Flowchart of IFSA-PSO 
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Breeding Behaviour 

The quantity of fish can be decreased by swallowed 

behaviour, which can significantly shorten the time. However, 

swallowed behaviour might consume quality fish, making it 

impossible to identify globally optimal. Thus, an enhanced 

algorithm that considers ingesting behaviour is put forward.  

If(αi < Threshold 2) if(αi > Threshold 1)  perform 

breeding behaviour; here, the Threshold 1  represents the 

diversity threshold. Locate the fake fish max. Xmax The most 

significant goal function value by traversing the created 

artificial fish. if Yi < Ymax , then advance one step to the 

largest fish of subclass max X; if not, advance one step to the 

centre of subclass  Xc . The hybrid IFSA-PSO algorithm 

flowchart is represented in the Figure 4. The following section 

provides a detailed description of the proposed Attention-

based CNN-LSTM classifier for efficient human emotion 

detection. 

2.4. EEG Signal  Classification Using Hybrid Attention 

Based CNN-LSTM Method 

The proposed classifier comprises the prolonged attention 

processes, the CNN & LSTM, and the channel-wise attention 

approach. Figure 5 depicts the architecture of the suggested 

attention-based CNN-LSTM. The spatial extraction of the 

features module is displayed on the opposite side of the 

illustration. Subsequently, the attention method is channel-by-

channel into EEG signals to investigate the relative relevance 

of the various channels of wideband EEG signals (Figure 5). 

Various EEG in multichannel systems frequently include 

redundant information during the actual EEG signal collecting 

process. Specific techniques leverage choosing the channel to 

pick appropriate channels to increase emotion recognition 

accuracy.  

Despite conventional methods that require artificially 

selecting significant channels, the intended dynamic channel-

wise system can assess each channel’s value by considering 

its information. The EEG samples following processing are 

represented by S = {S1, S2, … … , Sn}  in the proposed 

framework, and the i − th EEG sample is represented by Si =
{S1, S2, … … , Sm} ( i = 1,2, … ,m ) where Sj(j = 1,2, … ,m) 

indicates the j − th  channel of EEG signal m  and Si  is the 

overall amount of every sample. To acquire channel-wise 

characteristics for this framework, initially, the mean pooling 

is applied for every channel of the EEG sample, as shown 

below: 

s−=[s1
−, s2

−, …… . . , sm
− ] (13) 

Where the average of the j − th channel is represented by 

sj
−(j =  1, 2, . . . , m). The channel-based attention system uses 

Fully Connected (FC) layers centred on non-linearity to 

minimize complexity while boosting generalization. These 

layers are a dimension reduction variable. W1 regards b1 with 

elimination proportion  r , tanh  is activation function and 

dimension enhancing layer variable W2 and bias regards b2. 

As a result, the channel-based attention-regulating process is 

stated as follows: 

v = softmax(W2. (tanh(W1. s
− + b1) + b2))   (14) 

When the distribution likelihood v =  [v1, v2, . . . , vm], 
which reflects the significance of various channels, is 

transformed into the importance of channels via the softmax 

function. In the end, we use likelihood as the weight to recode 

every channel’s data from the EEG sample  Si =
 [s1, s2, . . . , sm]. Consequently, the following can be used to 

indicate the j − th(j =  1, 2, . . . , m) attentive channel feature 

that has been retrieved using channel-wise Attention: 

cj = vj. sj       (15) 

As a result, C = {C1, C2, … … , Cn} indicates the acquired 

channel-wise responsive features. By channels-wise 

multiplying every component of v = {v1, v2, … … , vm}  and 

every channel of Si = {S1, S2, …… , Sm}One can derive the i −
th retrieved feature,Ci = [C1, C2, … … , Cm].The spatial data of 

the EEG signals is subsequently extensively extracted using 

CNN, whereby the amount of convolution kernels is k, and the 

amount of electrodes is identical for the kernel height. In this 

case, the kernel width is similarly intended to investigate the 

EEG signals’ temporal data. Furthermore, the activation 

function in the convolution processes is the Exponential 

Linear Unit (ELU) function rather than the Rectified Linear 

Unit (ReLU) function, which is more commonly used. 

Therefore, following convolution and activation procedures, 

the i − th  channel responsive feature Ci  can be used to 

produce the feature with the value Ci′  (i =  1, 2, … . , n). After 

that, to minimize the number of variables and retrieve more 

features,  a pooling layer is implemented.  

The temporal feature extraction unit (Figure 3), which 

consists of an enhanced self-attention process and a two-layer 

LSTM, is displayed on the opposite side of the configuration 

diagram. Since the pattern is built on a recurrent construction, 

the LSTM network can learn its surroundings. Since the 

LSTM network can obtain features from EEG data according 

to temporal dependence, it has been effectively employed for 

EEG emotion identification. The output at every interval can 

be seen as the temporal data retrieved from every sample. 

The number of LSTM layers was selected to two because the 

LSTM network uses two successive layers to recall and 

transmit all detected temporal and spatial domains. The hidden 

state variables of the subsequent layer, { hi
′|hi

′ =
LSTM(Qi), i = 1…n} , are thus the i − th  resultant of the 

LSTM network.  By calculating similarities across every 

sample from various locations may more accurately represent 

the precise meaning. The resultant zi
′ ought to be thought of as 

a rating vector from i − th sample hi
′.
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Fig. 5 Attention-based hybrid CNN-LSTM 

Furthermore, the prolonged self-attention process adds 

extra bias terms to each side of the activation function. As a 

result, 𝑖 − 𝑡ℎ feature vector, 𝑧𝑖
′ is represented as follows: 

𝑧𝑖
′ = 𝑓(ℎ𝑖

′, 𝑞𝑖) = 𝑊𝑇𝜎(𝑊1ℎ𝑖
1 + 𝑊2𝑞𝑖 + 𝑏1) + 𝑏′    (16) 

Where 𝑞𝑖  is the oriented structure vector produced using 

the feature vector ℎ𝑖
1  via linear alteration, whereby the 

dimension is identical to the vector of features, and 𝑓(ℎ𝑖
′, 𝑞𝑖) 

reflects the inherent similarities of the 𝑖 − 𝑡ℎ encoded EEG 

sample. In this case,𝜎, the weighted and bias components of 

the function are denoted by 𝑊and 𝑏; accordingly, activation 

function 𝜎(. )  is an ELU, the weight parameters are  𝑊1 , 

𝑊1and bias terms are 𝑏1. The probabilities of each sample are 

then indicated by 𝑝 = {𝑝1, 𝑝2, … 𝑝𝑛}, and the likelihood of 𝑖 −
𝑡ℎ sample is given by the following expression: 

𝑝𝑖 =
𝑒𝑥𝑝 (𝑧 ,

𝑖
1.ℎ𝑖

1)

∑ 𝑒𝑥𝑝 (𝑧 ,
𝑖
1.ℎ𝑖

1)𝑛
𝑖=1

  (17) 

Finally, the enhanced self-attention mechanism’s 

retrieved characteristics are represented by the symbol 𝐴 =

{𝐴1, 𝐴2 … , 𝐴𝑛}. The following formula is used to determine 

the 𝑖 − 𝑡ℎ attentive feature that the mechanism retrieved: 

𝐴𝑖 = 𝑝𝑖 . ℎ𝑖
1 (18) 

The softmax layer classifier is employed in the final 

section of the attention-based CNN-LSTM. 𝐴 =
{𝐴1, 𝐴2 … , 𝐴𝑛} are the retrieved spatiotemporal attention 

features. The softmax function uses the takeout characteristics 

as input to identify emotional states in the following ways: 

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐴 + 𝑏) (19) 

Where the estimated likelihood of 𝑖 − 𝑡ℎ EEG sample is 

represented by P = {P1, P2,,…Pn}, Pi (i=1, 2,…n), b and w are 

bias and weight elements of the softmax function, 

correspondingly. Subsequently, the entropy error is assessed 

for every labelled sample: 

𝐿 = −∑  𝑌̂𝑖 𝑙𝑜𝑔(𝑝𝑖)
𝑛
𝑖=1 , (20) 
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Therefore, a channel-wise attention system has been 

developed to continually allocate the weights of various 

channels to obtain the inherent data between channels. The 

spatial data of encrypted EEG data is subsequently retrieved 

using CNN. Furthermore, the deployed LSTM is used to 

investigate distinct EEG data’s sequential characteristics. 

Furthermore, a more robust attention system was integrated to 

allocate weight to EEG data according to their relative 

significance. Lastly, spatiotemporal attention characteristics 

for EEG emotion recognition are classified efficiently. 

3. Results and Discussion 
The current study recognizes and classifies various 

human emotional states by analyzing EEG signals and the DL 

approach. The first step in removing the artifacts  from the 

EGG signals is to apply the FOB filter technique. With the use 

of hybrid IFSA-PSO and STFT, the best features are retrieved 

and selected appropriately. Consequently, accurate emotion 

classification is achieved with the use of attention-based 

CNN-LSTM. The proposed approach has been put into 

practice on the Python platform to test its functionality, and 

the findings are described in the section below. It is a 

brainwave dataset based on EEG, which collects the 32-

channel EEG, skin temperature, respiration, galvanic skin 

response, blood volume pulse, and electromyography from 

27 student participants. From 1600 video clips, including 

cinema, TV programs, and TV news, 28 random video clips 

containing three categories of continuous emotion (arousal, 

valorance, and dominance) were chosen randomly. The 

experiment is split into two sessions, separated by a minimum 

of 24 hours. Each participant watched 14 video segments in 

each session, resulting in 14 trials. According to Table 1, the 

proposed work correctly predicts a variety of emotions, such 

as arousal (intensity of emotion), valence (pleasantness), and 

dominance (degree of control). Figure 6 shows the waveform 

of the input EEG signal, and similarly to what is seen in Figure 

7, positive values in the EEG signal create descending waves, 

and negative values cause upward spirals.  

Table 1. Standardized emotional EEG datasets 

Data Set Participants Stimulus 
Obtained Data 

Modalities 
Method Accuracy 

Qualification of 

Emotion 

DREAMER 

[24] 

25 (11 female, 

14 male) 

18 video 

clips 

14- Channel EEG, 

Electrocardiogram are 

peripheral physiological 

signals. 

SVM 71.12% 

Continuous type 

(Arousal, 

Valance, 

Dominance 

SEED [25] 
15( 8 female, 

7 male) 

72 video 

clips 

Data from an EEG with 

62 channels and eye 

tracking 

DNN 72.39% 

Discrete type 

(happy, fear, 

sorrow and 

neutral) 

MPED [26] 
23 (13 female, 

10 male) 

28 video 

clips 

Peripheral physiological 

signals 

(Electrocardiogram, 

breathing, Galvanic Skin 

Response) and 62-

channel EEG 

SVM,KNN 80.45% 

Discrete type 

(anger, joy, fear, 

funny, sad, 

disgust and 

neutral) 

EEG based 

on the 

brainwave  

data set 

27 (12 male, 

15 female) 

29 video 

clips 

Peripheral physiological 

data (blood volume 

pulse, galvanic skin 

response, respiration, 

skin temperature, 

electromyography), 32-

channel EEG. 

Attention-

based CNN-

LSTM 

96.8% 

Continuous type 

(Arousal, 

Valance, 

Dominance) 

Artifacts  are signals recorded by EEG that are not 

generated by the brain. Certain artifacts  might mimic natural 

epileptiform aberrations or seizures. The FOB filter is then 

used to extract the movement artifact, which may be removed 

from the ECG signal by removing the obtained one, as shown 

in Figures 8 and 9, respectively. To begin, spectrogram data is 

obtained from EEG signals of depressive and physically fit 

people utilizing Short-Time Fourier Transform (STFT) to 

identify significant time-frequency features as seen in Figure 

10. This alteration records fluctuation in spectral content, 

offering a whole perspective of the emotional state throughout 

time. The spectrogram data acquired from STFT is 

subsequently employed as input to the classification model. 
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Fig. 6 Input EEG signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Input EEG signal’s positive, negative and neutral waveform 
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Fig. 8 Filtered EEG signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Artifact removing processing FOB filter 
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Fig. 10 Feature extraction using the STFT approach

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11 Training and validation results of attention-based CNN-LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 Confusion matrix 

0.0                    0.2                       0.4                   0.6                   0 8                    1.0                     1.2 
Frequency (Hz) 

E
E

G
 

140 

120 

100 

80 

60 

40 

20 

0 

M
ag

n
it

u
d

e 

140 

120 

100 

80 

60 

40 

20 

0              10              20             30              40             50 
Epochs 

L
o

ss
 

4 

3 

2 

1 

0 

Train Loss 
Validation Loss 

0              10              20             30              40             50 
Epochs 

A
cc

u
ra

cy
 

0.8 

0.6 

0.4 

0.2 

0.0 

Train Accuracy 
Validation Accuracy 

1.0 

Negative Positive Neutral Predicted 

P
o

si
ti

v
e
 

N
eg

at
iv

e 
T

ru
e 

N
eu

tr
al

  

      276                                                1                                         6 

           0                                           288                                           3 

        20                                               2                                       257 



T. Manoj Prasath & R. Vasuki / IJEEE, 10(11), 128-141, 2023 

139 

Figure 11 indicates the results of training and validation 

of Attention based CNN-LSTM; from that, the proposed 

classifier obtains the highest accuracy value of 96.8 % with 

decreased loss. The confusion matrix related to the tests 

employing the brain wave dataset is displayed in Figure 12, 

based on the outcomes of recognizing every state of mind.  

In the confusion matrix, each row represents the target 

class, while each column represents the predicted class. 

According to outcomes, neutral emotion can be recognized 

with excellent precision overall; however, negative emotion is 

more challenging to identify and often confused with good 

feeling. 

Table 2. Outcome of the proposed FOB filter 

Order 
Max. Pass-Band Error of  

Fractional Order Filter 

𝜶 𝜷 In ref [27] FOB 

1.1 0.6 9 dB 7 dB 

0.9 0.9 12 dB 10 dB 

0.6 0.6 1.25 dB 1 dB 

0.5 1 5 dB 4 dB 

Furthermore, the FOB filter’s effectiveness contrasts with 

the conventional filter concerning the maximum gain error. 

Table 2 illustrates the outcome of this ratio. It is discovered 

that the highest pass band magnitude error for the FOB filter 

is lower in every instance than for the previous one, so the 

proposed FOB filter is better than the current design. 

Table 3. Accuracy comparison 

Classifier Accuracy 

KNN [28] 86.75 % 

DBN [29] 87.62 % 

MLP [30] 78.11% 

Proposed Attention Based 

CNN-LSTM 
96.8 % 

 

 

 

 

 

 
Fig. 13 Accuracy comparison 

Table 3 compares proposed Attention based CNN-

LSTM to different classifiers, such as KNN [28], DBN [29] 

and MLP [30], and Figure 13 depicts the related graph. 

According to the data, the proposed classification model has a 

fantastic accuracy of 96.8% for forecasting human emotions. 

Similarly, according to Table 4, the attention-based CNN-

LSTM surpasses previous algorithms regarding specificity, 

FI, precision, sensitivity, and accuracy.

Table 4. Classification outputs of EEG signal validation and training (valence and arousal) 

Classifier 
Valance Arousal 

F1 Precision Recall F1 Precision Recall 

Proposed 95.56 95.8 95.8 95.47 95.87 95.99 

KNN [3] 93.32 93.09 93.18 93.35 93.60 93.95 

DT [3] 92.06 92.65 91.23 91.28 91.22 91.56 

NB [3] 91.72 91.93 92.51 92.80 92.32 92.62 

4. Conclusion 
This work proposes an innovative strategy that employs 

advanced signal processing and deep learning approaches to 

enlarge the accuracy and efficacy of emotion classification.  

Initially, EEG signals are preprocessed with a FOB filter, 

which is sufficiently adaptable to regulate the balance between 

conserving significant emotional information and minimizing 

undesired interference. The STFT is used to derive time-

frequency representations from EEG signals that have been 

preprocessed. A hybrid IAFS-PSO strategy is employed to 

optimize the feature set and boost the efficiency of emotion 

categorization. Hybrid Attention-based CNN-LSTM networks 

are used to recognize emotions. The CNN component 

identifies spatial characteristics in EEG data, whereas the 

LSTM component is skilled at modelling temporal 

dependencies.  

The Python software is used to create an evaluation 

framework that analyzes the proposed model’s specificity, 

sensitivity, and accuracy. Based on the findings, the proposed 

strategy is adequate to predict human emotions, and the 

proposed attention-based CNN-LSTM strategy has a higher 

accuracy of 96.8%.
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