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Abstract - Volumetric reconstruction is a research niche that has attracted attention due to the large number of applications. 

There are several techniques to extract a point cloud from a scene, but stereo vision is the most recognized technique. 

Volumetric reconstruction is a research niche that has attracted attention during the last decade due to its many applications. 

There are several techniques to extract a point cloud from a scene, but the most recognized technique is stereo vision. Stereo 

vision uses two images of a set to calculate the distance of the objects from the cameras; however, in most reviewed works, 

this occurs in clean environments and with controlled lighting. This paper presents an algorithm capable of estimating a point 

cloud of some object in cloudy environments with suspended particles to subsequently approximate the center of mass of the 

entity for mining comminution applications. 
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1. Introduction  
Tasks such as object detection and classification and 

detection of shapes, colours and sizes are activities humans 

do using their eyes. Since the creation of cameras, it has been 

proposed that machines and computers can perform the same 

actions. During the last decade, it has been suggested that 

devices and computers can achieve 3D reconstructions of 

scenes and objects to achieve accurate grasping of things and 
autonomous driving interpretation of clinical photographs, 

but unfortunately, acquiring a scene’s depth is not a simple 

task [1]. To extract the 3D structure of a set or object, there 

are various techniques and sensors, such as Time-of-Flight 

(ToF) sensors, laser triangulation, structured light, and 

stereoscopic vision [2, 3].  

Although 3D sensing devices are increasing in 

popularity among the community and reducing in price, 3D 
sensing technologies still have certain limitations (mentioned 

in [3]); therefore, users must choose the sensor type to meet 

their objectives. Although ToF sensors are inexpensive and 

quick to respond [4], they can be prone to errors such as 

noise, ambiguity and unsystematic errors such as scattering 

and motion blur [3, 5]. In addition, ToF devices are 

susceptible to environmental conditions such as lighting and 

temperature, and the accuracy of the sensors decreases as the 

measurement distance increases [4, 5]. On the other hand, 

laser triangulation sensors have high precision and lower 
environmental sensitivity; however, they are expensive 

compared to other sensors, experts must handle them to 

operate, and users must remain still during the capture 

process [3]. In turn, structured light sensors were not 

designed to be of high quality, so they tend to have high 

noise levels that affect their accuracy [3].  

Finally, Stereoscopic Vision (SV), which is undoubtedly 

one of the pioneering and most popular techniques for 

capturing 3D images [6], bases its operation on matching the 

characteristics of two images of an object and then 

combining both ideas by triangulating the distance between 
the cameras and the distance from the scanned object to form 

the 3D image [6].  

SV systems present the advantage that they do not 

require additional equipment to capture depth information, it 

is a mature, robust and reliable technology, however, it 

presents limitations such as occlusions, ambiguities and 

image illumination. Many challenges of SV were addressed 

and solved by researchers, these are discussed in [7-9]. With 

the above described, it is evident that 3D reconstruction is a 

problem not yet solved and that the technique and sensor to 
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be applied depend very much on the environmental 

conditions.  The algorithms developed up to the present year 

(described in the following section) achieve the 3D 

reconstruction of objects, but in relatively clean and 

straightforward scenarios; on the other hand, our work 

pretends to solve the problem of volumetric reconstruction in 
hostile environments, where there are conditions of extreme 

luminosity and particles in suspension in the background 

using low-cost elements. 

The work is oriented for mining comminution 

applications, where a hostile environment is present, with 

strong wind gusts and significant differences in temperature 

and illumination between day and night. For this reason, the 

use of ToF sensors is suppressed because they are sensitive 

to lighting and temperature, the use of laser triangulation 

sensors is discarded due to their high cost and the use of 

structured light sensors is avoided due to their low accuracy.  

Therefore, for the development of this work, stereo 
vision will be used due to its excellent support and diverse 

solutions offered; in addition, thinking of giving continuity to 

the process and avoiding the effects of sun illumination, an 

SV system using Infrared (IR) cameras will be used.  

On the other hand, considering reducing the energy 

consumed during the fractionation of the rocks, the center of 

mass is estimated from the 3D reconstruction so that a rock 

hammer can perform an accurate blow to split the stones 

later. Therefore, the contribution of this paper highlights the 

3D reconstruction using an SV system employing  IR 

cameras in environments with suspended particles and, 
subsequently, the estimation of the center of mass of the 

reconstructed solid. 

The rest of the paper is organized as follows: Section 2 

presents the state of the art related to volumetric 

reconstruction, Section 3 presents the proposed algorithm, 

Section 4 presents the results, and Section 5 presents the 

conclusions of the work.  

2. Related Works 
The most recent works on volumetric reconstruction 

point to the use of Artificial Intelligence (AI) on monocular 

images; unfortunately, this is an ill-posed problem since 

there is no unique solution due to the information lost from 

the 3D to 2D projection and due to the occlusion problem 

[10]; however, researchers developed techniques to work 

directly with 3D data and achieve tasks such as pose 

estimation, completion, classification, recovery, 

reconstruction and generation of 3D shapes. AI techniques 

represent 3D information as voxels, point clouds, octrees or 
3D meshes, as shown in Figure 1; for more information 

about 3D information representation, the reader is referred to 

[10-13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Representation of 3D information [10] 

One of the pioneering works in single-view 3D 

reconstruction is 3D-R2N2 [14], a 3D-Reconstruction 

Recurrent Neural Network capable of obtaining an output 

voxel from a single view and refining the rebuilding from the 

input of more pictures of the object in question for this, they 

make use of neural network type Long Short Term Memory 
(LSTM).  

The architecture of the network is composed of three 

modules, an encoder, which extracts the features of the input 

image; a 3D-LSTM module in charge of retaining and 

updating the features when a new image is entered; and a 

decoder, which transforms the 3D-LSTM states into a voxel 

occupancy map.  

A work that presents as output an octree can be seen in 

[15]; this method offers octrees with low noise and can 

reconstruct occluded regions and fill gaps in the 

reconstruction; for this, Riegler et al. [15] propose a step 

from coarse to fine using pyramid where the resolution is 

increased at each stage. Each pyramid level consists of an 

encoder-decoder module that expands the receptive field and 

captures contextual information, which is then passed to a 
structure manipulation module that increases the resolution 

and updates the network structure for further processing.  

The work proposed by Johnston et al. [16] abandons the 

encoder-decoder architecture, replacing the decoder with the 

Inverse Discrete Cosine Transform (IDCT), which gives the 

algorithm higher speed and lower consumption of 

computational resources. An improved version of 3D-R2N2 

can be found in the work of  Xie et al. [17]; the authors 
propose a network for a single-view and multiview 3D 

reconstruction, which contains four modules, encoder, 

decoder, context-sensitive fusion and refiner. The encoder 

and decoder perform the same functions as 3D-R2N2. Still, 

the various reconstructions enter the context-sensitive fusion 

module, which scores the previously obtained voxels, merges 
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the volumes into one, and then enters the refiner, correcting 

incorrectly recovered parts in the 3D volume. 

A different approach is seen in [18], who use Generative 

Adversarial Networks (GAN) to predict a volume from a 

single view using voxels. The reconstruction is improved by 

applying 2D projection masks, which are then compared with 
authentic masks input to the network. The proposed network 

has constraints on object background and scene illumination.  

In [19], they propose a hybrid approach using voxel 

combinatorics and point clouds. The proposed method 

consists of using volumetric voxel learning and adopting 

sparse point cloud learning to improve the accuracy of the 

model because obtaining point clouds is computationally 

expensive but presents high-resolution outputs; on the 

contrary, generating voxels gives lower computational 

consumption but lower output resolution, a hybrid approach 

improves the solution and the consumption of computational 

resources.   

Bin Li et al. [20] developed 3D-ReConstNet, a network 

capable of generating a point cloud from a single view and 

multiple views when the input image is ambiguous. The 

designed network presents three modules, a feature 

extraction module, where the ResNet-50 network is used to 

extract features, a probabilistic vector sampling module, 

where the standard deviation and the average of the data are 

approximated to obtain a Gaussian function; and finally, a 

point cloud generation module.  

The purpose of this document is not to provide an in-

depth analysis of all the algorithms developed for volumetric 
reconstruction. If the reader wishes to learn more, they can 

refer to [10, 21, 22]. However, Artificial Neural Networks 

(ANN) for 3D reconstruction are still in an early phase, and 

there are no ANN-based approaches for reconstructing 

unknown or unseen 3D objects and scenes [23]. 

Additionally, neural networks do not accurately provide the 

3D coordinates of the point in question. These are the 

reasons why an SV system is used for 3D reconstruction.  

On the other hand, SV systems are much more reliable 

and have diverse applications in many types of industries; it 

can be mentioned control of underwater vehicles [24], 

obstacle detection [25, 26], medical applications [27], 
autonomous navigation, etc. In mining, SV systems are used 

mainly for route planning [28] and rescue robots  [29].  

On the other hand, the centre of mass approximations is 

only used to solve problems in robot controllers as proposed 

by [30-33]; in the current work, the task is a bit simpler, 

since only want to estimate the centre of mass of a cohesive 

solid to impact on that point subsequently, therefore, if have 

available the point cloud of the object in question it would 

only be enough to apply the equations available in classical 

mechanics books shown in Equation (1) [34]. 

𝑥 =
∑ 𝑚𝑖𝑖 𝑥𝑖

∑ 𝑚𝑖𝑖
, 𝑦 =

∑ 𝑚𝑖𝑖 𝑦𝑖

∑ 𝑚𝑖𝑖
, 𝑧 =

∑ 𝑚𝑖𝑖 𝑧𝑖

∑ 𝑚𝑖𝑖
  (1) 

Where (𝑥, 𝑦, 𝑧) is the position of the center of mass, 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the position of each point of the point cloud, and 

𝑚𝑖 us the mass of each point. It is essential to mention that 

for this work, is considered to work with homogeneous 

density solids. It can be seen in the literature reviewed that 
there are no applications of volumetric reconstruction of 

solids using IR cameras and neither the approximation of the 

center of mass of 3D volumes for mining processes. 

3. Proposed Work 
The proposed work consists of achieving 3D 

reconstruction utilizing an SV system with IR cameras in 

environments with suspended particles and then estimating 
the center of mass of the solid so that a rock hammer can 

accurately impact it. 

The technique employed consists of acquiring the 

images clouded by the suspended particles, applying the Fast 

Dark Channel Prior algorithm (described in [35]), various 

filters and the Semi-Global Block Matching (SGBM) 

algorithm to obtain the disparity map. The disparity map will 

be segmented to extract the rock to be reconstructed. The 

segmented region calculates its centroid, which will be 

projected as the centre of mass of the solid under study. The 

complete algorithm with all its steps can be visualized in 
Figure 2. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 2 Proposed algorithm 
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Along with the proposed algorithm, a test environment 

has been developed to implement the algorithm, consisting of 

a closed system of 120x50x30 centimetres (cm), with two IR 

cameras on top with a resolution of 360x640 pixels (px). On 

the side is a pipe where the particulate material is deposited, 

impulsed by an air current produced by the blower. When the 
air current meets the particulate material, it creates a dust 

cloud that reduces the visibility of the cameras. A graphic 

representation of the system under study is shown in Figure 

3. Figure 4(a) and 4(b) show the images captured by the 

cameras with and without particles in suspension. 

 

 

 

 

 

 

 
 

 

 
 
 
 

Fig. 3 Proposed experiment 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Images captured by the left camera, (a) Image without particles 

in suspension, and (b) Images with particles in suspension. 

It is essential to mention that the images clouded by dust 

are captured ten seconds after the dust cloud has been lifted; 

otherwise, the photos are too blurry to be processed. It 

should also be noted that the material used to lift the cloud of 

dust corresponds to 5 grams of talc. This is because talc has 

textural qualities and appearance very similar to dust. The 
results of the proposed algorithm and an analysis of it will be 

reviewed in the next section.  

4. Results and Discussion 
Once the dust cloud is lifted, we must wait for the 

necessary time and capture the images entering the algorithm 

shown in Figure 2. It is essential to mention that a 

fundamental step in the algorithm is obtaining the disparity 
map, which is obtained after running the SGBM algorithm 

and the WLS filter. Figure 5 shows the result when entering 

Figure 4(b) into the proposed algorithm.   

 
Fig. 5 Disparity map 

Then, the disparity map of Figure 5 is segmented using 

the Lazy Snapping algorithm (described in [36]), which, with 

the help of the user, allows the rescue of the object of 

interest. Subsequently, the centroid of the segmented object 
is calculated; this point will be projected as the center of 

mass of the reconstructed point cloud. Figure 6 shows the 

segmented thing with its centroid. 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 6 Centroid of the segmented object 
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The triangulation technique is applied to the segmented 

object to obtain the volumetric reconstruction of the thing 

under study. Knowing the position of the centroid, it is 

possible to rescue the disparity value of that position and 

project it in the point cloud as the centre of mass. Figure 7 

shows the point cloud and the centre of mass estimation as a 
red point. Then, both measurements can be compared, and 

the absolute and percentage errors of the algorithm 

measurements can be calculated. Table 1 summarizes this 

information. 

It can be observed that the most significant error in the 

measurement is found in the height of the rock, presenting a 

10.6% error in this measurement; this is because the dust 

cloud and the applied filters erase the characteristics and 

textures of the surface of the object, this difficult the process 

of stereo correspondence and finally the process of 

triangulation, with which the dimensions of the rock are 

extracted. On the other hand, the minimum errors are found 

in the length and width dimensions; this is because the filters 

applied highlight the objects’ edges, not the interior’s 

texture, thus facilitating the matching process. Although the 

rock presents a more significant estimation error in height, 

the average of the dimensions does not exceed 6% error, 

which would be acceptable for a mining comminution 
process. It can also be seen that the point cloud only shows 

the object’s surface and not the details underneath, which is 

why the floor of the thing is displayed in blue. This is due to 

an innate problem of SV systems known as occlusion, which 

limits the 3D reconstruction of the object only to the part 

visible in the photos. 

Tests with different morphologies and sizes affirm that 

the most significant error is in the height of the rocks. The 

above description proves that stereo-matching is the most 

critical when obtaining a volumetric reconstruction. This 

process requires that the images have enough texture to 

generate a correct disparity map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Point cloud and center of mass estimation, (a) Top view, and (b) Isometric view. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 8 Real dimensions of the rock, (a) Height, (b) Width, and (c) Length. 
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Table 1. Comparison of the dimensions of the object in the study 

Parameters 
Real Rock Size 

(mm) 

Approximate 

Rock Size (mm) 

Absolute Error 

(mm) 
Error (%) 

Height 80 71.52 8.48 10.6 

Large 200 198.23 1.77 0.88 

Width 150 141.42 8.58 5.72 

Mean 6.27 5.73 

 

5. Conclusion 
It can be seen that it is possible to achieve volumetric 

reconstruction in environments clouded by suspended 

particles and to estimate the center of mass with reasonable 

accuracy. As mentioned above, the most significant 

difference between the reconstructed point cloud and the real 

object under study will always be the shape of the surface 

and the height because the dust cloud and the applied filters 

remove the surface features, which makes it complex to 

obtain the disparity maps, which is why the application of the 

WLS filter becomes necessary. The length and width 
dimensions will always present a minor error because the 

WLS filter corrects the disparity map with one of the 

incoming images, producing edge enhancement but texture 

loss within the object. For this particular case, the centre of 

mass should be inside the object.  

Still, in the context that a rock hammer will then impact 

the thing, the centre of mass coordinate cannot be inside the 
object under study, so it is entirely feasible to estimate this as 

a point on the surface of the object under investigation. 
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