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Abstract - The recent evolution of cloud computing has enabled the cloudification of Telecommunication (Telecom) network 

functions. The cloud-based Telecom infrastructure is more scalable, flexible, and cost-efficient for service providers. However, 

a significant security challenge for Telecom cloud providers is ensuring the availability of services provided to users by 

mitigating Distributed Denial of Service (DDoS) attacks. The fact that Virtual Network Functions (VNF) in the Telecom cloud 

are hosted on the Internet makes them easy targets for large-scale DDoS attacks. This study proposes the use of secured 

supervised Federated Learning (FL) with an efficient Hybrid Recurrent Neural Network (H-RNN) for DDOS attack mitigation 

in the Telecom cloud. The proposed H-RNN model combines LSTM, a Bidirectional GRU (BiGRU), and a Bidirectional LSTM 

(BiLSTM) to obtain a state-of-the-art LSTM+BiGRU+BiLSTM model. FL is used with Secure Sockets Layer (SSL) encryption, 

which supports data privacy and integrity in heterogeneous Telecom cloud networks. The simulation results using the 
CICDDOS2019 benchmark dataset displayed a detection accuracy of 99.59%, a False Positive Rate (FPR) of 0.042%, and an 

average detection time of 0.062 ms. A novel H-RNN model and secured FL are proposed to enable deep-learning-based anti-

DDoS technology building and deployment in cloud-based Telecom networks.  

Keywords - DDoS attack mitigation, Deep Learning, Federated Learning, SSL, Telecom cloud. 

1. Introduction  
Telecom cloud is the next generation of 

telecommunication (Telecom) networks that combine 
Software-Defined Network (SDN), Network Function 

Virtualization (NFV), and cloud native technologies [1, 2] to 

enable Telecommunication Service Providers (TSPs) to offer 

customized services to users with flexibility [3], speed, and 

cost-effectiveness. The main challenge for TSPs is always to 

meet Service-Level Agreements (SLA) with customers [4]. 

SLA is a formal contract between a TSP and a customer that 

defines the services that will be provided, the quality of the 

services, and the remedies provided if telecommunication 

service providers fail to meet the SLA contract [5].  

Cloud-based telecommunication network services have 

many advantages; however, Distributed Denial of Service 

(DDoS) attacks are part of the most evolving and impacting 

cyber-attacks that can compromise SLA because of their 

capability to compromise the availability of  TSPs for end 

users [6]. Telecommunication Virtual Network Functions 

(VNFs) are easy targets for cyber criminals because of their 

hosting on the Internet. Deep Learning (DL)--based anti-

DDoS systems have surpassed traditional systems in the 

literature owing to their capability to detect both known and 

unknown types of DDoS attacks [7]. The use of deep 

learning models requires a significant amount of data during 

training, and cloud-based Telecom network functions can be 

hosted by cloud providers in various geographical regions.  

To train a deep learning model, raw data must be sent to 

a centralized server if a centralized learning method is 

adopted. This can cause data privacy violation risks or 

tempering during data transport.  There is a deficiency in 

developing a high-performance system that combats DDoS 

attacks while ensuring data integrity and safeguarding 

privacy.  

This study addresses this gap by proposing secured 

federated learning with a high-performing Hydride deep 

Recurrent Neural Network (H-RNN) for DDoS attack 

http://www.internationaljournalssrg.org/
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detection in the Telecom cloud. The use of federated learning 

addresses data privacy concerns by enabling the training of a 

DL model from different sources in the cloud without 

sharing raw data. The sources (clients) that participate in the 

training can use their local data to train the model locally and 

only share the locally trained model parameters with a 
centralized server, which aggregates all the local models to 

build an enhanced global model that will be used in 

production. However, sharing local model parameters with 

the server can be tempered if they are not protected.  

A Secure Sockets Layer (SSL) with Rivest-Shamir-

Adleman (RSA) encryption technology is proposed to 

encrypt the parameters sent between the server and the 

clients. The proposed H-RNN is designed by combining 

three different Recurrent Neural Network (RNN) layers. The 

input layer is a Long Short-Term Memory (LSTM) layer 

followed by a Bidirectional Gated Recurrent Unit (BiGRU) 

and a Bidirectional LSTM (BiLSTM) layer. It is designed for 
the deep inspection of network traffic and identification of 

traffic dependencies to detect DDoS attacks accurately. The 

system proposed in this study is more comprehensive. It has 

a higher level of security and privacy preservation, designed 

explicitly for heterogeneous Telecom cloud applications, 

with enhanced performance compared to previous related 

works. The contribution of this study to the 

telecommunications field can be summarized as follows:  

1. A state-of-the-art high-performance deep recurrent 

neural network model is proposed for DDoS attack 

detection. 

2. Secured federated learning using SSL and RSA 

encryption technology is proposed for data privacy 

preservation and data integrity assurance in a 

heterogeneous Telecom cloud network.   

3. The proposed framework is evaluated, and the outcomes 

are compared with the literature and presented to the 

readers. 

The remaining sections are organized as follows. Section 
2 discusses previous studies that used deep-learning-based 

FL against DDOS attacks. In Section 3, the proposed 

methodology is presented. Section 4 describes the proposed 

system performance evaluation. The results are discussed in 

Section 5, and the paper is concluded in Section 6. 

2. Previous Works 
Federated Learning (FL) has been applied in many areas 

to address privacy concerns [8]. Its application to 

cybersecurity has also been observed. In contrast to 

centralized machine learning, FL does not require 

centralization of data for model training, which can improve 

data privacy preservation. This section discusses only the 

latest studies that have used Federated Learning and Deep 

Learning (DL) for DDoS attack detection and mitigation. 

Some researchers have explored the use of deep learning 

combined with FL for DDoS attack detection and mitigation 

in various network types.  

For the purpose of detecting and mitigating DDoS 

attacks while aligning with data privacy, Dingyang et al. [9] 

proposed FLDDoS in their study. They constructed an FL-

based CNN model for DDoS attack detection and mitigation. 
The accuracy of the proposed model for DDoS attack 

detection was as high as 99%, which is 20% higher than that 

of the traditional model, as claimed by the authors.  

 The authors of [10] proposed FLAD, an adaptive 

federated learning method for DDoS attack detection. FLAD 

addresses the limitations of traditional FL by mitigating the 

dependencies on fixed computation allocation and weighted 

averaging methods. It employs an adaptive mechanism that 

dynamically assigns computational resources to clients based 

on their profiles, thereby improving their learning 

experience. When evaluated using a fully connected neural 

network model with the CICDDoS2019 dataset, it exhibited 
superior performance over state-of-the-art FL algorithms. 

With the development of enhanced 4G and 5G networks, 

Internet of Things (IoT) networks have been deployed in 

many application domains. However, they also suffer from 

various types of DDoS attacks. Researchers have proposed 

DL-based FL solutions to mitigate these attacks. In [11], 

Caldas Filho et al. developed a botnet detection and 

mitigation model for IoT using deep learning under federated 

learning training. They proposed the mitigation of DDoS 

attacks from the source in local networks by implementing 

both a host IDS and a network IDS.  

The main idea is to allow IoT devices to participate 

locally in DDoS attack detection through traffic inspections. 

The proposed model achieved an accuracy of 89.753%. 

Always for IoT network protection against DDoS attacks, 

Zainudin et al. [12] proposed FedDDoS, a deep learning-

based FL for efficient DDoS attack detection. The authors 

used an efficient feature selection technique, a filter-based 

Pearson Correlation Coefficient (PCC) feature selection 

technique for selecting potential features, and a deep-

federated learning framework for local data privacy with 

deep inspection of network traffic. The DL model evaluated 

using the CICDDoS2019 dataset achieved an accuracy of 
98.37% with a detection time of 3.917 ms. 

The authors in [13] focused their study on Low-rate 

DDoS (LDDoS) attack detection. LDDoS attacks are difficult 

to detect owing to their periodic characteristics, behaving 

like regular traffic while degrading network quality. The 

authors proposed an asynchronous federated learning 

framework based on BiLSTM and an attention mechanism 

for LDDoS detection and mitigation. The suggested model 

outperformed state-of-the-art models in terms of accuracy 

and number of communication rounds.   
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Some authors have explored the application of federated 

learning to DDoS attack detection in 5G networks and 

beyond. This is the case of Sheikhi and Kostakos [14], who 

proposed unsupervised federated learning for DDoS 

detection in a 5G core targeting the GTP protocol. The 

authors implemented a 5G testbed, simulating a real public 
network for the study. The proposed model was deployed on 

a testbed and evaluated in real-time. The authors expressed 

the effectiveness of the proposed method.   

As can be observed, federated learning has been applied 

in various areas for DDoS attack detection and mitigation. 

However, most researchers have not considered the 

possibility of data tempering when clients are located in 

different and distant networks during the federated training 

process. The system proposed in this study addresses this 

issue and proposes a secure federated learning framework 

based on SSL encryption.  

3. Proposed Methodology 
The proposed methodology is an all-in-one solution that 

addresses DDoS attack detection using an efficient hybrid 

RNN model, data privacy through federated learning, and 

data integrity preservation using SSL encryption. The 

techniques are described in the following subsections.   

3.1. The Proposed Model: LSTM+BiGRU+BiLSTM 

The proposed model is the core of the proposed system, 

with the role of processing network input traffic for DDoS 
attack detection and mitigation. Three different RNN models 

were combined with two dense layers for deep inspection of 

network traffic for DDoS traffic detection.  The composition 

is simple, with a single layer for each RNN. The first layer is 

the LSTM layer. It was designed to address the limitations of 

traditional RNNs in capturing the long-range dependencies in 

sequential data. It was chosen in this study for its advantage 

over traditional RNNs. The following two layers are BiGRU 

and BiLSTM, both of which are modified and simplified 
versions of the LSTM.  

The BiGRU, which is based on the GRU, has fewer 

gates than LSTM, making it less complex and more 

computationally efficient. BiGRU can process input data in 

both the forward and backward directions. This is the second 

choice for the design of the proposed model, owing to this 

particular advantage. The third layer, BiLSTM, has the 

advantage of processing input data in both the forward and 

backward directions compared to LSTM.  

The three neural networks combined have the capacity 

for deep inspection of network traffic and traffic-dependency 

identification.  For binary classification, two dense layers 

were added for greater accuracy, and the classification output 

was either regular traffic or a DDoS attack. BiLSTM and 

BiGRU are combinations of two LSTM and GRU layers in 

the forward and backward directions, respectively, which are 

standard RNN models in the literature.  

To avoid repetition, the reader can explore the articles 

[15] and [16] for basic architectures and mathematical 

understanding of LSTM and GRU. The proposed hybrid 

model architecture is illustrated in Figure 1. It presents the 

characteristics of the model, such as the Activation Functions 

(AF) used for each layer, dropout size between the layers, 
and number of neurons or units for each layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 The proposed model architecture overview 
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Fig. 2 Federated learning process (case of multi-cloud clients) 

3.2. Federated Learning 

In this study, federated learning was used as the primary 
technique to train the proposed model. This machine learning 

method enables models to be trained in a decentralized 

manner involving numerous participants known as clients. 

Each client uses its local data to train the model 

independently. Subsequently, they shared the trained 

specifications of the model with the central server. The 

server then merges all these local models to create a 

comprehensive global model, which is then sent back to each 

client.  

The advantage of this approach is its ability to maintain 

data privacy for each client while allowing them to work 

together while training the same machine learning model. In 
the context of this study, federated learning is applied to 

facilitate collaboration among Telecom cloud Network 

Functions (NF) hosted in different clouds to train the 

proposed model without sharing raw data, mitigating the risk 

of data privacy violations.  

In this study,  the Flower Federated open-access 

framework [17] was used for the simulation. The Federated 

Average (FedAvg) method was used to aggregate the local 

models. FedAvg computes the average version of all local 

models to obtain a global model. The model training process 

using federated learning is depicted in Figure 2. 

3.3. SSL Encryption  

Federated learning, by default, does not encrypt the 

parameters sent between the server and clients. Hackers can 

intercept the parameters and temper them if they are not 

encrypted, which can compromise learning authenticity and 

accuracy.  SSL was used in this study with Rivest-Shamir-
Adleman (RSA) encryption technology to encrypt the 

parameters sent between the server and clients during the 

proposed model training to ensure data integrity. This was 

possible using OpenSSL version 1.1.1t to generate local self-

signed certificates and private and public keys for simulation 

purposes. The step-by-step workflow of the encryption layer 

is as follows:  

 Step 1: OpenSSL is used to generate the local certificate 

and the private and public RSA keys 

 Step 2: The server shares the certificate and the public 

key with the clients but keeps the private key secret (for 

itself). 

 Step 3:  After training the model locally, the clients 

encrypt the parameters using the public key and send 

them to the server (only the corresponding private key 

can decrypt them). 

 Step 4: The server decrypts the parameters using the 

corresponding private key and computes the local 

models’ parameters to build a single global model.  

 Step 5: The server encrypts the global model using the 

private key and sends the encrypted global model to 

clients. The clients can then use their public keys to 

decrypt the global model.  

By adopting this encryption scheme, the proposed 

framework is secure and authentic, tailored for real-world 

applications, especially in the context of Telecom cloud 

where clients are hosted on the Internet, making them easy 

targets for man-in-the-middle attacks.   
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4. Performance Evaluation 
In this section, the simulation dataset and the evaluation 

metrics are described.  

4.1. Dataset Used Preprocessing 

The simulation dataset used was the benchmark open-

access CICDDoS2019 dataset [18]. Made public by the 

Canadian Institute for Cybersecurity (CIC), it contains 

various old and modern types of DDoS attacks, such as the 

Lightweight Directory Access Protocol amplification attack, 

Microsoft SQL Server amplification attack, NetBIOS 

amplification attack, Simple Network Management Protocol 

amplification attack, Simple Service Discovery Protocol 

amplification attack, User Datagram Protocol flood attack, 
UDP Lag flood attack, Web application layer DDoS attack, 

SYN flood attack, Trivial File Transfer Protocol 

amplification attack, Port scanning activity, and many others 

that can be explored from the official source. Before training, 

the dataset was preprocessed and normalized to satisfy the 

characteristics of the proposed model. The steps are 

described as follows: 

 Step 1: The dataset initially multi-class labelled has been 
binary-encoded with the value 0 for standard samples 

and 1 for DDoS samples. 

 Step 2: All integer-type features were normalized to 

int32, and all float-type features were normalized to 

Float32.  

 Step 3: Some useless features were eliminated by 

applying a correlation function with a threshold of 80%. 

Features with a correlation value greater than 80% were 

excluded and the rest were retained. In this process, 55 

features are selected for training and testing.  

 Step 4: In the last step, the data are scaled to have zero 

mean and unit variance using the function. 

Z = (X − µ)/ σ       (1) 

Where Z is the Z-score, X is the corresponding data 

point, µ is the mean of the data, and σ is the standard 

deviation. The final dataset used in the simulation is 
presented in Table 1.  

4.2. Simulation Process 

The experiments were performed on a Windows 11 

platform running on an AMD Ryzen 7 4800H processor 

capable of reaching speeds of up to 4 GHz. This system was 

equipped with 24GB of RAM and 512GB SSD for local 

storage. In addition, it incorporates a Radeon graphics card 

with a capacity of 6GB.  

For federated learning purposes, three virtual machines 

as clients and one virtual machine as the server were created 

using Python, Tensorflow, and the Flower federated learning 

framework [17]. The training dataset was equally shared with 
the clients for the FL purpose. SSL encryption technology 

has been configured for each client and for the server such 

that federated learning can start only if the SSL is enabled 

between entities.  

Figure 3 and Figure 4 show the SSL connection status 

on the server and the connection handshake process for a 

given client, respectively. The proposed 

LSTM+BiGRU+BiLSTM was iteratively fine-tuned to 

obtain the best training hyperparameters, which are listed in 

Table 2.  

Table 1. CICDDoS2019 dataset distribution used for training and testing 

Dataset Total Samples Selected Features Training Samples Testing Samples 

CICDDoS2019 431,371 55 125,170 306,201 
 

 
Fig. 3 The server enabled SSL encryption before starting the training 

 
Fig. 4 A client establishing a secured connection with the server before participating in the FL 
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Table 2. The best hyperparameters for the proposed model training 

Hyperparameter Value 

Learning Rate 0.02 

Number of Rounds 6 

Number of Local Epochs 30 

Batch Size 42 

Drop Out 0.1 

Loss Function Binary_Crossentropy 
 

 
 

4.3. Evaluation Metrics 

The evaluation metrics adopted to assess the proposed 

model are the common metrics used to evaluate all types of 

machine learning models. Metrics such as model accuracy, 

precision, False Positive Rate (FPR), False Negative Rate 

(FNR), model recall, F1_score, and model detection time 

were used. The following equations describe each metric. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
      (3) 

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
           (4) 

𝐹𝑁𝑅 =
𝐹𝑁

(𝐹𝑁+𝑇𝑃)
      (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                (6) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
       (7) 

Where TP is the abbreviation for True Positive; TN is 

True Negative; FP is False Positive; and FN for False 

Negative. 

5. Results and Discussions 
     In this section, the simulation results are presented and 

analyzed. All performances presented were obtained using 
the CICDDoS2019 testing set, which was solely employed to 

evaluate the ability of the designed model to differentiate 

between DDoS attacks and regular traffic. Finally, the 

model’s performance was compared with that of previous 

studies. 

5.1. Main Results     

The prediction results of the proposed model on the 

CICDDoS2019 testing set are presented in Table 3. It 

achieved a classification accuracy of 99.59% with a precision 

of 99.99%, which is an exciting performance. Another high 

performance was an FPR of 0.042% achieved by the model. 

The smaller the FPR, the better the model.  An FNR of 

0.48% was another excellent performance indicator of the 

proposed model. With such a low FPR and FNR, the model 

proved effective in detecting DDoS attacks in regular 

network traffic. In terms of computation time, the model 

presented an average detection time of 0.062ms, which is 

acceptable. In addition to its high performance, the model is 

simple and computationally efficient, with a low average 

detection time. The training and validation graphs are 

presented in Figure 5 for accuracy, Figure 6 for loss, and 

Figure 7 for the model’s Receiver Operating Characteristic 
(ROC) graph. They support the model’s learning capability 

and justify its prediction efficiency.  

5.2. Proposed Model Compared with Centralized Learning 

In this subsection, the performance of the proposed 

model based on federated learning is compared with previous 

studies that used traditional or centralized deep learning 

methods in the context of DDoS attack detection using the 

CICDDoS2019 dataset. This assessment will allow readers to 

understand how well the proposed federated learning method 

can be compared with traditional learning methods in terms 

of performance.  

As stated in the previous subsection, the proposed model 

evaluated using the CICDDoS2019 testing set achieved an 

accuracy of 99.59% in a federated learning setup. In this 

subsection, readers must note that all the previous works 

highlighted used the traditional learning method except for 

the proposed method, which uses FL.  The purpose is to 

compare the proposed method with traditional methods.    

Sbai and Elboukhari [19] developed a Deep Neural 

Network (DNN) model for DDoS attacks. The simulation 

results using the CICDDoS2019 dataset showed an accuracy 

of 99.94%. Compared to the proposed model (99.59% 

accuracy), their model performs slightly better. This is 
because, in traditional learning, all datasets are trained in a 

single machine compared to FL, where the dataset is 

distributed among the clients, and the model is trained by 

each client independently with its local data.  

The final model of FL is an average model of all clients, 

which can present degradation in terms of accuracy 

compared to when the entire dataset is used to train the 
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model at once. However, the advantage of using FL is 

finding a tradeoff between data privacy and high 

performance. By comparing the proposed model based on 

this criterion, the proposed system is more tailored for real-

world applications (especially in the context of 

heterogeneous Telecom cloud networks) than the traditional 
method.  

Amaizu et al. [20] developed a high-performing DNN 

model. Evaluated using the CICDDoS2019 dataset, it 

achieved an accuracy of 99.66%, which is also slightly more 

significant than that of the proposed FL model but lacks data 

privacy risk mitigation compared to the current model. The 

accuracy of the proposed model is also very close to that of 

centralized learning.  

Cil et al. [21] also designed a DNN model against DDoS 

attacks using the CICDDoS2019 dataset. Their model 

showed an accuracy of 99.99% for binary classification and 

94.57% for multi-class classification. Their model 
outperformed the one proposed in this study. 

Kumar et al. [22] used the LSTM model on the 

CICDDoS2019 dataset. It displayed an accuracy of 98%. 

Compared with the accuracy of the proposed model 

(99.59%), their model is less accurate.  

Subramanian et al. [23] proposed LSTM and GRU 

models for DDoS mitigation. When evaluated using the 

CICDDoS2019 dataset, they achieved an accuracy of 99.4% 

and 92.5%, respectively. Both of their models 

underperformed the proposed model in this study.  

Canola Garcia and Blandon [24] built a DNN model 
against DDoS attacks. It showed an accuracy of 99.4% when 

evaluated using the CICDDoS2019 Dataset. The proposed 

model (99.59% accuracy) slightly outperformed their model. 

Centralized learning can be very effective in terms of 

performance when it comes to deep learning model training.  

However, the data privacy requirements of authorities 

are a challenge that limits their applications in real-world 

scenarios. The proposed FL model showed limitations in 

terms of accuracy compared to some previous studies using 

centralized learning models, but it still outperformed some 

other centralized models. The comparison results are shown 
in Figure 8.  

Despite the limitations compared with centralized 

learning in terms of performance, the proposed model in FL 

aligns with data privacy. The proposed system also integrates 

SSL encryption to enhance the security of FL by mitigating 

all types of man-in-the-middle attacks, making it an optimal 

solution for real-world applications.   

5.3. Results Comparison with Previous Works: FL 

Deep Learning-based anti-DDoS systems using 

Federated Learning (FL) are a recent concept, but previous 

researchers have proposed many models. In this section, the 

performance of the proposed system is compared with those 
of previous studies. Table 4 compares the proposed model 

with previous studies that employed federated learning with a 

focus on accuracy, FPR, and security. The current model 

achieved a higher accuracy of 99.59% than previous models 

for the same dataset and other datasets mentioned in the 

table. A similar superiority was observed for FPR. 

In contrast to the proposed framework, most previous 

studies did not explore the importance of data encryption 

during federated learning in their study to avoid data 

tempering or man-in-the-middle attacks. Using SSL with 

RSA encryption technology, a secured federated learning 
framework tailored to cloud-based network applications is 

proposed in this study.  

The proposed model is also simple and computationally 

efficient, with a detection time of 0.062 ms compared to [12] 

(with a detection time of 3.917 ms).  For visual comparison, 

Figure 9 shows a comparison of the accuracies. 

Table 3. Prediction results using the CICDDoS2019 testing data 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposed Model Metric Value 

LSTM+BiGRU+BiLSTM 

Accuracy 99.59% 

FPR 0.042% 

FNR 0.48% 

Recall 99.52% 

Precision 99.99% 

F1-Score 99.75% 

Detection-Time 0.062 ms 
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Fig. 5 Proposed model training and validation accuracy graphs 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Proposed model training and validation loss graphs                                

 

 

 

 

 

 

 

 

 

Fig. 7 Proposed model ROC curve graph 
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Fig. 8 Proposed model’s accuracy comparison with previous centralized learning DL models  

Table 4. The proposed model compared with the previous works that used Federated Learning 

Reference (Year) Model Used Dataset Utilized Accuracy FPR 
FL Encryption 

Technique 

Proposed Model LSTM+BiGRU+BiLSTM CICDDoS2019 99.59% 0.042% SSL (RSA) 

[25] (2022) 
Feedforward Neural 

Network (FNN) 
CICDDoS2019 84.2% - 

No encryption 

used 

[12] (2022) 
Deep Neural Network 

(DNN) 
CICDDoS2019 98.37% - 

No Encryption 

Used 

[26] (2022) Fully Connected ANN CICDDoS2019 96% - 
No Encryption 

Used 

[13] (2023) 
BiLSTM and Attention 

Mechanism 

DARPA, and 
ISCX-2016-

SlowDos 

98.80% 0.65% 
No Encryption 

Used 

[27] (2023) 
Deep Neural Network 

(DNN) 
CAIDA 98.85% 2.215% 

No Encryption 

Used 

[11] (2023) 1D-CNN Private Dataset 89.753% - 
No Encryption 

Used 

[28] (2022) GRU 
Real Network 

Simulated 
98% - 

No Encryption 

Used 
 

 
Fig. 9 Proposed model’s accuracy comparison with previous studies that used DL with FL 
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5.4. Discussion and Limitation 

The anti-DDoS system presented in this study was 

carefully designed to be deployable in real-world networks, 

particularly Telecom cloud networks. To achieve optimal 

performance, the proposed model was designed using 

different RNN technologies that are capable of profoundly 
capturing dependencies among network traffic, giving it an 

advantage over previously proposed models. The findings 

from the experiments show that the new model performs 

better than previous models in terms of both accuracy and 

speed in a federated learning environment.  

A shorter detection time indicates the simplicity and 

computational efficiency of the proposed model. During the 

experiments, it was found that despite the SSL (RSA) 

encryption, the proposed model maintained an average 

performance that was similar to that observed without 

encryption during federated learning. This consistency might 

be attributed to the simplicity of the model, which is 
characterized by relatively few parameters. 

Consequently, the encryption and decryption times have 

an imperceptible impact on the overall training duration of 

the model. Compared with the proposed system, previous 

studies did not consider the importance of data encryption 

during FL training. By using SSL encryption, the proposed 

system is more tailored for Telecom cloud network 

protection, which is heterogeneous in some cases.  

The assessment of the proposed FL model compared to 

traditional models on the same dataset demonstrated some 

limitations in terms of performance. In fact, many traditional 
models outperform the proposed model, which the training 

process can explain. Centralized learning uses unified data, 

enabling a better understanding of attack patterns than FL.  

However, the proposed models outperformed other 

traditional models. In real-world applications, data privacy 

preservation is very important, and FL provides this 

advantage compared to centralized learning.  The proposed 

system presents a tradeoff between data privacy preservation 

and high performance, giving it more credit for Telecom 

cloud applications.  

Despite the security and good performance of the 
proposed system for application to Telecom cloud, the study 

was limited by the size of the dataset, which did not allow for 

extensive exploration in larger network simulations, such as 

involving more than 100 clients in the federated learning 

process to mirror real-world Telecom cloud networks. Given 

the scope of the dataset, the simulation involved only three 

clients to maintain fairness and ensure efficient evaluation. 

6. Conclusion 
This study proposes the use of federated learning and a 

novel hybrid RNN model to combat DDoS attacks in a 

heterogeneous Telecom cloud environment, where network 

functions are hosted across different cloud provider 

networks. To enhance the security of federated learning, SSL 

with RSA encryption has been proposed to prevent data 

tampering or man-in-the-middle attacks during the FL 
process.  

The outcomes of the simulation showed that the 

proposed model surpassed previous research in terms of 

accuracy, with lower false positive rates and quicker 

detection times. Unlike previous studies, the current 

approach is more secure and tailored to detect and mitigate 

DDoS attacks on heterogeneous, cloud-based Telecom 
networks. In the future, the focus will be on exploring large-

scale simulations involving more clients using more 

extensive datasets. 
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