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Abstract - In this paper, the authors attempt to automatic generation of drum beats using generative adversarial networks (GAN). 

The generator of the GAN is trained with the short-time Fourier to transform (STFT) of drum beats from a diversified dataset, 

while the discriminator challenges the generator. The generator, once trained, the GAN is able to produce drum beats close to 

real-time sequences. Also, we propose to do a subjective evaluation of the generated drum beats. The simulation results showed 

that the drum beat generated by the GAN had more resemblance when compared to the actual drum beats. Also, the subjective 

assessment by a few audiences proves the effectiveness of this method of automatic drum beat synthesis. 

Keywords - Music generation, Generative adversarial networks, Drum beats, Music synthesis introduction. 

1. Introduction  
Since the development of potential deep neural networks, 

researchers have been attempting to generate music 

artificially. The generation is done in supervised or 

unsupervised modalities. There is significant work using 

machine learning in imaging as well as in other perspectives. 
Automating this music generation for a given scenario is a 

complex task where no scientific community has achieved 

results on par with human composition. The idea is to generate 

a melody or a polyphony without any chords or patterns. The 

digitized song is converted to the musical instrument digital 

interface (MIDI) format to ease the processing and 

synthesizing of music data. 

1.1. Literature Review  

A significant work in audio generation using genetic 

algorithms has been carried out for many years [1, 2]. Here, 

time series networks like Recurrent Neural Networks (RNN) 

play a major role in predicting and synthesizing music 

sequences [3]. GAN has become popular due to its ability to 

produce quality images when trained for a particular task [4]. 

GAN, in its other forms, can also generate images close to the 

real images of humans [5]. GAN, nowadays, is used for 

generating symbolic music [13, 14] and audio files [15, 16]. 

There is significant work for music generation using GAN and 

RNN with reinforcement learning [6, 7] and convolutional 

networks [8, 9]. Several such automated music composition 

algorithms based on RNN were developed for easy 

composition focusing on the time to deployment. A few such 

systems available online are Magenta [17], DeepJazz [18], 

BachBot [19], FlowMachines [20], and WaveNet [21]. 

 

In this paper, we attempt to generate drum beats using 

pre-trained GAN models after a few modifications. The GAN 

model is trained with the STFT of several drum beats instead 

of the direct audio, and the GAN is expected to generate the 

same. Later, the generated drum STFT can be converted into 

actual drum beats and verified for quality. We compare the 

outcomes of the DCGAN–based [23, 25, 28] algorithms, 

namely SpecGAN and WaveGAN, proposed by Donahue et 

al. [24]. The preliminary work carried out by Suman et al. [26, 

34] concentrated on LSTM and GAN for music synthesis, and 

significant work was reported in speech synthesis [27]. 

 

The mathematical formulation of GAN is given as 

𝑚𝑖𝑛
𝐺𝑒

𝑚𝑎𝑥
𝐷𝑖

𝑉(𝐺𝑒, 𝐷𝑖) = 𝑙𝑜𝑔(𝐷𝑒(𝑥)) + 𝑙𝑜𝑔( 1 − 𝐷𝑒(𝐺𝑖(𝑧)))  

(1) 

 

𝑉(𝐺𝑒, 𝐷𝑖) is the target function in which De should be 

maximized and Gi should be minimized. 
 

𝐷𝑖(𝑥) is the probability that the input x is taken from the 

original data as classified by Di 
 

𝐺𝑒(𝑧) is the output of Ge with z random input noise data 
 

The discrete STFT of a signal is expressed by equation 

(2). Here the discrete signal is broken into finite frames, and a 

Fourier transform is applied to it. 

 

𝑆𝑇𝐹𝑇{𝑥[𝑛]}(𝑚,𝜔) ≡ 𝑋(𝑚,𝜔) = ∑ 𝑥[𝑛]𝑤[𝑛 −∞
𝑛=−∞

𝑚]𝑒−𝑗𝜔𝑛 (2) 

X[n] is the signal, and w[n] is the window. 
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Fig. 1 GAN topology for drum beat synthesis 

The spectrogram is computed by squaring the STFTs, 

which are used to plot the spectrogram of the synthesized 

drum beat later in this paper in chapter 5. 

𝑠𝑝𝑒𝑐𝑡𝑜𝑔𝑟𝑎𝑚{𝑥[𝑡]}(𝜏, 𝜔) ≡ |𝑋(𝜏, 𝜔)|2                           (3) 

 

Section 1 introduces the challenges in music synthesis, 

especially the work carried out in drum beat generation and 

GAN. Section 2 highlights the basic blocks of GAN for 

synthesizing drum beats with the help of STFT. Section 3 

explains the GAN architecture, various parameters and 

methods used to conduct the experiment. The training of GAN 

and the synthesis of drum beats is discussed in section 4. The 

simulation results, experiment outcomes, and subjective 

evaluation are discussed in section 5. The concluding remarks 

are given in section 6. 

2. GAN for Drum Beat Synthesis  
In this method, the training data, STFT of the real drum 

beat, is computed, and a huge library is created. The 

discriminator further uses this training data to find the 

difference between the generated signal and the STFT of the 

original drum beat. The generator tries to generate data similar 

to the STFT of the original drum beat from a random vector 

or data. As shown in Figure 1, the discriminator classifies its 

input as real or fake from the input provided by the generator 

and the original drum beats. 

The generator's objective is to fool the discriminator or 

synthesize drum beats very close to the original one so that the 

discriminator identifies or classifies it as real. Ultimately, the 

fake STFTs of drum beats close to the real ones are generated. 

The loss of the discriminator is maximized to improve the 

performance of the generator, while to improve the 

performance of the discriminator, its loss needs to be 

minimized. This trade-off determines the training and 

synthesis of drum beats. 

3. Materials and Methods  
3.1. GAN Architecture  

The generator network shown in Figure 2 generates 

STFTs from a 1X100 random array. This network's outcome 

is an array that is supposed to be close to the STFT of the real 

data. The random data generator is followed by a fully 

connected layer for up-scaling the random data to a 

128X128X1 array. Following that, we have transposed 

convolution layers, ReLU layers and a tanh as the last layer. 

The generator network structure and the layer dimensions are 

given in Table 1. 

3.2. GAN Parameters 

The discriminator used here is shown in Figure 2, and it 

takes a 128X128 image and predicts the score using a series 

of layers with leaky-ReLU (LReLU) and a fully connected 

layer. The discriminator network structure and the layer 

dimensions are given in Table 2. 

4. Training and Synthesis 
In this experiment, the discriminator uses the drum beat's 

real audio signal. The discriminator is trained to identify real 

STFTs and fake STFTs, as shown in Figure 3. Perhaps, the 

generator is trained to create fake STFT representations of 

drum beats. The real drum beats were used to compute the 

STFT, and those files form the base dataset.  
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Table 1. Generator network structure for drum beat synthesis 

Operation Kernel Output Shape 

Input z ≈ Uniform (-1;1)  (n, 100) 

Dense 1 (100, 256d) (n, 256d) 

Reshape (n, 4, 4,16d)   

ReLU  (n, 4, 4, 16d) 

Trans Conv2D (Stride=2) (5, 5, 16d, 8d) (n, 8, 8, 8d) 

ReLU  (n, 8, 8, 8d) 

Trans Conv2D (Stride=2) (5, 5, 8d, 4d) (n, 16, 16, 4d) 

ReLU  (n, 16, 16, 4d) 

Trans Conv2D (Stride=2) (5, 5, 4d, 2d) (n, 32, 32, 2d) 

ReLU  (n, 32, 32, 2d) 

Trans Conv2D (Stride=2) (5, 5, 2d, d) (n, 64, 64, d) 

ReLU  (n, 64, 64, d) 

Trans Conv2D (Stride=2) (5, 5, d, c) (n, 128, 128, c) 

Tanh  (n, 128, 128, c) 
 

Table 2. Discriminator network structure for drum beat synthesis 

Operation Kernel Output Shape 

Input x or G(z)  (n, 128, 128, c) 

Conv2D (Stride=2) (5, 5, c, d) (n, 64, 64, d) 

LReLU (α=0.2)  (n, 64, 64, d) 

Conv2D (Stride=2) (5, 5, d, 2d) (n, 32, 32, 2d) 

LReLU (α=0.2)  (n, 32, 32, 2d) 

Conv2D (Stride=2) (5, 5, 2d, 4d) (n, 16, 16, 4d) 

LReLU (α=0.2)  (n, 16, 16, 4d) 

Conv2D (Stride=2) (5, 5, 4d, 8d) (n, 8, 8, 8d) 

LReLU (α=0.2)  (n, 8, 8, 8d) 

Conv2D (Stride=2) (5, 5, 8d, 16d) (n, 4, 4, 16d) 

LReLU (α=0.2)  (n, 4, 4, 16d) 

Reshape  (n, 256d) 

Dense (256d, 1) (n, 1) 

Now, sufficient training makes the generator generate 

drum beat sequences similar to the real one. As the generated 

sequence is in the time-frequency domain, an inverse STFT 

yields the generated audio drum beat signal, as shown in 

Figure 4. The training process involves 1000 epochs in general 

and is computationally intensive. 

5. Result and Discussion  
Training GAN with a sufficient dataset of original drum 

beat files in batches yields good results in synthesizing the 

same kind. Figure 5 shows the generated drum beats in the 

time domain, and the STFT of the same. Originally, STFTs 

were generated, and ISTFT gives the audio file, which can be 

played as a drum beat. A sample of 5 drums beat STFTs and 

their equivalent time domain representation are given here. 

From the figure, it is clear that the discontinuity is largely 

avoided, and by listening to the generated music file, it can be 

scored by as many listeners to assess the quality of the 

synthesized drum beat qualitatively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 GAN architecture: generator and discriminator 
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Fig. 3 GAN training 

 

 
Fig. 4 GAN – audio synthesis
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Fig. 5 Generated drum beats using GAN

 

Fig. 6 Subjective evaluation: melody score 

Fig. 7 Subjective evaluation: rhythm score 
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5.1. Subjective Assessment  

A subjective analysis of the synthesized music files used 

for training was carried out. For each model discussed here, 

10 sample music files were generated, various subjects 

analyzed the models, and the scores based on melody (Figure 

6) and rhythm (Figure 7) were given. The proposed method 

based on GAN and STFT works on par with the existing audio 

synthesis algorithms. 

6. Conclusion  
Thus, GAN-based drum beat generation has proven to be 

an efficient way of auto-composing music files. In this work, 

the authors attempted to generate synthetic drum beats by 

training the GAN with the STFTs of the music file rather than 

the original music file itself.  

 

From the synthesized music file, it is clear that the 

implemented methodology of music generation works well for 

drum beat synthesis using GAN. Though a quantitative 

assessment of the synthetic drum beats was not performed, the 

subjective evaluation by various audiences is acceptable. The 

author looks forward to scaling this to real-time music 

generation with multiple tracks. 
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