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Abstract - Recently, one amongst the deadliest diseases is Brain Tumor (BT). A cluster of abnormal cells, which are clustered 

around the brain’s inner portion, is contained by the tumour. It amplifies the Intra cranial pressure; thus, the tumour cell growth 

mounts, leading to death. Hence, diagnosing BTs at an early stage is desirable. For BT-type classification, various ideas are 

suggested by the prevailing techniques. However, they did not concentrate on the stages of BT. This research aims to predict the 

tumour’s stages utilizing Range Pelican Optimization-based Region Growing (RPO-RG) segmentation and Fuzzy Memorized 

and SigTan-based Deep Learning Neural Network (FMS-DLNN) classifier. Primarily, the Gaussian Kernelized Kuwahara Filter 

(GKKF) pre-processed the input MRI images. Utilizing the Enhanced Farthest First Clustering (EFFC) algorithm, the noise-

removed image is clustered. After that, the tumor region is segmented by the RPO-RG algorithm. After segmentation, features 

are extracted; also, by utilizing the Logarithmic Fisher Discriminant Analysis (LFDA), the features’ dimensionality is reduced. 

Lastly, for classifying the BT stages, the necessary features are given to FMS-DLNN. With the prevailing approaches, the 

proposed mechanism is analogized. The experimental assessment exhibits that the proposed system was more efficient in 

classifying the various stages of tumours. 

Keywords - Deep learning, Magnetic Resonance Imaging (MRI), Brain tumor, Segmentation, Fuzzy Memorized and Sigtan-Deep 

Learning Neural Network (FMS-DLNN), Clustering. 

1. Introduction 

In the brain, the cells’ uncontrolled and unnatural growth 

is named BTs, which could be categorized as primary tumours 

and secondary tumours. The tumours present in the brain 

tissue are named primary tumours, whereas the secondary 

tumours expand as the human body’s other parts to the brain 

tissue via the bloodstream (Kang et al., 2021). Changes in 

mood and personality, difficulties in walking, headaches, 

trouble speaking, vomiting, and high blood pressure are the 

BTs’ major symptoms (Amin et al., 2020). BTs could be 

categorized into 4 grades, as per the World Health 

Organization (WHO). The lower-level tumours are described 

by the grade 1 and grade 2 tumours, whereas the more severe 

ones are included in grade 3 and grade 4 tumours (Nadeem et 

al., 2020).  

For a BT, the threat level relies on several factors, namely 

behavior, location, tumour style, size, and growth status. For 

identifying the tumour’s size, growth, and location, along with 

behavior, radiological evaluation and estimation, are wielded 

once a BT is suspected. Regarding this information, 

treatments, namely chemotherapy, surgery, radiation, best 

therapy, et cetera, could be taken (Islam et al., 2021). In 

treatment, a faster response is implied by the earlier BT 

diagnosis. This aids in enhancing the patient's survival rate 

(Hatamizadeh et al., 2022). Magnetic Resonance Imaging 

(MRI), a popular non-invasive approach, generates various 

sorts of tissue contrast; also, radiologists have broadly wielded 

it for diagnosing BTs. 

Generally, the neurologist manually segments the 

abnormal regions at every MR-imaging modality slice. 

However, the BTs’ manual segmentation of MRI images is 

subjective and time-consuming (A. R. Khan et al., 2021) (Niu 

et al., 2020). Thus, designing automatic along with robust BT 

diagnosis mechanisms is desirable (Zhou et al., 2020). For the 

BTs’ prediction and treatment, various image-processing 

models have been utilized. For predicting more accurately, 

excellent benefits were had by the MRI brain image 

segmentation on software-centred medical image evaluation 

(Karayegen & Aksahin, 2021). Brain Tumor Segmentation 

(BTS) systems are wielded in distinguishing tumour-infected 

tissues from healthy ones. By classifying the pixels, BT image 
segmentation is attained in numerous BTS applications; 

hence, the segmentation issue turns into a classification (Díaz-

Pernas et al., 2021). 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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For BT detection, numerous Machine Learning (ML) 

approaches like linear regression, random forest, Fuzzy C-

Means (FCM), K-Nearest Neighbor (KNN), et cetera have 

been developed. To decrease manual interactions in the 

medical field, these frameworks are wielded. In ML, accurate 

tumour detection is a complex task due to the tumor location 

and appearance variability. The Deep Learning (DL) 

techniques’ application has a significant opportunity for 

predicting BTs with high accuracy together with reliability. 

This has surpassed the conventional ML approaches. In BT 

diagnosis, DL mechanisms have become popular; also, in 

image analysis fields, their performance is superior. 

1.1. Problem Definition 

 Many DL-centric techniques have been developed for 

BT classification, but several challenges remain unresolved. 

They are listed below, 

 

• Manual segmentation requires more time, which results in 

deviations in segmentation results.  

• The prevailing approaches had restrictions on important 

information loss, which made the system inefficient. 

Thus, motivated by these factors, this work aims to 

predict the tumour’s stages utilizing a novel RPO-RG 

segmentation algorithm and FMS-DLNN classifier. The 

proposed technique’s contributions are, 

• To preserve the information from the noise removal 

process utilizing a novel pre-processing stage. 

• To automatically segment the BT regions utilizing the 

RPO-RG algorithm. 

• To accurately predict the stages of cancer utilizing the 

FMS-DLNN classifier. 

The structure of this paper is arranged as follows: the 

related works are discussed in section 2; the proposed 

technique is explicated in section 3; the results and discussions 

are elucidated in section 4; lastly, the paper is winded up in 

section 5.  

2. Literature Survey 

(Noreen et al., 2020) established a multi-level feature 

extraction and concatenation technique for BT’s early 

diagnosis. For BT detection, together with its classification, 

the pre-trained DL approaches utilized were Inception-v3 and 

DensNet201. The outcomes portrayed that the model 

produced excellent testing accuracy. The approach's main 

flaws were excessive processing power and time 

consumption. 

(Gumaei et al., 2019) propounded an automated system to 

classify brain cancers by utilizing Normalized Prostate Cancer 

Antigen-Gastrointestinal Stromal Tumor (PCA-NGIST). For 

extracting the significant features of brain images, this model 

was wielded. The outcomes illustrated that the model's 

accuracy was better when analogized with the prevailing 

approaches. However, it required a lot of training data, which 

was expensive to compute, and required a lot of time to train. 

(Shah et al., 2022) recommended a fine-tuned deep 

Convolutional Neural Network (CNN) Efficient-B0 base 

system to classify and detect BT images. The model was fine-

tuned with recommended layers that replaced prevailing 

invasive BT classification and enriched overall classification 

accuracy. The model outperformed other CNN models. 

However, the recommended approach lacks precision and 

consumes time. 

(Ali et al., 2020) elucidated a model for segmenting the 

tumour from multimodal MRI scans by utilizing multiple 3D 

CNN models. The model achieved lower results than 

prevailing approaches regarding comparative dice scores 

attained via the BraTS server, although the multimodal MRI 

scan ensemble generated BTs’ accurate segmentation. 

(Deng et al., 2020) suggested DL approaches employed 

in an amalgamated scheme for attaining the appearance along 

with spatial accuracy results via Conditional Radom Fields 

(CRF) together with Heterogeneous CNN (HCNN). Initially, 

the image patch trained the HCNN. Then, by employing an 

image sliced with HCNN’s fixed variables, the CRF was 

trained with CRF-Recurrent Regression-centered Neural 

Network (RRNN). The outcomes exhibited that the model 

could attain performance. However, the model took only a 

fixed-sized input and output for any task. 

(Sharif et al., 2020) established an active DL-centric 

feature selection mechanism for segmenting and recognizing 

BTs. The outcomes displayed that a contrast enhancement step 

aided a better saliency map’s construction. This better saliency 

map segmented the tumor region. But, accurate classification 

was not always required for all extracted combination 

features. 

(Nagaraj et al., 2020) suggested a BT images’ multi-

classification utilizing a deep neural network. For classifying 

various BT, this technique was wielded. The technique’s 

structure could not be reutilized for classifying a small number 

of images, although it has a higher accuracy. This was the 

limitation here.  

(M. A. Khan et al., 2020) presented an automated 

multimodal classification framework for BT-type 
classification. The procedure included linear contrast 

stretching; DL features extraction; a joint learning 

methodology with Extreme Learning Machine (ELM); the 

Partial Least Square (PLS); lastly, the ELM-centered 

classification.  
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Fig. 1 Block diagram for the proposed methodology 

The outcome illustrated that although the feature selection 

procedure was useful in enhancing the classification accuracy, 

it may require high complexity of the Hidden Layer (HL). 

(Cristin et al., 2021) propounded an efficient 

classification technique, the so-called fractional-Chicken 

Swarm Optimization (fractional-CSO), for performing the 

severity-level tumor classification. For training the RNN 

classifier by simulating hierarchical order and behavior, this 

model was wielded. The result portrayed that the technique 

clearly distinguished the tumor as normal and abnormal. But, 

owing to the poor tuning of the Mother Hens (MN), Hens 

(HN), along with Roosters (RN), the approach might get stuck 

in local optima. 

(Kesav & Jibukumar, 2022) presented an effectual along 

with the low-complex architecture for the BT classification 

along with prediction utilizing Regional-centric CNN (R-

CNN) with two-channel CNN. Initially, a Two Channel CNN 

was utilised to classify betwixt the Glioma and healthy tumour 

MRI samples. After that, it was wielded as the R-CNN’s 

feature extractor for detecting the Glioma MRI sample's 

tumour regions. The outcomes portrayed that the model could 

be capably wielded in classifying and detecting tumor types. 

Nevertheless, the technique was limited to object detection. 

(Harish & Baskar, 2020) presented a strategy for 

detecting and classifying tumors grounded on MR images 

utilizing Enhanced Faster R-CNN. To detect the BT, this 

model was wielded, which accurately separated the tumor area 

from non-tumor regions. The technique took longer to train 

the network, although it attained higher accuracy. 

(Vidyarthi et al., 2022) proffered a huge feature set from 

6 domains for capturing the major hidden information in the 

interest’s extracted region. Then, utilizing the Cumulative 

Variance Method (CVM), the relevant features were extracted 

from the feature set pool. The outcomes exposed that the 

technique attained higher accuracy. However, with several 

publically accessible imaging datasets that have abnormality 

characteristics, the framework was not tested.  

(Abdel-Gawad et al., 2020) developed an optimized edge 

recognition strategy regarding a genetic approach for 

detecting the BT’s edges as of a patient's MR scan brain 

image. With the suitable training dataset, the technique was 

implemented.  



R. Sakthi Prabha & M. Vadivel / IJEEE, 10(2), 110-121, 2023 

 

113 

 
Fig. 2 Four areas of GKKF 

The outcomes exhibited that when analogized with the 

prevailing and fractional-order edge detection mechanisms, 

the model exhibited better performance. But, the detections’ 

accuracy relied majorly on the selected training images. 

(Amin et al., 2019) expounded a BTS technique and 

classification grounded on score-level fusion utilizing transfer 

learning. Here, the segmented images were given to a pre-

trained CNN system where feature learning was accomplished 

via Alex net together with Google net. The experimental 

observation displayed that the model yielded better outcomes 

on MRI/CT images. The limitation was whether it would work 

if the initial and target issues were alike for the first round of 

training to be relevant. 

3. Proposed Brain Tumor Stages Prediction 

Framework 

Here, a novel approach is proposed to predict the stages 

of BT utilizing RPO-RG segmentation and the FMS-DLNN 

classifier. Primarily, the GKKF technique removed the noise 

detected in the input image. After that, the brain part is 

clustered into three parts utilizing the EFFC algorithm. RPO-

RG segmentation is executed in the clustered image for 

segmenting the tumour region. The features are extracted as of 

the segmented image; also, their dimensionality is reduced by 

the LFDA method. Lastly, the FMS-DLNN classifier is 

utilized to perform the various BT stages prediction. Figure 1 

displays the block diagram for the proposed framework. 

3.1. Pre-Processing 

Pre-processing is the initial step to enhance the image’s 

quality and make it fit the ML model. Here, the input MRI 

image(ℜ) taken as of the dataset is pre-processed utilizing 

split blocks and noise removal. 

3.1.1. Noise Detection 

Initially, the input image is split into blocks, and the 

intensity level of pixels in each block is measured. If the 

pixel’s intensity level is maximum (i.e., 255), then it is 

indicated that the pixel has salt noise; also, if the pixel’s 

intensity level is minimum (i.e., 0), then it is denoted that the 

pixel has pepper noise. The intensity’s other levels are 

regarded as noise-free pixels. But, the maximum, as well as 

minimum intensities are not always presumed to be noise. So, 

the correlation is calculated betwixt the block’s neighboring 

pixels; also, the pixel has noise if the correlated value is lesser 

than the pre-assumed value. The correlation betwixt the 

neighboring pixels (𝜍𝛼𝛽) is expressed as, 

𝜍𝛼𝛽 =
∑(𝛼𝑖−𝛼)(𝛽𝑖−𝛽)

√∑(𝛼𝑖−𝛼)2 ∑(𝛽𝑖−𝛽)
2
 (1) 

Where, 𝛼and 𝛽signifies the neighboring pixels. The pixel 

intensity level is considered noise-free if it is 0. Also, it is 

considered noisy if it is 0 and the average neighborhood level 

is not 0. Similarly, the same process is considered for the pixel 

intensity level of 255. The noise detection is expressed as, 

ℜ𝑛𝑜𝑖𝑠𝑒 = {
1, 𝑖𝑓ℜ𝑛𝑜𝑖𝑠𝑦
0, 𝑖𝑓ℜ𝑛𝑜𝑖𝑠𝑒𝑓𝑟𝑒𝑒

 (2) 

Where, the input image is specified asℜ; also, the noise-

detected image is represented as ℜ𝑛𝑜𝑖𝑠𝑒. 

3.1.2. Noise Removal 

Here, the GKKF removed the noise as of the noise-

detected image (ℜ𝑛𝑜𝑖𝑠𝑒). The Kuwahara, which aids in 

adaptive noise removal of the images, is a non-linear type 

filter. For different window sizes, this filter is constructed. 

However, it has a problem of edge loss. To overcome this 

issue, the proposed methodology utilizes the Gaussian 

kernelized function instead of utilizing a general function. 

This modified noise removal process preserves the 

information more than the conventional noise removal 

methodologies. Initially, the filter is split into 4 various areas. 

The dark black color symbolizes the center pixel.  Figure 2 

illustrates the divided areas. 

After that, the average and variance are computed for all 

four areas. The output value is defined as the mean of the sub-

grid that presents the least variation, which is assigned to each 

area's central pixel. They are computed utilizing the following 

equations, 

𝜈𝐾 =
1

(𝐻+1)×(𝐻+1)
∑(𝑎, 𝑏) ∈ 𝐾 𝐺(ℜ𝑛𝑜𝑖𝑠𝑦(𝑎, 𝑏), 𝜕) (3) 

𝜎𝐾
2 =

1

(𝐻+1)×(𝐻+1)
∑(𝑎, 𝑏) ∈ 𝐾 [𝐺(ℜ𝑛𝑜𝑖𝑠𝑦(𝑎, 𝑏), 𝜕) − 𝜈𝐾]

2

 (4) 
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Where, 𝜈𝐾and 𝜎𝐾
2 signifies the average and variance, 

correspondingly, the number of pixels in the current area is 

indicated as 𝐻, 𝐾signifies the four different regions(0,1,2,3), 

ℜ𝑛𝑜𝑖𝑠𝑦(𝑎, 𝑏)is the noisy images with (𝑎, 𝑏) co-ordinates, and 

the Gaussian kernel function is exhibited as𝐺, which can be 

represented as, 

𝐺(ℜ𝑛𝑜𝑖𝑠𝑦(𝑎, 𝑏), 𝜕) =
1

√2𝜋∗𝜕
𝑒

−
(ℜ𝑛𝑜𝑖𝑠𝑦(𝑎,𝑏))

2

2𝜕2  (5) 

Where, 𝜕is the width of the Gaussian kernel. Thus, the 

unnecessary noise detected in the input image is removed; 

also, the noise-free image is symbolized asℜ𝑝𝑟𝑒. 

3.2. Clustering 

Initially, the first center is computed by the algorithm. 

The second center is selected as the point farthest from the 

first. By choosing the point farthest from the set of already 

selected centroids, every single remaining center is 

determined; also, the remaining points are added to the cluster 

whose center is the closest. The first center point is calculated 

by, 

ℏ𝑎,𝑏 =
∑(𝑎𝑖−𝑎)(𝑏𝑖−𝑏)

𝐴−1
 (6) 

Wherein, the covariance value, that is, the first centroid 

of the points 𝑎 and𝑏is indicated asℏ𝑎,𝑏, 𝐴 is the total number 

of points. After that, the remaining points are assigned to the 

cluster center(ℏ) grounded on the similarity along with the 

distance from the center. The distance can be calculated by 

utilizing taxicab distance(𝜏) as, 

𝜏 = |ℜ𝑝𝑟𝑒𝑛+1
− ℜ𝑝𝑟𝑒𝑛

| + |ℏ𝑖+1 − ℏ𝑖|, 𝑛 = 1,2, . . . , 𝐴, 𝑖 =

1,2, . . . , ℵ (7) 

By considering the minimum distance and similarities, 

the brain part is categorized into three clusters. The formed 

clusters are denoted as, 

ℵ = {ℵ1, ℵ2, ℵ3} (8) 

Where, ℵ is the output image containing the three clusters, 

andℵ1,ℵ2, andℵ3 symbolizes the clusters of cerebrum, 

cerebellum, and brain stem, correspondingly.  

3.3. Segmentation 

3.3.1. Automatic Seed Generation 

RPO is utilized as the automatic seed-generating 

technique, which finds the seed pixels in the brain region 

grounded on the pelican’s behavior. The prevailing Pelican 

optimization algorithm provides better performance; however, 

it exhibits poor searching capability. To enhance their 

searching capability, the proposed system generates a range 

value concerning the population, and the value is multiplied 

during the population initialization. The range value is 

computed regarding the tent chaotic operator by the following 

expression, 

ƛ𝑖+1 = {

ƛ𝑖

0.7
, ƛ𝑖 ≤ 0.7

1−ƛ𝑖

0.3
, ƛ𝑖 > 0.7

 (9) 

Where, ƛ𝑖 exemplifies the tent's chaotic sequence. In 

RPO, every single seed pixel indicates a candidate solution to 

the optimization issue whose position in the search space 

produces the decision variables’ values. The population 

members, that is, the pixels, are initialized grounded on the 

problem’s lower and upper bounds as described below, 

ℵ𝑖,𝑗 = 𝐿𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝑗 − 𝐿𝑗) ∗ ƛ𝑖+1, 𝑖 = 1,2, . . . . , 𝑁, 𝑗 =

1,2, . . , 𝑑 (10) 

Where, the value of the 𝑗𝑡ℎ decision variable of the𝑖𝑡ℎseed 

pixel is specified asℵ𝑖,𝑗, the lower and upper bounds are 

exemplified as𝐿𝑗 and 𝑈𝑗, correspondingly, the random number 

of range [0, 1] is denoted as𝑟𝑎𝑛𝑑, the total number of seed 

pixels is exhibited as 𝑁, the number of decision variables is 

signified as𝑑. Now, utilizing a matrix called the population 

matrix, the members are identified. The matrix is expressed 

as, 

ℵ =

[
 
 
 
 
ℵ1

⋮
ℵ𝑖

⋮
ℵ𝑁]

 
 
 
 

𝑁×𝑑

=

[
 
 
 
 
ℵ1,1 ⋯ ℵ1,𝑗 ⋯ ℵ1,𝑑

⋮⋱⋮⋰⋮
ℵ𝑖,1 ⋯ ℵ𝑖,𝑗 ⋯ ℵ𝑖,𝑑

⋮⋰⋮⋱⋮
ℵ𝑁,1 ⋯ ℵ𝑁,𝑗 ⋯ ℵ𝑁,𝑑]

 
 
 
 

𝑁×𝑑

 (11) 

Where, ℵ𝑖indicates the 𝑖𝑡ℎ seed pixel of the population. 

Now, for every candidate solution, the objective function is 

computed.  The objective function’s vector (𝑋) can be defined 

as, 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝑋(ℵ1)
⋮
𝑋(ℵ𝑖)
⋮
𝑋(ℵ𝑁)]

 
 
 
 

𝑁×1

 (12) 

Where, the objective function value of the𝑖𝑡ℎseed pixel is 

exemplified as 𝑋𝑖. The seed pixel that has the best objective 

function value is regarded as the best solution. The fitness 

value is grounded on the classifier’s accuracy and centered on 

the pelicans’ strategy. The candidate solutions are updated. 

They are imitated in two stages, namely the exploration and 

exploitation phases.
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Fig. 3 Architecture of FMS-DLNN classifier 

3.3.2. Phase 1- Exploration 

Here, the bird finds the prey’s location and moves toward 

the prey. The random generation of the prey’s location in the 

search space enhances the exploration’s power and aids in 

finding the optimal global solution. The movement toward the 

prey is expressed as, 

ℵ𝑖,𝑗
(1)

= {
ℵ𝑖,𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝜂𝑗 − 𝐽 ⋅ ℵ𝑖,𝑗), 𝑋𝜂 < 𝑋𝑖;

ℵ𝑖,𝑗 + 𝑟𝑎𝑛𝑑 ∗ (ℵ𝑖,𝑗 − 𝜂𝑗), 𝑒𝑙𝑠𝑒
 

(13) 

Where, the newer position of the 𝑖𝑡ℎseed pixel in the 𝑗𝑡ℎ 

decision variable in phase (1) is elucidated asℵ𝑖.𝑗
(1)

 𝜂𝑗 

representing the prey’s location, 𝑋𝜂denotes their objective 

function value, and𝐽symbolizes a random range [1,2].  

If the objective function value is enhanced, the new 

position attained in this phase is accepted. The position update 

is represented as, 

ℵ𝑖 = {
ℵ𝑖

(1)
, 𝑋𝑖

(1)
< 𝑋𝑖;

ℵ𝑖 , 𝑒𝑙𝑠𝑒
 (14) 

Where, the updated position of the 𝑖𝑡ℎseed pixel in phase 

(1) is specified asℵ𝑖
(1)

 and 𝑋𝑖
(1)

symbolizes its objective 

function value. 

3.3.3. Phase 2- Exploitation 

Here, the pelicans reach the water surface, spread their 

wings to move the fish upwards, and gather them in the throat 

pouch. The local search’s power is enhanced by this behavior 

of winging on the water's surface. This hunting behavior is 

described as, 

ℵ𝑖,𝑗
(2)

= ℵ𝑖,𝑗 + (2 × 𝑟𝑎𝑛𝑑 − 1) ∗ 𝜀𝑖,𝑗 (15) 

𝜀𝑖,𝑗 = 𝑄 ∗ (1 −
𝑒

𝐸
) ∗ ℵ𝑖,𝑗 (16) 

Where, is the newer position of the 𝑖𝑡ℎseed pixel in phase 

(2) is indicated as ℵ𝑖,𝑗
(2)

, the neighborhood radius is specified as 

𝜀𝑖,𝑗, 𝑄is a constant of value 0.2, the iteration counter is 

signified as𝑒, and the total number of iterations is exemplified 

as 𝐸. The position update in this phase (2) is defined by, 

ℵ𝑖 = {
ℵ𝑖

(2)
, 𝑋𝑖

(2)
< 𝑋𝑖;

ℵ𝑖 , 𝑒𝑙𝑠𝑒
 (17) 

Where, ℵ𝑖
(2)

indicates the updated position of the 𝑖𝑡ℎseed 

pixel in phase (2), and 𝑋𝑖
(2)

is its objective function value. The 

best solution is updated regarding all the new positions and the 

objective function values produced in both phases. Until the 

termination criterion is satisfied, the RPO’s steps are repeated. 

Lastly, the best candidate solution for the brain image’s seed 

pixels is attained after several iterations. The generated seed 

pixels are defined as, 

ℵ𝑛
𝑠 = {ℵ1

𝑠, ℵ2
𝑠 , . . . . . , ℵ𝑁

𝑠 } 
(18) 

Where, the 𝑛𝑡ℎ number of seed pixels in the image is 

elucidated as ℵ𝑛
𝑠
.  

3.3.4. RPO-RG 

The tumor region is segmented as of the clustered image 

grounded on the automatically generated seeds(ℵ𝑛
𝑠 ). 

Regarding the threshold value, the input seeds are analogized 

with the neighboring pixels. The region selected should satisfy 

the criteria that the maximum mean difference betwixt a seed 

pixel and its neighboring pixel must be less than the threshold. 

After that, the similar degree of the neighboring pixel along 

with the generated seed pixel is computed as, 

∆red 

Memory Layer 

Ωout 

ω 

ω 

∆red 

∆red 

Input Layer Hidden Layer Output Layer 
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𝜇(𝑧) =
‖ℵ𝑛

𝑠 −𝜛
ℵ
𝑠(𝑧)

‖

𝜛
ℵ𝑛
𝑠

𝑤ℎ𝑒𝑟𝑒, 𝑧 = 1,2, . . . . . 𝑁 (19) 

Where, 𝜛ℵ𝑛
𝑠  signifies the mean of the seed pixel and 

𝜛ℵ
𝑠(𝑧) symbolizes the mean of the adjacent pixels. 

Afterwards, the maximum difference betwixt the seed pixel 

and its neighboring pixel is calculated as, 

)(max
1

max z
N

z


=

=  (20) 

If it satisfies the above condition, the surrounding pixel is 

accepted by the seed pixel. Else, the neighboring pixel is 

considered for the next seed pixel. The regions are iteratively 

grown by comparison of all unallocated neighboring pixels to 

the seed pixel. The segmented tumor region  (ℵ𝑠𝑒𝑔) is attained 

after performing the entire steps. 

3.4. Feature Extraction 

Here, the features, namely Histogram of Oriented 

Gradients (HOG), Local Tetra Pattern (LTP), Discrete 

Wavelet Transform (DWT), Gray-Level Co-occurrence 

Matrix (GLCM), along with the shape, are extracted from the 

segmented image(ℵ𝑠𝑒𝑔). 

3.4.1. DWT 

It provides the image’s simultaneous spatial along with 

frequency domain information. The DWT feature in the 

segmented image is expressed as, 

ℵ𝑠𝑒𝑔(𝐷𝑊𝑇) = ℵ𝑠𝑒𝑔
𝑤 + {ℵ𝑠𝑒𝑔

ℎ + ℵ𝑠𝑒𝑔
𝑣 + ℵ𝑠𝑒𝑔

𝑟 } (21) 

Where, ℵ𝑠𝑒𝑔
𝑤 epitomizes the approximation of the 

segmented image, andℵ𝑠𝑒𝑔
ℎ ,ℵ𝑠𝑒𝑔

𝑣 and ℵ𝑠𝑒𝑔
𝑟

 are the horizontal, 

vertical, and diagonal details of the image, correspondingly. 

3.4.2. HOG 

It is wielded for capturing gradient structure features. It 

works grounded on four steps, namely Orientation binning, 

block normalization, gradient computation, and Descriptor 

blocks. The mathematical representation of normalization can 

be expressed as, 

𝕴 =
𝒔

‖𝒔‖𝟐+𝝍

 

(22) 

Where, 𝜓 is the constant value to avoid deviation, and 𝑠 

is the non-normalized vector. Lastly, the HOG 

feature(ℵ𝑠𝑒𝑔(𝐻𝑂𝐺)) is attained from the normalization 

operation.  

3.4.3. GLCM 

It is the statistical technique for extracting texture 

featuresℵ𝑠𝑒𝑔(𝐺𝐿𝐶𝑀) by analyzing the spatial correlation 

properties of gray scales in the image. The Extracted GLCM 

feature is expressed as, 

ℵ𝑠𝑒𝑔(𝐺𝐿𝐶𝑀) = {ℵ𝑠𝑒𝑔(𝑐𝑜𝑛), ℵ𝑠𝑒𝑔(𝑒𝑛𝑡), ℵ𝑠𝑒𝑔(𝑐𝑜𝑟)} (23) 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 (a) Input images (b) noise removed images (c) segmented images 
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Where, ℵ𝑠𝑒𝑔(𝑐𝑜𝑛), ℵ𝑠𝑒𝑔(𝑒𝑛𝑡)and ℵ𝑠𝑒𝑔(𝑐𝑜𝑟)epitomizes the 

contrast, entropy, and correlation of the segmented image. 

3.4.4. LTP 

An extension of Local Binary Patterns (LBP) is the Local 

Ternary Patterns (LTP), which utilizes a threshold function 

around zero for assessing the local grayscale difference. LTP 

can be generated by the formula, 

ℵ𝑠𝑒𝑔(𝐿𝑇𝑃) = ∑ 2𝑝𝑝−1
𝑝=0 𝑔(ℓ𝑝 − ℓ𝑐) (24) 

Where, 𝑔(ℓ𝑝 − ℓ𝑐) it symbolizes the grayscale difference 

betwixt the neighborhood pixel value (ℓ𝑝) and centre pixel 

value(ℓ𝑐). 

3.4.5. Shape 

Grounded on the shape boundary information where area, 

parameter, and circularity are considered the major features, 

the shape features are extracted; also, it is computed as, 

ℵ𝑠𝑒𝑔(𝑠ℎ𝑎𝑝𝑒) = ∑ ℵ𝑠𝑒𝑔(𝑥 ′, 𝑦′)𝑥,𝑦  (25) 

Wherein, the input segmented image with the extreme 

pixels is indicated asℵ𝑠𝑒𝑔(𝑥 ′, 𝑦′). Lastly, all the features are 

extracted, and the feature set is expressed as, 

𝛥 = {ℵ𝑠𝑒𝑔(𝐷𝑊𝑇), ℵ𝑠𝑒𝑔(𝐻𝑂𝐺), ℵ𝑠𝑒𝑔(𝐺𝐿𝐶𝑀), ℵ𝑠𝑒𝑔(𝐿𝑇𝑃), ℵ𝑠𝑒𝑔(𝑠ℎ𝑎𝑝𝑒)} 

 (26) 

Now, the feature set(𝛥), containing all the extracted 

features is carried out for the feature reduction process. 

3.5. Feature Reduction 

Here, by utilizing LFDA, the unnecessary features in the 

feature set(𝛥) are reduced. The FDA aims to maximize the 

between-class variance and minimizing the within-class 

variance. The feature covariance matrices of both classes are 

presumed by the FDA, leading to a linear decision boundary 

that generates an error in reducing dimensionality. So, the 

proposed methodology utilizes a logarithmic function in the 

covariance matrix calculation.  

LFDA attempts to find the vector that maximizes the 

separation betwixt the feature set’s classes. LFDA is given by 

the weight vector 𝜃, which maximizes the function, 

𝛥(𝜃) =
𝜃𝑇𝛭𝐵𝜃

𝜃𝑇𝛭𝑊𝜃
 (27) 

Where, 𝛭𝐵and 𝛭𝑊are the between and within class 

matrices, and 𝑇 epitomizes the transpose. Both the matrices 

are defined by, 

𝛭𝐵 = 𝑙𝑜𝑔[𝛩𝐵 ∗ (𝑢1 − 𝑢2)(𝑢1 − 𝑢2)
𝑇] (28) 

 
Fig. 5 Comparison of clustering time 

𝛭𝑊 = 𝑙𝑜𝑔[𝛩𝑊 ∗ ∑ ∑ (𝜗 − 𝑢1)(𝜗 − 𝑢1)
𝑇

𝜗∈𝛥𝑖=1,2 ] (29) 

Where, 𝛩𝑊and 𝛩𝐵signifies the affinity matrices and 𝑢is 

the mean vector. The affinity matrices contain class 

information but do not contain locality information. Once the 

scatter matrices are computed, the regular LFDA Eigen 

problem is utilized for computing the discriminative 

projection. It is expressed as, 

𝑀𝐵 ∗ 𝛹 =∧ 𝑀𝐵 ∗ 𝛹 (30) 

Where, 𝛹symbolizes the Eigen factor. Lastly, the 

extracted features’ dimensionality is reduced; also, the 

transformed feature set (𝛥𝑟𝑒𝑑)is carried out for classification.      

3.6. Classification 

Here, for classifying the tumour’s stages, the necessary 

features(𝛥𝑟𝑒𝑑) are fed as input to the FMS-DLNN. DLNN is 

made up of an output layer, several HLs, along with an input 

layer. 

Table 1. Performance analysis of the proposed GKKF technique 

Techniques/Metrics PSNR MSE SSIM 

Proposed GKKF 70.76 0.0057 99.91 

KF 57.61 0.1205 98.30 

GF 53.69 0.2985 97.02 

WF 45.46 1.9736 94.41 
 

The input layer process the reduced feature set via the 

number of HLs; lastly, the output in the output layer is 

produced. In DLNN, the weight value is randomly initialized, 

which consumes more time for execution and may produce 

inaccurate outcomes.  

To overcome this problem, a layer named the memory 

layer, which aids in selecting the weight value by utilizing 

previously trained data and the fuzzy rules is added to the 

network. Further, rather than utilizing the normal activation 

function, the proposed technique utilizes the Sigtan activation 
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function for handling the large input data and enhancing the 

process. Figure 3 depicts the FMS-DLNN’s architecture, 

Primarily, the features(𝛥𝑟𝑒𝑑) are fed into the network’s 

input layer. Utilizing the memory layer, the weight values of 

each layer are initialized. The memory layer encloses several 

weight values of the previously trained data; also, the weight 

values(𝜔) to be initialized in the proposed FMS-DLNN are 

selected grounded on the fuzzy rules. The weight selection is 

expressed as, 

𝜔 → 𝛯𝑜𝑢𝑡 (31) 

Wherein, 𝛯𝑜𝑢𝑡signifies the memory layer’s output. The 

weight values are selected only if the following fuzzy 

condition is satisfied. 

𝛷𝑜𝑢𝑡 == 𝑃𝑜𝑢𝑡 (32) 

As per the above equation, the weight values relevant to 

that output are selected and initialized if the target output 
(𝛷𝑜𝑢𝑡) 

equals the output (𝑃𝑜𝑢𝑡) attained by the previous data 

in the memory layer. After that, the input values and 

corresponding weight values are fed into the HL, which is 

deeply connected with its preceding layer. The output of the 

HL (𝛺ℎ𝑖𝑑) is given by, 

𝛺ℎ𝑖𝑑 = ℘(𝜔 ∗ 𝛥𝑟𝑒𝑑 + 𝛿) (33) 

Here, the HL’s bias value is exemplified as𝛿, and the 

activation function is specified as ℘. Each layer comprises 

many neurons, and each neuron has a function called the 

activation function.  
 

Here, the Sigtan activation function is wielded for 

enhancing classification accuracy. The Sigtan activation 

function is defined by the expression, 

 

 

Fig. 6 Performance validation of the proposed RPO-RG algorithm 

℘ =
𝑒𝛥𝑟𝑒𝑑−𝑒−𝛥𝑟𝑒𝑑

1+𝑒−𝛥𝑟𝑒𝑑
 (34) 

The network comprises several HLs. The output at each 

layer is attained by pooling all the incoming input values. 

After that, the output of the HL is given to the output layer. It 

is expressed as, 

𝛺𝑜𝑢𝑡 = ℘(𝜔 ∗ 𝑒−𝛥𝑟𝑒𝑑 + 𝛿) (35) 

Lastly, the output 𝛺𝑜𝑢𝑡 is attained from the output layer. 
Thus, the proposed FMS-DLNN classifier accurately 

classified the stages of the BT.  

4. Results and Discussions 
Here, the proposed mechanism’s performance is 

evaluated by analogizing its outcomes with other prevailing 

techniques.  

In the working platform of MATLAB, the proposed 

tumor stage prediction technique is employed. The 

performance and comparative evaluations are executed to 

prove the proposed system’s effectiveness.  

From the collected data, 80% of images are utilized for 

training and 20% of images for testing. Figure 4 depicts 

several input MRI images (T1, T1c, T2, and FLAIR), their 

corresponding pre-processed, and the segmented output 

images.  

In Figure 4(a), the input images of the four classes T1, 

T1c, T2, and FLAIR collected from the BraTS 2018 dataset 

are exposed; in Figure 4(b), the pre-processed image utilizing 

the GKKF technique is illustrated; in Figure 4(c), the 

segmented images utilizing the RPO-RG technique are 

displayed. The proposed model has accurately segmented the 

tumor region. 

 

 
Fig. 7 Performance analysis of the proposed method  
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Fig. 8 Comparative analysis of the proposed and the existing methods 

4.1. Database Description 

The BraTS 2018 dataset’s brain tumor MRI images are 

wielded by the proposed system. Multimodal 3D brain MRIs 

are enclosed by the braTS 2018 dataset, which also contains 

ground truth BTSs that enclose 4 MRI modalities per case (T1, 

T1c, T2, and FLAIR). The necrotic and non-enhancing tumor 

core, the peritumoral edema, and the enhancing tumor are the 

3 tumor sub-regions included here. 

4.2. Performance Analysis of Pre-processing  

With the prevailing techniques like Kuwahara Filter (KF), 

Gaussian Filter (GF), along with Wiener Filter (WF), the 

proposed GKKF noise removal mechanism’s performance is 

evaluated regarding the metrics like Structural Similarity 

Index (SSIM), Mean Square Error (MSE), together with Peak 

Signal-to-Noise Ratio (PSNR). Table 1 analyses the proposed 

GKKF and existing techniques' performance regarding some 

quality metrics. The proposed model’s efficacy is indicated by 

the higher PSNR and SSIM values. The negative value is the 

MSE, which tends to be lower for an efficient pre-processing 

technique. The PSNR value attained by the proposed one is 

13.15dB higher than the prevailing KF.  

The SSIM value displays a greater difference of 1.61 % 

than the existing KF technique. Similarly, by attaining a lower 

MSE value when contrasted with the prevailing systems, the 

proposed model’s MSE value also exhibits better 

performance. Thus, the proposed framework outperforms the 

conventional approaches. 

4.3. Performance Analysis of Clustering 

Grounded on the time consumed for clustering, the 

proposed EFFC’s performance is assessed with the prevailing 

systems like Fuzzy C- Means (FCM) and K-means, along with 

Farthest First Clustering (FFC).  

Figure 5 depicts the graphical illustration of the proposed 

and the prevailing approaches regarding clustering time. The 

proposed EFFC method takes a clustering time of 0.014485s. 

The existing FFC consumed 0.06139s, the K-Means technique 

took 0.179249s, and the FCM system consumed 0.299207s for 

clustering. The above analysis exposed that the proposed 

EFFC yields lesser time for clustering than the prevailing 

techniques. 

4.4. Performance Analysis of Segmentation 

Concerning the metrics like specificity, recall, F-

Measure, precision, Mathews Correlation Coefficient (MCC), 

Net Present Value (NPV), sensitivity, along with accuracy, the 

proposed RPO-RG’s performance is assessed with the 

conventional approaches like RG, Watershed Segmentation 

(WS), and Active Contour (AC).  

Grounded on specificity, sensitivity, along with accuracy, 

the proposed and prevailing approaches’ comparative 

assessment is elucidated in Figure 6. These metrics’ high 

values indicate the proposed model’s high performance. 

74.13% and 99.9% are the sensitivity and specificity attained 

by the proposed one. These values are higher than the 

prevailing ones.  

Table 2. Performance comparison of the proposed and the existing 

methods  

Techniques/ 

Metrics 

Recall 

(%) 

F-

measure 

(%) 

MCC 

(%) 

Precision 

(%) 

NPV 

(%) 

Proposed 

RPO-RG 
74.13 84.49 84.45 98.43 98.08 

RG 65.14 58.80 67.03 47.22 96.71 

AC 61.03 42.17 40.30 35.31 97.82 

WS 57.39 28.79 27.41 19.31 97.56 

Table 3. Comparative analysis of the proposed model and previous 

studies 

Techniques/Metrics Accuracy (%) Dataset 

Proposed  FMS-DLNN 98.75 
BraTS 

2018 

Softmax  

(Sharif et al., 2020) 
92.5 

BraTS 

2018 

ELM  

(Khan et al., 2020) 
93.40 

BraTS 

2018 

RNN 

(Cristin et al., 2021) 
93.35 

BraTS 

2018 

Similarly, the accuracy attained by the proposed system 

is 98.09%; also, it displays an improvement of 6.37% when 

analogized with the existing RG algorithm. Thus, it is proved 

that the proposed model is more effective in segmenting the 

tumor regions. 

Table 2 exhibits the proposed RPO-RG’s performance 

regarding the recall, F-Measure, precision, MCC, and NPV. 

The recall, F-measure, and Precision values of the proposed 

model improved by 8.99%, 25.69%, and 51.21% more than 

the existing RG technique. 98.08% and 84.45% are the NPV 
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and MCC values attained by the proposed system, while 

prevailing approaches provide comparatively lower 

performance. The proposed one performed better than the 

conventional frameworks in this performance comparison. 

4.5. Performance Analysis of Classifier 

With the prevailing approaches like Adaptive Neuro-

Fuzzy Inference Systems (ANFIS), Artificial Neural 

Networks (ANN), along with Deep Learning Neural Networks 

(DLNN), the proposed FMS-DLNN’s performance is 

analogized regarding the metrics, namely sensitivity, 

specificity, accuracy, precision, False Recognition Rate 

(FRR), False Negative Rate (FNR), MCC, and Confusion 

Matrix (CM). 

The proposed, along with the prevailing techniques’ 

performance, is evaluated regarding the specificity, precision, 

sensitivity, together with accuracy in Figure 7. The sensitivity 

attained by the proposed framework is 97.57%, which is 

higher than the prevailing DLNN, ANN, and ANFIS 

techniques that have 94.5%, 56%, and 38%, correspondingly. 

Similarly, the proposed one has specificity, accuracy, and 

precision of  99.16%, 98.75%, and 97.5%, which is higher 

when analogized with the conventional approaches. 

Therefore, the outcomes proved that the proposed model 

accurately classified the BT’s stages.  

Regarding FNR, MCC, along with FRR, the evaluation of 

the proposed technique with the prevailing mechanisms is 

elucidated in Figure 8. The MCC value achieved by the 

proposed one is 96.66%, while the prevailing approaches 

attain 92.66% for DLNN, 41.33% for ANN, and 17.33% for 

ANFIS are lower than the proposed technique. The proposed 

technique attained the same FNR and FRR value of 0.025. 

Thus, the proposed model achieved greater performance and 

classified the tumor stages accurately. 

4.6. Comparative Analysis of Proposed Approach and 

Previous Approaches 

The comparative assessment of the proposed FMS-

DLNN and the prevailing models with the same datasets is 

explicated here. The comparative assessment of the proposed, 

along with the prevailing models, is illustrated in Table 3. 

When contrasted with the conventional Softmax classifier, a 

greater difference in accuracy by 6.70% was exhibited by the 

proposed mechanism. Similarly, the proposed technique 

performed well when analogized with the prevailing ELM and 

RNN models. Thus, in classifying the BT’s stages, the 

proposed model outperforms.  

5. Conclusion 
This paper proposes a novel technique for BT stages 

prediction utilizing an FMS-DLNN classifier and automatic 

RPO-RG segmentation algorithm. Here, the proposed 

technique’s performance is evaluated regarding various 

metrics.  

The outcomes displayed that the accuracy attained by the 

proposed framework is 98.75% for the classifier and 98.09% 

for the segmentation. This exhibits the system’s better 

performance. Moreover, for clustering, lesser time was 

consumed by the proposed strategy. When analogized with the 

prevailing approaches, the proposed one was more effective in 

removing the noise. Likewise, for all metrics, better 

performance was attained by the proposed technique.  

Thus, the outcomes exhibited that the proposed technique 

was more efficient in classifying the BT’s stages. However, 

the tumor type was not predicted accurately by the proposed 

one. For detecting the tumour type accurately, the work will 

be extended in the future by considering DL models trained 

with a larger number of layers.  
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