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Abstract - Prostate cancer (PCa) is one of the prevalent forms of cancer disease found in males due to the unusual development 

of cells. Early diagnosis of this PCa can be useful in terms of treatment and medication. Segmentation and classification of the 

PCa through manual observation are one of the diagnosis methods, but it is highly challenging due to complex boundaries and 

features. Machine learning-based semantic segmentation architecture models consume more energy and processing time and 

will lead to reduced scalability and reliability. In order to tackle these limitations, deep learning-based semantic segmentation 

architecture can be used as it has more advantages in discriminating the features of the lesions efficiently and accurately. The 

main aim of this work is to segment the PCa lesions accurately and efficiently. Hence, deep learning-based semantic 

segmentation model-based architectures such as U-Net, Linknet, and PSPNet are proposed in this research. These models are 

equipped with a backbone as Inception-ResNet-v2 CNN architecture for prostate cancer gland segmentation. Nearest neighbour 

interpolation and normalization methods are employed as the preprocessing technique for enhancing the PCa MRI images. The 

normalized image was taken for processing various settings of U-Net, LinkNet and PSP-Net architectures for performing 

segmentation and for optimizing these models, Adam, Adamax and Nadam optimizers are used. The experiment was performed 

using NCI-ISBI 2013 dataset. Performance analysis of the proposed models is evaluated using Intersection of Union (IoU) 

scores, where the LinkNet optimized with Adamax obtained a best IoU score of 0.763337802. 

 

Keywords - PCa semantic segmentation, U-Net, LinkNet, PSP-Net, Inception-ResNet-v2. 

 

1. Introduction 
PCa is one of the top cancer cases among the male 

population around the world, and it mostly affects the prostate 

gland. Segmentation and classification are the two main 

processes that are required to carry out performance analysis. 

The process of segmenting the prostate is challenging, and the 

specific challenges that are presented by each method are 

distinct from one another. The most significant difficulties that 

must be overcome to segment the prostate in medical images 

accurately include low contrast, micro-calcifications, speckle, 

and imaging aberrations such as shadow postures. The 

segmentation method involves reflecting the prostate borders 

in the MRI, which is particularly important for concentrating 

the subsequent processing on the organ of interest. This 

procedure involves extracting ROIs from a data set consisting 

of either 2D prostate or 3D prostate volumes and then 

segmenting the PCa [1].  

 

When applying machine learning (ML) strategies, the 

process of precisely delineating the PCa from MRI might be a 

time-taking one. Therefore, deep learning (DL) was 

highlighted as the potential new technique for precision 

radiotherapy delivery in PCa, where accurate prostate 

segmentation assists in cancer identification and therapy. This 

is because DL has the ability to learn from data in a very large 

amount of detail [1]. 

 

The segmentation of images is a crucial yet challenging 

aspect of the image processing process. It has emerged as a 

central focus in the study of image comprehension in recent 

years. Image segmentation is the process of dividing an entire 

image into multiple sections that all have certain common 

characteristics. Generally, it is the distinguishing target 

process from an image's background. At the moment, 

techniques for segmentation are progressing in the direction of 

becoming faster and more precise. Image segmentation 

techniques that are founded on DL have shown promising 

results in recent years due to the rapid advancement of AI in 

general and DL in particular. These techniques have been 

particularly successful in the domain of segmenting images. 

DL has certain benefits in terms of accuracy and speed in 

segmentation in comparison to more standard ML and 

computer vision methods. Therefore, the application of DL to  
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Fig. 1 Deep learning-based segmentation [5] 

 

the segmentation of images can successfully assist physicians 

in confirming the infected tumor size, quantitatively 

evaluating the effect of both pre and post-therapy, and 

significantly lowering the amount of work that physicians 

need to undertake [2]. 

 

Magnetic resonance imaging (MRI) is a promising 

imaging tool for diagnosing PCa. The biopsies performed 

using MRI are superior to those performed using TRUS in 

terms of accuracy and risk to the patient. Because it offers 

superior soft-tissue contrast, better resolution, and it is a 

radiation-free technique, MRI is a particularly popular choice 

for identifying and staging PCa. PCa recurrence rate changes 

through three prostate zones known as the transitional zone 

(TZ), peripheral zone (PZ), and central zone (CZ), and this 

feature is a main consideration that went into the development 

of the segmentation algorithm [3]. The manual delineation of 

prostate glands and PCa on MR images is a time-consuming 

and operator-dependent task that requires skilled medical 

professionals—the manual delineation of prostate glands and 

PCa on MRI. When doing an examination of the prostate using 

MRI, segmentation is absolutely necessary, particularly on 

T2w MRI or both T2w and the related T1w images [4]. 

 

The learned CNN model compresses the underlying 

image using sequences of multiple convolution layers, 

activation, and pooling. Inverse operations have the effect of 

increasing the size of the compressed latent representation. 

The network is maintained such that it can be trained from end 

to end. The segmentation labels are obtained from a forward 

pass when the test is performed. A common procedure for 

segmentation that makes use of a DL model is illustrated in 

figure 1. The models that are used for segmentation begin by 

reducing the dimensions of the input image by employing a 

series of layers that are both convolutional and pooling [6].  

This compression of the input image is done so that a 

better discriminative representation can be learned of the 

regions that need to be segmented when the latent space is 

made more compact. The second half of the networks is 

responsible for expanding the feature maps to the original 

image's dimensions and providing the segmentation labels for 

the region of interest (RoI) [7]. This paper proposes three 

different DL-based semantic segmentation approaches based 

on convolution network architectures like U-Net, LinkNet and 

PSP-Net. The Inception-ResNet-v2 model was implemented 

as a backbone network for these segmentation models for PCa 

lesion segmentation. Initially, image interpolation and 

intensity normalization were employed as preprocessing 

techniques for image resizing and image normalization for 

reducing variations in the intensity distributions of the image. 

Further, those processed images are applied for processing in 

the various sets of U-Net, LinkNet and PSP-Net architecture 

which is a full convolution encoder and decoder network with 

the skip connections among the encoder and decoder blocks 

using Inception-ResNet-v2 [28]. The proposed model uses 

hyperparameter optimization with various optimization 

algorithms such as Adam, Adamax, and Nadam for the 

segmentation techniques to enhance prostate boundary 

detection. 

 

The remaining article has been sectioned as; section 2 

discusses the related works done on PCa segmentations. The 

next section provides the implemented semantic segmentation 

architectures using CNN models for segmenting the lesions. 

Section 4 presents the proposed methodology's experimental 

analysis and performance analysis based on IoU Score in 

various settings, and section 5 concludes the work with future 

suggestions.
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2. Literature Survey 
Image segmentation is considered a classification of pixel 

level constraint where all the pixels were classified with one 

of several probable label classes, which was the final step in 

the development of DL models. Initially, the progression of 

DL approaches was directed toward issues involving image 

classification, followed by object detection and then 

segmentation of images. For instance, in cancer segmentation, 

all the voxels could be labelled as belonging to either the class 

labels of the objects of interest (target) or the backgrounds, 

depending on which label is assigned. Different DL-based 

models, such as encoder-decoder, fully convolutional, multi-

scale and pyramid, recurrent neural, attention, generative, and 

adversarial training-based networks, have been presented for 

the delineation task because it is a very common task that is 

present in a wide variety of problem domains. These models 

have been developed because the delineation task is so 

widespread. 

 

In the process of diagnosing PCa, it is extremely 

important to segment the prostate using MRI accurately. DL-

based models were ineffective in earlier studies because of the 

disease-specific changes in the shapes and borders of the 

glands, as well as the complexity involved in differentiating 

the surrounding tissues. Utilizing combined loss and increased 

batch normalization function, a DL model was effectively 

deployed in the successful segmentation of the prostate on an 

MRI [8]. In order to conduct this research, the U-Net 

segmentation model was utilized. To get a clearer image of the 

segment overlap, the loss function has been altered so that it 

now makes use of the dice loss and the binary cross-entropy 

loss, both of which are derived from the next-best solution for 

measuring dissimilarity and similarity. The network over-

fitting and vanishing gradient errors have both been 

minimized because of the better batch normalization with 

ReLU activation in the extraction of the feature process. The 

accuracy of this model and the amount of time it takes to 

process has improved as a result. 

 

The prostate and its zones can be seen in great anatomical 

detail using MRI technology. It plays an essential part in a 

wide variety of diagnostic applications. Numerous diagnostic 

and therapeutic applications can be made easier thanks to 

automatic segmentation techniques. One example of this is the 

segmentation of the prostate and prostate zones using MRI. 

However, this is a very difficult process to accomplish due to 

the absence of a distinct prostate boundary, the variability of 

prostate tissue, and the wide range of prostate morphologies 

that can be found in individuals. In order to solve this issue, a 

Dense U-Net model was proposed in [9] to separate the 

prostate and its zones autonomously. The DenseNet and U-

Net models were combined to create this Dense U-Net. To 

analyze the theory that a network could learn even when the 

labels were not precise, the networks were trained and tested 

independently on weakly annotated masks and precisely 

annotated masks. The prostate region is successfully detected, 

and the network is able to segment the gland and its various 

zones. 
 

An MRI segmentation method based on Pyramid Scene 

Parsing Network (PSP-Net) was proposed in [10]. PSP-Net, a 

generally utilized architecture for producing the segmentation 

effects required in medical image segmentation applications, 

has improved its effectiveness using contrast-limited adaptive 

histogram equalization. This PSP-Net segmentation model 

worked efficiently in the PCa segmentation process utilizing 

MRI, and this model had a better discrimination impact than 

the FCN and U-Net segmentation models. In [27], three 

different deep learning algorithms, including U-Net, efficient 

residual factorized convNet (ERFNet), and efficient neural 

network (ENet), were offered as ways to separate the prostate 

using MRI. These DL networks were evaluated for their 

ability to segment the entire prostate gland; the results showed 

that ENet had the highest level of performance. 
 

An end-to-end transfer learning-based trainable approach 

for segmenting cardiac MRI images was proposed in [12]. 

This method can be read as follows: The encoder in this model 

was changed with CNN network designs such as DenseNet, 

ResNet, and VGG. The model also made use of the Feature 

Pyramid Network (FPN), which is an architecture, and the U-

Net architecture. The CLAHE algorithm, ROI cropping, 

normalization, and random training data augmentation are all 

components of the data training process. Because cross-

entropy can only be applied on a per-pixel basis, a weighted 

mixture of cross-entropy was utilized as the loss function in 

this study. This allowed for better segmentation results than 

was previously possible. Exhaustive techniques of selection 

were used in order to determine hyperparameters like the size 

of the filter, learning rate, and optimizer selection for the 

purpose of optimizing the segmentation outcomes. After 

putting in place optimizers such as Adam, SGD, and Adamax 

for a total of one hundred epochs, the winner was determined 

to be Adam based on the dice score. 
 

The majority of the currently used CNN-based medical 

image segmentation algorithms were initially created for the 

purpose of segmenting natural images. These approaches 

constituted the basis for the majority of the methods that are 

currently in use. As a result, they neglect, to a considerable 

extent, the distinctions that exist between the two fields, like 

the lower level of variability that exists in the form and 

appearances of the target volumes and the fewer amounts of 

training data that are required for medical applications. In 

order to solve this problem, in [13], a CNN-based technique 

was proposed for PCa segmentation in MRI that made use of 

statistical shape approaches. This approach makes predictions 

regarding the location of the PCa as well as the parameters of 

the shape model, which defines the position of the prostate 

surface's important points. It is also possible to use statistical 

shape models in order to generate additional training data, 

which can make the process of training big CNNs more 

manageable. 
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For the purpose of residual semantic segmentation of the 

prostate derived from MRI images, a VGG19-RSeg CNN 

model was presented in [14]. This model was created by 

adding residual connections to the VGG-19 fully 

convolutional network after it was initially established. Using 

semantic segmentation, or a pixel-by-pixel classification of 

the information contained within the input image, the VGG19-

RSeg model locates the region of interest (ROI) in the images. 

Although a number of research have employed CNN fully in 

the problem of segmenting medical images, this analysis 

presents two additional types of residual connection—remote 

and neighboring—that improve the accuracy of segmentation 

over the basic design. 

 

In [29], an automatic segmentation model for PCa from 

MRI images was developed. This model was built on U-Net 

and used Xception, Resnet18, and Resnet-34 as the encoder 

portion. Additionally, local residual connections were used. 

The model possesses two significant benefits. First, the 

model's performance has been improved thanks to the use of 

standard global residual connections in addition to the 

utilization of the connections of local residual in the decoder 

portion of U-Net. Second, since the encoder component uses 

pre-trained classification models, the convergence process to 

the ideal value is both accurate and rapid. This is because the 

process uses pre-trained weights to assist it. 

 

3. Methodology 
Medical image segmentation is an application of the 

image processing domain to analyze and process two-

dimensional or three-dimensional images to obtain 

segmentation, extraction, 3D reconstruction, and human 

organs in 3D view, diseased bodies, and soft tissues. It does 

this by segmenting the image into numerous parts according 

to how similar or unlike each region is to the others. By 

utilizing this technology, medical professionals can conduct 

even quantitative or qualitative studies of lesions and different 

ROIs, significantly improving the accuracy and dependability 

of medical diagnosis. Presently, organs and tissues of image 

cells are utilized as objects in research. 

 

In general, the segmentation of clinical image could be 

defined by the model of set theory: An image I is given and a 

similarity constraint set 𝐶𝑖(𝑖 = 1,2, . . ), the segmentation of I 

is to acquire a part of it. 

 

⋃ 𝑅𝑥 = 𝐼,𝑁
𝑥=1  𝑅𝑥 ∩ 𝑅𝑦 = ∅, ∀𝑥 ≠ 𝑦, 𝑥, 𝑦 ∈ [1, 𝑁]   (1) 

 

In this case, 𝑅𝑥 fulfils both sets of every pixel in the 

communication similarity constraint 𝐶𝑖(𝑖 = 1,2, . . ), also 

known as image regions, 𝑅𝑦 was subject to the same 

constraints. In order to differentiate between the various areas, 

the labels x and y are utilized. The number of regions that 

remain after division is denoted by the positive integer N, 

which must be more than 2. The step-by-step method of 

segmenting medical images can be broken down into the 

following stages: 

 

• Acquire a data set for medical imaging, which should 

typically consist of the training set, validation set, and 

test set. When applying ML to the process of image 

processing, the image is frequently segmented into three 

distinct subsections. Particularly, the training set was 

utilized in the process of training the network model, the 

validation set was utilized in the process of adjusting the 

hyperparameters of the model, and the test set was 

utilized in the process of verifying the model's final 

effect. 

• To increase the size of the data set, preprocessing and 

expansion of the image can be made, which often 

includes the input image's standardization. Additionally, 

the scaling and rotation randomly on the input image 

should be made. 

• To segment the medical image, a proper medical image 

segmentation method should be used, and the segmented 

images should then be output. 

• In order to establish and validate the efficacy of clinical 

image segmentation, reliable performance metrics must 

be established and validated. This is a fundamental 

component of the overall process [2]. 

 

In this section, deep semantic segmentation architectures 

called U-Net, LinkNet, and PSP-Net, along with encoder 

backbone Inception-ResNet-v2, are used to the prostate gland 

MR image for segmenting the prostate glands. The prostate 

gland was modelled to be divided into component parts based 

on their appearance in this design. 

 

3.1. Image Processing 

The image preprocessing technique should be used to 

achieve common image sizes. Images may have a variety of 

sizes; nevertheless, standard image sizes can be achieved by 

using this technique. 

 

3.2. Nearest Neighbor Interpolation Technique 

The most common interpolation method is known as the 

"nearest neighbour" interpolation approach. This method, as 

opposed to calculating an average value based on some 

weighting criteria or generating an intermediate value based 

on sophisticated procedures, simply detects the "nearest" 

neighbouring pixel and assumes the intensity value of that 

pixel's value. This method was utilized to reduce the size of an 

image by computing an average value for the data points 

contained inside the image vector based on a set of weighting 

criteria. At first, the NCI-ISBI 2013 data set [20] was 

displayed in three different sizes: 256x256, 320x320, and 

384x384. Changing the image size by conducting column-

wise and row-wise interpolation on the image matrix and then 

using the ceil function to normalize the row-wise and column-

wise pixel positions is possible. 
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3.3. Semantic Segmentation 

The process of semantic segmentation, also known as 

image segmentation, involves grouping together in an image 

those aspects of it that correspond to the same type of object. 

Because each pixel in an image is categorized in accordance 

with a category, this method can be thought of as a sort of 

prediction at the pixel level. To be more exact, semantic image 

segmentation aims to identify each pixel of the images with a 

corresponding class of what is being represented. This will 

allow the images to be broken down into their component 

parts. Because this task involves predicting each pixel in the 

image, it is frequently referred to as dense prediction. The 

process of semantic segmentation consists of three steps: first, 

classifying an object in the images, then localizing the object 

by locating it and drawing a bounding box around it, and 

finally, segmenting the image by creating a segmentation 

mask and grouping the pixels in a localized image together.  

 

Semantic segmentation may basically be summed up as 

the classification of a specific class of image and the 

subsequent separation of that class from the remaining image 

classes by applying segmentation masks over the top of the 

image. The process of semantic segmentation frequently 

necessitates the extraction of features and representations that 

are capable of deriving meaningful correlations from the input 

images. This effectively eliminates the noise in the images. 

The objective here is to take an image and make output in such 

a way that it contains a segmentation map. The pixel value of 

the input image (which can range from 0 to 255) will be 

converted into a class label value (0, 1, 2, ... n), and that will 

be the output. Based on AI, the convolutional network that was 

employed in the process of extracting features is an encoder. 

The image is also down-sampled when the encoder is utilized, 

while the decoder is the name for the convolutional network 

used for up-sampling [6]. 

 

3.4. U-Net Architecture 

U-Net architecture is a variation of the fully convolutional 

network (FCN). It was initially developed for use in medicine, 

and its primary goal was to locate cancers in the lungs and the 

brain. Encoders and decoders in the U-Net have a very similar 

layout. The first method, known as down-sampling, is used to 

extract features, while the second method, known as up-

sampling, is used to up-sample the features that have been 

extracted using the deconvolutional layers. The main 

distinction that can be made between the FCN and the U-Net 

is that the former employs the utilization of the ultimately 

extracted features for the purpose of up-sampling. 

 

In contrast, the latter makes use of something that is 

referred to as a shortcut link. The problem of information loss 

is the motivation behind creating the shortcut connection 

within the U-Net. When contrasted with FCN, U-Net reveals 

a number of distinguishing properties. Initially, both sides of 

the architectural structure are totally symmetrical. Secondly, 

the procedure of the FCN decoder was quite straightforward, 

requiring just one deconvolution function; thirdly, there were 

no comparable convolution structures. Finally, while both U-

Net and FCN make use of the jump join operation, the addition 

function was used by FCN while U-Net uses the stack 

operation. Fig. 2 represents the network architecture of the U-

Net system [29].  

 

U-Net was developed in such a way that it contains both 

encoder and decoder blocks in its architecture. A U-Net design 

is formed when these individual blocks of the encoder 

communicate their extracted features to the individual blocks 

of the decoder that correspond to them. Thus, it has been 

discovered that as the convolutional networks process the 

image, its dimensions get increasingly refined. This is due to 

the fact that it max-pools layers at the same time, which results 

in the loss of information during the process. By concatenating 

high-level features with low-level ones, this architecture 

enables the network to both acquire finer information and 

store more information than it would be. U-Net can produce 

results that are both more precise and more granular as a result 

of the process of concatenating the information from the 

various blocks [16]. 

 

3.5. LinkNet Architecture 

LinkNet is a light, deep neural network architecture that was 

developed for the purpose of performing semantic 

segmentation. It has applications in various domains, 

including augmented reality, self-driving automobiles, and 

more. Figure 3 illustrates the LinkNet network's underlying 

architecture. In this context, "conv" refers to "convolution," 

and "full-conv" refers to "complete" convolution. In addition, 

a down-sampling by a factor of 2 can be done by conducting 

stridden convolution. An up-sampling by a factor of 2 can be 

denoted using the notation *2 or the notation /2. It was decided 

to employ batch normalization between each convolutional 

layer, and then the ReLU non-linearity was applied 

afterwards. The encoder is located in the left half of the 

network depicted in figure 3, and the decoder is located in the 

right half. The encoder begins its operation with an initial 

block responsible for performing convolution on the input 

images using a kernel that is 7x7 in size and a stride of 2. In 

addition, this block is responsible for carrying out spatial max-

pooling in an area measuring 3x3, with a stride of 2. The latter 

part of the encoder is made up of residual blocks, denoted by 

the code name encoder-block (i). Figure 4 (a) provides a 

detailed illustration of the layers contained within these 

encoder blocks. Figure 4 (b) presents further information 

regarding the layers that make up the decoder blocks. 

Encoders for modern segmentation algorithms like VGG and 

ResNet, which are massive in terms of the number of 

parameters and GFLOPs they require, use neural networks 

like ResNet and VGG. LinkNet employs ResNet as its 

encoder, which, although a relatively lighter network, 

nevertheless manages to outperform. 
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Fig. 2 Architecture of U-Net [16] 

 

Another way to execute segmentation is by feeding the 

output of the encoder directly into the decoder. This is done 

directly using the encoder's output. In this particular 

implementation of LinkNet, the input of each encoder layer is 

instead sent directly to the output of the decoder layer that 

corresponds to it. By carrying out these steps, the decoder and 

the up-sampling operations it performs will be able to make 

use of the lost spatial information in its quest to retrieve it. In 

addition, the decoder can make use of fewer parameters due to 

the fact that it shares the knowledge that the encoder has 

gained at each and every layer [17]. 

 

3.6. PSP-Net Architecture 

Pyramid Scene Parsing Network, also known as PSP-Net, 

is a semantic segmentation model that makes use of a pyramid 

parsing module (PPM). This module makes use of global 

context information using different-region-based context 

aggregation. PSP-Net performs far better than other semantic 

segmentation nets such as FCN, U-Net, and Deeplab when it 

comes to semantic segmentation. During the course of this 

investigation, the PSP-Net for prostate MRI segmentation was 

proposed. This network is mostly utilized for the semantic 

segmentation of prostate MRI images. PSP-network Net's 

architecture is depicted in Fig. 5.  

PSP-Net makes use of the ReLU activation function, and 

the expression of the function is shown in the equation. 

 

𝑅𝑒𝐿𝑈 (𝑥) = max (𝑥, 0)            (2) 

 

It is clear, both from the expression of the function and 

the curves, that the function of ReLU does not suffer from the 

issue of gradient saturations, which could lead to an extension 

in network sparsity. 

 

This was because the neurons whose individual variables 

were smaller than 0 were all fixed to 0. Through the use of the 

ReLU, the generalizability of both the structure and the 

network characteristics derived from it is increased. However, 

in the case of the neurons whose values are set to zero, 

discarding these neurons prior to training will take place when 

the learning rate is high. As a result, the learning rate was 

improved by considering both previous experience and 

subsequent experimentation. Figure 5 depicts the PSP-Net 

network architecture. PSP-Net's method for image semantic 

segmentation can be broken down into the following steps: 

After the image has been loaded into PSP-Net, the feature map 

of the image will be extracted using a pre-trained version of 

the Inception-ResNet model.  
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Fig. 3 Architecture of LinkNet [17] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Convolutional modules in (a) encoder-block (i) (b) decoder-block 

(i) [17] 

The feature map that was acquired by the final 

convolution will then be sent to the PPM. This will divide the 

incoming feature layer into 6x6 areas, 3x3 regions, 2x2 

regions, and 1x1 regions. Following this, average pooling will 

be performed inside each region to collect the feature 

information of various sub-regions, and then up-sampling will 

be performed. Concat is used to combine the feature 

information collected by Inception-ResNet-v2 and the feature 

information extracted from various sub-regions to produce a 

feature layer containing local and global context information. 

The final step involves classifying the feature layer using the 

convolution kernel softmax; thus, the prediction result for 

each pixel in the image is obtained [10]. 

 

3.7. Optimization of U-Net, LinkNet and PSP-Net 

Optimization of the proposed segmentation models is 

carried out using Adam, Adamax and Nadam to reduce the 

error rate for the training process and parameter tuning. Adam 

Optimization techniques estimate the learning rate for all 

parameters involved in training gradients to reach an exact 

result with a high Dice Similarity coefficient. AdaMax is an 

extended version of Adam of gradient descent that 

standardizes the method to the infinite norms (max) and might 

lead to more efficient optimizations on some issues. Nadam- 

Nesterov-accelerated Adaptive Moment Estimation was an 

extended version of the Adam algorithm that includes the 

momentum of Nesterov and could lead to effective 

optimization performance of algorithms [28]. 

 

3.8. Backbone 

The proposed models used Inception-ResNet-v2 

pretrained model as the backbone for PCa gland segmentation. 

Backbone refers to a feature-extracting network usually used 

within an architecture. This feature extractor encodes the 

network input in the encoder part, from which the decoder part 

will be programmatically built up as part of the transfer 

learning process and into a certain feature representation. 

Hence based on the semantic segmentation model proposed 

herewith, for example, if U-Net is used, then it first sets the 

backbone with pre-trained ImageNet weights from the Keras 

application. Then the function builds up the decoder side by 

concatenating the prior outputs on the decoder side with the 

outputs from the related layers named in the skip connection 

lists and adding more convolutions. Inception-ResNet-v2 is an 

integration of ResNet and Inception v4. The gradient 

vanishing problem is avoided by using a residual connection. 

In this model, batch normalization is used only on top of the 

traditional layer. It enables the increase of the overall number 

of Inception blocks. The Inception blocks have convolutions 

with varying sizes of the same layer. These are concatenated 

at the end of the block—the usage of residual connection 

results in a drastic decrease in the time needed in training. 

Inception-Resnet-v2 architecture is used as a contracting path 

of the segmentation model [19]. 

Encoder Block 4 Decoder Block 4 

Encoder Block 3 Decoder Block 3 

Encoder Block 2 Decoder Block 2 

Encoder Block 1 
Decoder Block 1 

max-pool [(3x3), /2]  

conv [(7x7), (3, 64), /2] 

full-conv [(3x3), (64, 32), *2] 

conv [(3x3), (32, 32)] 

full-conv [(2x2), (32, N), *2] 

conv [ (3x3) , (n, n)] 

conv [(3x3)] (n, n)] 

conv [(3x3)] , (n, n)] 

conv [ (3x3) , (m, n), /2] 

conv [ (1x1) , (m/4, n)] 

full-conv [ (3x3) , 

(m/4, m/4), "2] 

conv [ (1x1) , (m, m/4)] 
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Fig. 5 Architecture of PSP-Net [10] 

 

3.9. Loss Function 

The loss function, weighted cross-entropy, was selected 

for the architecture of the CNN as it can differentiate between 

the prostate pixels and penalizes the predicted outcome of the 

results on gradient descent from the exact value. It is 

formulated as, 

 

𝐿𝐹 = −
1

𝑛
∑ 𝑊𝑐,𝑖[𝑇𝑖 log 𝑝𝑖 + (1 − 𝑇𝑖) log(1 − 𝑝𝑖)]𝑛

𝑖=1  (3) 

 

Where, 𝑝𝑖  was predicted, segmentation class, 𝑊𝑐,𝑖 is the 

encoder weight and 𝑇𝑖  is the target segmentation label. 

 

Intersection-Over-Union (IOU) is a common evaluation 

metric for semantic image segmentation. 

 

𝐼𝑜𝑈 =
|𝑋∩𝑌|

|𝑋|+|𝑌|−|𝑋∩𝑌|
           (4) 

 

Here, X and Y were two different parts, i.e., pixel sets in the 

images which were 'prostate regions' and 'backgrounds' in this 

analysis. The sign '| |' represents the cardinal of the suitable 

sets. 

 

4. Results and Discussion 
Experimental results of the proposed models have been 

evaluated with Python program using Google Colab Notebook 

and with NCI-ISBI 2013 dataset containing 2276 images of 

various sizes as (384×384), (320×320) and (256×256) [20]. In 

processing the image, the dataset is portioned into a training 

set containing 1744, a testing set containing 261 and a 

validation set containing 271. The performance considering 

IoU measure of semantic segmentation with U-Net, LinkNet, 

and PSP-Net architectures in combination with a backbone 

network called Inception-ResNet-v2 has been evaluated while 

fixing hyper-parameter such as Batch Size, Validation Steps 

and variation in epoch values and the model was tuned with 

encoder weights set to 'ImageNet' and activation parameter set 

to sigmoid with classes set to binary and varying optimizers 

such as Adam, Adamax and Nadam [21-26]. 

 

4.1. Results Obtained with U-Net 

This section describes various approaches for Prostate 

Semantic Segmentation using U-Net architecture with 

backbone, along with the performance results obtained. Figure 

6 displays the Original Prostate Gland Image along with the 

mask of ground truth that was provided against the predicted 

mask using U-Net with backbone and Optimizer being Adam 

as in figure 6 (a) U-Net with backbone and Optimizer being 

Adamax as in figure 6 (b) and U-Net with backbone and 

Optimizer being Nadam as in figure 6 (c). 

 

Table 1 shows IoU Score obtained when testing the U-

Net model with the backbone Inception-ResNet for untrained 

MRI images. IoU Score obtained with Adam Optimizer is 

0.733903289, with Adamax Optimizer 0.753370685 and with 

Nadam Optimizer giving 0.744911587. The bar chart in figure 

7 shows the performance measured in terms of the IoU Score 

of various combinations of Optimizers with U-Net model with 

backbone Inception-ResNet-v2.  

 
Table 1. IoU Score obtained with various optimizers used with U-Net 

model with backbone Inception-ResNet-v2 

Architecture and 

Backbone 
Adam Adamax Nadam 

U-Net with 

Inception-ResNet-

v2 

0.7339 0.7533 0.7449  
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(a) 

 
(b) 

 

 
(c) 

 

Fig. 6 Prostate MRI image along with the provided mask and the 

predicted mask for two trials are listed for (a) U-Net with backbone and 

optimizer being Adam, (b) U-Net with backbone and optimizer being 

adamax and (c) U-Net with backbone and optimizer being nadam 

 

 

 
Fig. 7 Bar chart of IoU score obtained plotted with various optimizers 

using U-Net model with backbone Inception-ResNet 

 

 
(a) 

 
(b) 
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(c) 

Fig. 8 Training and validation performance - IOU Vs epochs for U-Net 

with Backbone Inception-ResNet using a) Adam optimizer b) Adamax 

optimizer c) Nadam optimizer 

 

Each model was set to 200 epochs for training, with 16 as 

batch size, the scheduler of the cyclic learning rate, 1e-3 initial 

learning rate, along with various optimizers and backbones. 

Performance measured as IoU Score of the U-Net Model 

along with backbone Inception-ResNet-v2 for training and 

validation as against the epochs are shown in figure 8. 

 

It was observed that for U-Net with backbone using Adam 

optimizer, the training and validation IoU score went up to 

0.93597, but the IoU score obtained while testing is 

0.733903289. For U-Net with Adamax optimizer, the training 

and validation IoU score went up to 0.97182, but the IoU score 

obtained while testing is 0.753370685. For U-Net with Nadam 

optimizer, the training and validation IoU score went up to 

0.96989, but the IoU score obtained while testing is 

0.744911587. 

 

4.2. Results obtained with LinkNet 

This section describes various approaches for Prostate 

Semantic Segmentation using LinkNet architecture with 

backbone, along with the performance results obtained. Figure 

9 displays the Original Prostate Gland Image along with the 

mask of ground truth that was provided against the predicted 

mask using LinkNet with backbone and Optimizer being 

Adam as in figure 9 (a) LinkNet with backbone and Optimizer 

being Adamax as in figure 9 (b) and LinkNet with backbone 

and Optimizer being Nadam as in figure 9 (c). Table 2 shows 

IoU Score obtained when testing the LinkNet model with the 

backbone for untrained MRI images. IoU Score obtained with 

Adam Optimizer is 0.73339371, with Adamax Optimizer 

0.763337802 and with Nadam Optimizer giving 0.728948148. 

The bar chart in figure 10 shows the performance measured in 

terms of the IoU Score of various combinations of Optimizers 

with the LinkNet model with the backbone. 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 9 Prostate MRI image along with the provided mask and the 

predicted mask for two trials are listed for a) LinkNet with backbone 

and optimizer being adam, b) LinkNet with backbone and optimizer 

being adamax and c) LinkNet with backbone and nadam optimizer. 
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Table 2. IoU Score obtained with various optimizers used with LinkNet 

model with backbone 

Architecture and 

Backbone 
Adam Adamax Nadam 

LinkNet with 

Inception-ResNet-

v2 

0.7333 0.7633 0.7289 

 

 
Fig. 10 Bar chart of IoU score obtained plotted with various optimizers 

using LinkNet model with backbone Inception-ResNet-v2 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Training and validation performance - IOU Vs epochs for 

LinkNet with backbone Inception-ResNet-v2 using a) Adam optimizer 

b) Adamax optimizer c) Nadam optimizer 

 

Each model was set to 200 epochs for training, with 16 as 

batch size, the scheduler of the cyclic learning rate, 1e-3 initial 

learning rate, along with various optimizers and backbones. 

Performance of the LinkNet Model - IoU Score obtained for 

Training and Validation against the epochs for the best 3 

results are shown in figure 11. It was observed that for 

LinkNet with backbone and with Adam optimizer, the training 

and validation IoU score went up to 0.94219, but the IoU score 

obtained while testing was 0.73339371. With Adamax 

optimizer, the training and validation IoU score went up to 

0.98033. However, the IoU score obtained while testing was 

0.763337802, and with the Nadam optimizer, the training and 

validation IoU score went up to 0.95980, but the IoU score 

obtained while testing was 0.728948148. 

 

4.3. Results obtained with PSP-Net 

This section describes various approaches for Prostate 

Semantic Segmentation using PSP-Net architecture with 

backbone and the performance results obtained. 
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(b) 

 

 
(c) 

Fig. 12 Prostate MRI image along with the provided mask and the 

predicted mask for two trials are listed for (a) PSP-Net with backbone 

and optimizer being adam, (b) PSP-Net with backbone and optimizer 

being adamax and (c) PSP-Net with backbone and optimizer being 

nadam 

 

Table 3. IoU Score obtained with PSP-Net model with backbone 

Inception-ResNet-v2 

Architecture 

and Backbone 
Adam Adamax Nadam 

PSP-Net with 

Inception-

ResNet-v2 

0.7406 0.7152 0.7299 

 

Figure 12 displays the original prostate gland image along 

with the mask of ground truth that was provided as against the 

predicted mask using PSP-Net with backbone and Optimizer 

being Adam as in Figure 12 (a) PSP-Net with backbone and 

Optimizer being Adamax as in Figure 12 (b) and PSP-Net with 

backbone and Optimizer being Nadam as in figure 12 (c). 

 

Table 3 shows IoU Score obtained when testing the PSP-

Net model with the backbone for untrained MRI images. IoU 

Score obtained with Adam Optimizer is 0.740674456, with 

Adamax Optimizer 0.715291694 and with Nadam Optimizer 

giving 0.729932794. The bar chart in figure 13 shows the 

performance measured in terms of the IoU Score of various 

combinations of Optimizers with the PSP-Net model with the 

backbone. 

 

 
Fig. 13 Bar chart of IoU score obtained plotted with various optimizers 

using LinkNet model with backbone Inception-ResNet-v2 

 

Each model was set to 200 epochs for training, with 16 as 

batch size, the scheduler of the cyclic learning rate, 1e-3 initial 

learning rate, along with various optimizers and backbones. 

Performance of the PSP-Net Model - IoU Score obtained for 

Training and Validation against the epochs for the best 3 

results are shown in figure 14. 
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(c) 

Fig. 14 Training and validation performance - IOU Vs epochs for PSP-

Net with backbone Inception-ResNet-v2 using a) Adam optimizer b) 

Adamax optimizer c) Nadam optimizer 

 

It was observed that for PSP-Net with backbone and with 

Adam optimizer, the training and validation IoU score went 

up to 0.96367, but the IoU score obtained while testing was 

0.740674456. With Adamax optimizer, the training and 

validation IoU score went up to 0.96424. However, the IoU 

score obtained while testing is 0.715291694, and with the 

Nadam optimizer, the training and validation IoU score went 

up to 0.96587, but the IoU score obtained while testing is 

0.729932794. Each of these models was pre-set to be trained 

for 200 epochs with16 batch sizes, the scheduler of the cyclic 

learning rate, 1e-3 initial learning rate to make the network 

architectures for extracting denser feature maps by managing 

the field view for proper localizations, the early saturation was 

defined by monitoring the loss and for every 10 epochs while 

restoring the best weights.  

 

This has led to quick and effective encoder–decoder 

networks that build the deep representation among multi-

feature images and cover good spatial data at different scales 

as correlated to conventional encoder–decoder networks 

producing the effective segmentation boundary. Based on 

table 4, it can be inferred that in predicting segmentation of 

the prostate gland with IoU score as a performance index, the 

LinkNet architecture with backbone and Adamax as optimizer 

yielded the best result of 0.763337802, followed by U-Net 

with Adamax as optimizer yielded a result of 0.753370685, 

followed by U-Net with Nadam as optimizer yielded the result 

of 0.744911587, followed by PSP-Net with Adam as 

optimizer yielding a result of 0.740674456. 

 
Table 4. Performance evaluation of the various sets of segmentation 

techniques 

Model Adam Adamax Nadam 

U-Net 0.7339 0.7533 0.7449 

LinkNet 0.7333 0.7633 0.7289 

PSP-Net 0.7406 0.7152 0.7299 

 

 
Fig. 15 Performance analysis comparison of proposed models 

 

4.4. Comparative Analysis and Limitations 

The performance of the proposed models was compared 

with the existing segmentation techniques called Dynamic 

Multi-Atlas (DMA) and DMA with Watershed, which is 

developed based on deep learning. These DMA and DMA + 

Watershed techniques were proposed for segmenting the 

prostate lesions in MRI images using the NCI-ISBI-2013 

dataset, as discussed in [19]. Based on the obtained 

performances from these techniques, the performance 

comparison of the proposed models with the best results is 

validated, as shown in Table 5. 

 
Table 5. Performance comparison of segmentation techniques 

Models IoU 

U-Net 0.753370685 

LinkNet 0.763337802 

PSP-Net 0.740674456 

DMA [21] 0.67±0.07 

DMA + Watershed [21] 0.69±0.07 

 

Table 5 compares the proposed models' performance with 

existing techniques such as DMA and DMA + Watershed for 

validation. The best obtained IoU values of the proposed 

models, such as U-Net with backbone optimized with 

Adamax, LinkNet with backbone optimized with Adamax, 

and PSP-Net with backbone optimized with Adam models, are 

compared. Compared to the DMA and DMA + Watershed 

technique, the proposed LinkNet with backbone optimized 

with Adamax optimizer achieved 0.763337802 as the best 

result in this analysis compared to the other proposed models. 

Following LinkNet, the U-Net and PSP-Net obtained better 

results than the DMA technique with 0.753370685 and 

0.740674456. However, the DMA + Watershed technique has 

outperformed the proposed models U-Net and PSP-Net.  

 

However, the proposed research still has some 

limitations. The proposed research does not use the noise 

elimination method that is helpful for segmenting prostate 
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images. Additionally, limited datasets and insufficient training 

are potential factors to focus on. 

 

5. Conclusion and Future Work 
Prostate gland segmentation using the deep learning 

semantic segmentation models such as U-Net, LinkNet and 

PSP-Net with backbone Inception-ResNet-v2 designed, 

implemented and discussed along with various optimizers and 

other hyperparameters setting. In this work, neural network 

architecture optimizers like Adam, Adamax and Nadam have 

been employed along with various epoch values and learning 

rates to improve learning and reduce the loss. Performance of 

the proposed model has been carried out using NCI-ISBI 2013 

dataset to the IOC metric on various model settings. It was 

observed that LinkNet architecture with the backbone 

Inception-ResNet-v2 and Adamax as an optimizer yielded the 

best result, followed by U-Net with Adamax as an optimizer 

and then followed by U-Net with Nadam as an optimizer. The 

results obtained in this paper are based on some of the 

hyperparameters that are tuned to get better results. The results 

of the proposed models are compared with DMA and DMA + 

Watershed techniques, in which the proposed LinkNet model 

outperformed. However, future work can consider a better 

understanding and development of layers and tuning actuators 

of the semantic segmentation models adopted. 
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