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Abstract - The analog signals are changed to digital signals for an instance of time designed as a powerful imaging system. The 

imaging system produced in the digital form as it evolves the analog imaging devices has the ability to perform digital 

technology. Therefore, the image expansion is guided by the diagnostic system and surgical systems. The present research work 

used a hybrid compressive sensing algorithm consisting of an optimized neural network and lossy-lossless compression using 

Adaptively learned sparsifying based on L1 minimization. The Region of Interest (ROI) is compressed using Integer-based 

Lifting Wavelet Transform with lossless compression, and the non-ROI using an Optimized neural network. The lossy models 

are irreversible and achieve a higher compression ratio; therefore, the medical image processing has the visual quality in 

reconstruction showing compression ratio at the highest. The proposed method overcomes the dimensional reduction problem 

for optimizing with sparsity to non-ROI regions. Therefore, the medical image is transmitted over the network with limited 

bandwidth. The proposed work outcomes showed that the developed model attained a PSNR of 35.62 dB and SSIM of 0.984 

better when compared to the existing ROI-CS Net model, which obtained a PSNR of 29.55 dB and SSIM of 0.89. 

Keywords - Hybrid compressive sensing, Lifting wavelet transform, Optimized neural network, Region of interest. 

1. Introduction  
The high-resolution anatomical images generate the 

radiation, which has the modality performed through 

Magnetic resonance imaging (MRI). The MRIs have little 

radiation, potentially limiting the acquisition speed [1]. There 

are distinct acceleration models that have a fast pulse sequence 

which is designed as a parallel imaging model [2]. The models 

are applied based on the compressed sensing theory, which has 

attracted a wide range of research. The signals are accurately 

recovered based on a few measurements that represent 

sparsely [3]. Various compression sensing methods are 

employed in distinct industries, and fast MRI is evolved [4]. 

The k-space imaging models are accelerated significantly 

under-sampled, and the data fidelity and regularization 

process are achieved [23].  

The problem of optimization is sought to minimize the 

regularization loss and data fidelity loss [6]. Recently, deep 

Convolution Neural Networks (CNN) models have been used 

to overcome the optimization problem [7]. The wavelet 

sparsity and total variation are commonly fixed based on 

regularizing the variants from the wavelets based on the 

dictionary learning models [8]. Various deep neural networks 

have been applied for the under-sampled MRI Reconstruction 

that achieved state-of-the-art performances in terms of quality 

and efficiency [9].  

The existing approaches were unsatisfied with medical 

image transmission as they showed an emerging signal 

processing for storage applied primarily for some 

measurements reduction. It reconstructed the image using a 

linear acquisition system and analyzed the solutions using 

linear schemes. The developed model has introduced lossy 

and lossless compression, which showed a better compression 

rate in terms of visual perception for image reconstruction 

[24].  

The traditional lossless algorithms were used and applied 

for the ROI portion of an image. Compressive Sensing (CS) 

methods compress the remaining image part. The proposed 

method overcomes the dimensional reduction problem that 

optimizes using non-ROI and sparsity regions. Therefore, 

medical imaging techniques over the bandwidth network are 

limited. The contributions of the research work are as follows: 

• The proposed method overcomes the dimensional reduction 

problems that occurred in the existing model problems. 

• To optimize non-ROI and sparsity regions using BraTS and 

http://www.internationaljournalssrg.org/
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T2-FLAIR datasets. Therefore, medical imaging techniques 

over the bandwidth network are limited.  

The organization of the research work is given as follows: 

Section 2 presents the literature review, and Section 3 

describes the proposed methodology. Section 4 explains the 

results and discussion. The conclusion of this research work is 

given in Section 5.  

2. Literature Review  
Indrarini DyahIrawati [11] developed a Lifting Wavelet 

Transform for performing Compressive Sensing to MRI 

reconstruction. The developed model used the lifting wavelet 

transform using the sparsity technique by considering wavelet 

coefficients for low pass sub-band contained important 

information. The developed model was useful for data 

compression with the highest compression ratio from the 

sender but remained with a higher level of accuracy. The 

wavelet coefficient values were arranged from the sparse 

vector. The research showed an effect which has arranged a 

sparse vector. However, the research quality must be effective 

to obtain better MRI quality. Further, the research did not 

validate the compression ratio, computational time, space-

saving, and system complexity, which lowered the system's 

efficiency.   

Xu [12] developed a Region-based Block Compressive 

Sensing (RBCS) with Stage Orthogonal Matching Pursuit 

(StOMP) algorithm. The results showed that the performances 

for the reconstructed components are improved than that of 

Block Compressive Sensing (BCS) as well as Single Spectral 

Compressive Sensing (SSCS) with distinct sampled ratios. 

However, improving the compressive sensing performances 

reconstructed the plant hyperspectral images based on the 

spatial-spectral correlation[5,10]. 

Zheng [13] developed a Particle Filter based Fisher 

Information Matrix that saved much energy and showed lesser 

performance. The developed model saved energy with lesser 

performances when compared with the optimal scenarios 

showed sensor observations. These observations were 

transmitted to the fusion center through parallel channels. The 

transmission number was increased with respect to the fusion 

center and showed super positions during observations fairly. 

However, the fusion center extracted the most informative 

data and resided the nodes for distribution.  

Park [14] performed Filtered-Back Projection Region-Of-

Interest Digital Tomo Synthesis (ROI-DTS). The developed 

model used FBP based algorithm that preserved the edge 

sharpening, image homogeneity, and in-plane resolution. The 

Compressed Sensing generates the image characteristics using 

ROI-DTS was significantly different from that of the full FOV 

DTS. However, the model required improvement in the DTS 

systems.  

Kawai [15] developed a Compressed SENSE-enhanced 

T1 high-resolution isotropic volume excitation (CS-

eTHRIVE) model. The CS-eTHRIVE effectively reduced the 

acquisition time, which had motion artifacts that improved the 

image quality by using gadoxetic acid. It showed enhancement 

based on dynamic Magnetic Resonance Imaging. However, 

the CS-eTHRIVE showed a sequence yielded better 

potentiality for focal hepatic lesion because artifacts of low 

motion were not used in the developed method. 

LiyanSuna [16] developed a DCNN model to reconstruct 

undersampled MRIs. The developed model obtained ROI 

masks that were fed for the Reconstruction Network (RecNet) 

that pre-trained the MRI segmentation model (ROINET). The 

developed model consisted of fine-tuned RecNet, which 

consisted of 12 functions based on the produced ROI. 

However, the developed model wanted improvement in terms 

of quality for ROI reconstruction.  

Balamurali Murugesan [17] developed a deep cascade 

ensemble for dual-domain networks having T1 based gradient 

model for perceptual refinement for MRI reconstruction. The 

developed Reconsynergynet (RSN) model combined the 

benefits of the image data independently that operates on both 

transforms. The multi-coil acquisition was developed and 

showed a variable splitting (VS-RSN) based on deep Cascade 

blocks.  The RSN block with multi-coil DF units faithfully 

contains the reconstructed pathologies. The network design 

has various fusion feature operations that are improved 

through the process of attention mechanism.  

Ines Njeh et al. [18] developed a deep convolutional 

Encoder decoder model to reconstruct brain MRI. The model 

fills needs among the non-learning algorithms based on the 

information from where any image is used for huge training 

information. Also, the work's main importance was to test the 

model with the previous dataset further.  

WanyuBian et al. [19] developed an optimization 

technique which is based on Meta-Learning representation to 

reconstruct MRI with various datasets. The parameters that 

were regularized in the framework improved the healthiness 

of training and simplification of the network significantly.  

The major issue was that the normalization problem had 

occurred that needed to optimize the greater count of phases. 

The learning technique contained a number of stages that 

required more computation as it was costlier with respect to 

time and memory. 
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Fig. 1 An overview of the proposed methodology 

3. Proposed Methodology  
An overview of the proposed Hybrid Compressive 

Sensing model is shown in Figure 1. The proposed method 

steps are as follows, 

3.1. Data Collection  

The present research work participates in a challenge 

registered on the website. The training and registration data 

are downloaded once after collecting the data. The data 

consists of MR Images of 7 sets of T1 inversion recovery, and 

T2-FLAIR performs manual segmentations to the brain 

structures. Various experts performed manual segmentations 

for brain segmentation.  

The MICCAI 2018 Grand Challenge dataset (BraTs 

2018) (https://www.med.upenn.edu/sbia/BraTs2018.html) 

was used to train and evaluate the suggested architecture. 

Here, some data was randomly chosen, and some images were 

used as testing data to assess the proposed framework with 

existing approaches declared in the result section. Figure 2(a) 

is the input image, and Figure 2(b) is the threshold image.  

The challenge of MRBrain S13 is that the test and training 

data are included a large number of pathologies. The 

participants are trained with their model as they are available 

and submit the method to an organizer for evaluation. The test 

data was not released as it has 23 brain MRIs to perform 

manual segmentation. The collected images are publicly 

available, and totally of 335 images are from the BraTS 2018 

dataset [21]. Among the total number of images, 76 images 

are from Low-Grade Glioma (LGG), and the leftover 259 

images are from High-Grade Glioma (HGG) type of images. 

The MRI scans are focusing mainly on 3 major tasks like 

segmentation, intrinsic heterogeneous image based on shape 

and appearance, and histology images for the patient survival 

prediction.  

3.2. Segmentation  

The images are converted to grayscale images. The 

prospective study considers both non-ROI and ROI parts for 

the given image. The present research paper has emphasized 

the ROI part and was applied for lossless compression 

techniques using Huffman encoder, Arithmetic coding, and 

Integer Wavelet Transform. Among these encoding 

techniques, a suitable technique is utilized for the proposed 

method. The present research study emphasized the non-ROI 

part and was applied for the lossy compression process. The 

unique pixel information is retained for the stage by allowing 

the conventional encoding mechanism for Neural Network.  
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Fig. 2(a) MRBrain S13 (b) Threshold image 

 
Fig. 3(a) BraTS 2018 dataset (b) Threshold image 

The main advantage of compressive sensing is that data 

compression is reduced on the encoder side as it has less 

complexity. The present research work achieved real-time 

image compression that is done without creating computation 

complexity. The ROI compression and decompression are 

performed using lifting wavelet transform and non-ROI 

compression utilising an Optimized neural network.  

A scene is uniformly recovered; some regions are 

important because of the scene among most methods. 

Therefore, the Region of Interest (ROI) was recovered 

precisely, and thus the ROI segmentation of the significant 

regions using the thresholding technique. 

The remaining portion is accurately removed as it is the 

required part. Thus, the multi-level Otsu thresholding model 

performed the pixel separation using input images from 

distinct classes to perform such a function. The model then 

separates the levels of gray scales based on the values of 

intensities. Thus, the multi-Otsu thresholding finds the 

number of classes that are of the desired number. The main 

objective is to utilize Multilevel Otsu thresholding and 

Morphological operator technique to eliminate unwanted 

regions for masking based on the morphological operations. 

The process of morphological operations is performed based 

on shapes and sizes. The weights within the probabilities of 

the classes are evaluated based on Eq. (1). 

𝑞1(𝑡) = ∑ 𝑝(𝑖)

𝑡

𝑖=1

 

 

 

 𝑞2(𝑡) = ∑ 𝑝(𝑖)𝐼
𝑖=𝑡+1  

𝑞𝑛(𝑡) = ∑ 𝑃(𝑖)𝑛
𝑖=𝐼+𝑡+1                         (1)  

The threshold value ranges from 1 to𝑡 ,𝑞1−−−𝑛is known 

as the weighted class having the P as the pixel probabilities 

having the background and foreground images. Eq.(2) has the 

class means expressed in Eq. (3).  

𝜇1(𝑡) = ∑
𝑖𝑝(𝑖)

𝑞1(𝑡)

𝑡

𝑖=1

, 𝜇2(𝑡) = ∑
𝑖𝑝(𝑖)

𝑞2(𝑡)

𝐼

𝑖=𝑡=1

, . . . . . . . . . . . 

 

𝜇𝑛(𝑡) = ∑
𝑖𝑝(𝑖)

𝑞𝑛(𝑡)

𝑡
𝑖=𝑛                            (2) 

 

Where,𝜇1 and 𝜇2 are referred to as average gray level 

values. An input image consists of the structural elements used 

for performing the operations that have received the output 

image without losing the properties. The morphological 

operations for each pixel are applied for an input image 

corresponding to the neighborhood pixels. The image size and 

shape are selected based on the neighborhood pixels to 

perform and construct an input image. 

3.3. ROI Compression and Decompression using Lifting 

Wavelet Transform  

The process of ROI compression and decompression 

calculates transforms effectively. The general model was 

introduced for creating and generating the wavelets. The 

lifting-based implementation provided another wavelet 

transform-based lifting scheme that matched the integer to the 

integer process. In the present research, the lifting step 𝑥𝑜1 =

𝑠1(𝑧−1)𝑥𝑒 + 𝑥0is approximated 𝑥𝑜1 = [𝑠1(𝑧−1)𝑥𝑒 +
1

2
] + 𝑥0 

to reach an integer value in each lifting step. This method can 

provide accurate reconstructions of the lifting step using 𝑥0 =

𝑥𝑜1 − [𝑘𝑥𝑒𝑚 +
1

2
]. However, an issue remains with the scaling 

steps applied. 𝑥𝑒𝑚cannot be perfectly recovered with𝑥𝑒𝑚 =

(
𝑋𝐿

𝑘+1
2⁄
) .  

 
Fig. 4 ROI compression and decompression obtained for gray matter 

and by using the IWT model for MRBrain S13 images 
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Fig. 5 ROI compression and decompression obtained for gray matter 

and by using the IWT model for BraTS2018 images 

Therefore, the approach is not lossless, and the scaling 

step in the wavelet transform has true values for the bi-

orthogonal and orthogonal wavelet transform. The work 

constructed the integer-to-integer versions of several wavelets 

using the technique showed an integer-to-integer and classic 

version yield a low bit rates quality. The research utilized the 

integer-based wavelet transform that used the distortion of 

fewer data embedded and showed higher visual quality. The 

ROI region compression is needed because it has lower 

complexity and good energy compaction, which helps retain 

better image quality. Various integer wavelet transforms 

presented and utilized with zero-tree coding based on the three 

dimensional compression performed reconstruction for a few 

wavelets. Figure 4 and Figure 5 show the ROI compression 

and decompression obtained for gray matter using the IWT 

model on MRBrain S13 images and BraTS2018 images, 

respectively. 

3.4. Non-ROI Compression and Decompression using 

Optimized Neural Network  

Non-ROI region compression is required after performing 

ROI region compression and decompression. The importance 

of non-ROI compression is that more bits are assigned with 

less compression. This is capable of fewer bits, and regions 

are more capable of compression. The regions in an image are 

stable, and quality is assured. The image compression method 

is an application-oriented method that specifically optimizes 

the needed bit allocation. The proposed technique is used to 

optimize the neural network for the non-ROI part of an image 

for medical analysis. A compression of PSO and Gravitational 

Search Algorithm (GSA) are integrated and are modified 

together in terms of learning rate and the RNN weight. The 

RNN performed an effective compression using RNN that 

evaluates the MSE values. The Back Propagation performed 

training the RNN model that initialized the random value in 

terms of network parameters. There is a major limitation of 

the RNN model that performs compression during local 

optima. Thus, the GSA with PSO optimization is robustly used 

for global optimization based on RNN.  

 

Firstly, the bias and weights of the RNN model are 

randomly selected, where the values of the MSE are executed 

and reach the maximum. The bias and weights are denoted 

with GSA agents. The fitness function for all the GSA agents 

is calculated at every generation, which is replaced with the 

worst and best agents. The GSA generates the best solution for 

the PSO particles. The GSA and PSO algorithms process until 

the values executed in a maximum number of iterations 

reaches the maximum. The operation phase is further 

performed for both compression and decompression processes 

until the best solution is obtained. The value of fitness is to 

process the optimization function, which is provided in Eq. 

(3). 

𝑘 = ∑ (∏ 𝑧𝑗
8𝑖
𝑗=8(𝑖−1)+1 )

𝑚

8
𝑖=1

                    (3) 

Where the fitness function is represented ask𝑚is the 

function dimension, 𝑧𝑗which is known as the values which are 

initialized based on the min and max image values of the 

pixels, the brain image reconstruction has been done through 

reversing process based on IDWT and RNN compression 

techniques. The portions of the ROI and Non-ROI were 

compressed individually and significantly preserved the 

portions of the image. The portions of the tumor images of the 

brain were extracted using the Otsu thresholding approach, 

which applied a grey histogram of an image.  

The speed was high when the Otsu thresholding process 

occurred through the segmentation process. The compression 

is performed using DWT for the ROI part of an image, and the 

RNN model modifies the RNN attributes to learn the weights. 

This minimizes the losses occurring in the process of lossy 

compression. The proposed research objective is to achieve a 

better compression ratio over other brain images regarding 

PSNR. The RNN attributes are modified to obtain the 

compression of better values with fewer MSE values. Figure 

6 is the non-ROI compression and decompression obtained for 

white matter using an optimized neural network. Figure 7 is 

the non-ROI compression and decompression obtained for 

white matter using an optimized neural network for BraTS 

images. 

 
Fig. 6 Non-ROI compression and decompression obtained for white 

matter using optimized neural network for MRBrain S13 images 
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Fig. 7 Non-ROI compression and decompression obtained for white 

matter using optimized neural network for BraTS images 

3.5. Lossless Compression and Lossy Compression using 

Adaptively Learned Sparsifying basis via L1 Minimization  

The dictionary choice is lied for sparse key representation 

or is based on the sparsifying. Also, learning redundant data 

based on sparsifying in the best domain for the given image is 

important for seeking the best domain for the given image. 

Much effort was devoted to learning the sparsified data based 

on the training, where the set of training image patches, such 

as S are represented as𝑆 = [𝑠1, 𝑠2, . . . 𝑠𝐽]  is evaluated. There 

are training image patches which are having the goal to 

sparsify based on learning. The goal of sparsifying is by 

jointly learning and optimizing based on sparsifying D and 

represented the coefficients matrix 𝛬 =
[𝛼1, 𝛼2, . . . . . . . . . 𝛼𝐽] such that 𝑠𝑘 = 𝐷𝛼𝑘and  ‖𝛼𝑘‖𝑝 ≤

𝐿 The set of training image patches is represented. The goal is 

to sparsifying based on learning and optimizing jointly based 

on D. The coefficients are represented as 1 2, ,..., J such that 

𝑠𝑘 k D and k p L, where p is 0 or 1. The minimization 

problems are formulated as given in Eq.  (4). 

kL
pk

ts
J

k k
D

k
s

D
D 

=
−


= ,..

1

2

2

minarg

,
)ˆ,ˆ(   (4) 

 

 
Fig. 8 Reconstructed image (a) MRBrain S13 (b) BraTS2018 

The above mentioned minimization problem is mentioned 

in the above equation (5) and has a high convex and large scale 

even with p=1.  

This is approximate, solvable and includes MOD, where 

the model has been proposed to optimize the values D, which 

led to various states of art results. Thus, to achieve an adaptive 

sparsifying approach, the image patches are used for training 

that has come from the original image. From equation 4, the 

original image ‘x’ is unavailable and has access to CS 

measurements, shown in equation (4). An iterative manner 

solves this problem for estimating alternately. [22] The 

medical image reconstruction is performed using the 

following methods.  

Initially, the bit error loss is checked for receiving a signal 

and to compare it with the optimized reconstruction model 

performances. The bit error loss has occurred that performed 

regrouping the measurement matrix method. If it would not 

perform the compression for ROI and Non-ROI parts, then the 

Inverse transform function schemes are applied. The inverse 

transform function schemes are applied for the parts of ROI to 

process for decompression. Thus, the decompressed image for 

the non-ROI part is received at the output. The image obtained 

is added at the adder, and the original medical image is 

received Figure 8 shows the reconstructed image for the 

MRBrain S13 and BraTS2018 images. 

Algorithm 1: Segmentation using a Morphological 

operation with OTSU’s thresholding for segmenting the ROI 

and NON-ROI part for compression techniques and applied to 

compressed sensing. 

//Input: The input MRI images 

//Output: The reconstructed MRI images (PSNR, SSIM, 

NCC) 

1. Load input images 

2. Segmenting ROI and non-ROI parts by using 

morphological operation 

3. Load ROI part for LWT compression. 

4. Get a compressed ROI image. 

5. Load NON-ROI part for optimized neural network 

compression. 

6. Get a compressed non-ROI image. 

7. Use compressed sensing technique for both compressed 

ROI and non-ROI parts 

8. Use the reconstruction technique to reconstruct the ROI 

and non-ROI parts. 

9. Use the Inverse LWT for decompressing the ROI part 

10. Use the optimized neural network to decompress the 

non-ROI part 

11. Get the reconstructed ROI and non-ROI part 

12. To combine ROI and non-ROI to reconstruct the 

original image. 

13. Tabulate the results. 

14. Display the results. 

Pseudo Code
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Randomly generate search space of size 𝑁 =
𝑃, (𝑥1

𝑡 , 𝑥2
𝑡 , . . . . . , 𝑥𝑁

𝑡 ) on 𝑃 = 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(); 

For i=1 to maximum iterations 

 For each particle p 

  If p it is better than (Pbest)  

 Calculate the fitness function using Eq. (3) 

 Evaluate fitness value  

 End for 

End for  

4. Results and Discussion  
The performances of the proposed Hybrid Compressive 

Sensing Network method, which was analysed, are shown in 

the present section. The proposed method is implemented onto 

the medical images for performing the compression by using 

MATLAB R2018a tool. 

4.1. Lossless Performance Metrics 

The results for the proposed method are evaluated in 

terms of the following Equation (5), (6) & (7).  

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(
2552

𝑀𝑆𝐸
) (5)  

𝑀𝑆𝐸 =
1

𝑝𝑞
∑ ∑ [𝑙(𝑥, 𝑦) − 𝑘(𝑥. 𝑦)]2𝑞−1

𝑦=0
𝑝−1
𝑥=0  (6)  

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇2𝑥+𝜇2𝑦+𝑐1)(𝜎2𝑥+𝜎2𝑦+𝑐2)
 (7) 

 

4.1.1. Normalized Correlation Coefficient (NCC)  

The average difference is the sum of the differences 

among the consecutive number pairs, which obtains the 

average value divided by the total number of pairs.  

The Normalized Correlation Coefficient is expressed as 

shown in Eq. (8). 

 

𝑛𝑜𝑟𝑚𝑐𝑜𝑟𝑟(𝑥.𝑦) =
∑ 𝑥[𝑛]∗𝑦[𝑛]𝑛−1

𝑛=0

√∑ 𝑥[𝑛]2∗∑ 𝑦[𝑛]2𝑛−1
𝑛=0

𝑛−1
𝑛=0

 (8) 

 

4.1.2. Normalized Average Error (NAE)  

NAE is a statistical calculation used for comparing 

proficiency and testing the results where the measurement of 

results is uncertain.  

Where ‘p’ and ‘q’ are taken as row and column of the 

image, k(x,y) is taken as decrypted images, and I(x,y) is taken 

as the original input image. 

Where, ’x’ and ‘y’ are defined as windows of filter image 

‘k’ and original image ‘I’, ‘𝜎’and ‘𝜇’ are denoted as standard 

deviation and mean of ‘x’ and ‘y’, ‘c1’ and ‘c2’ are indicated 

as constants. 

4.2. Quantitative Analysis   

Table 1 gives obtained results from the proposed work 

evaluated terms of MSE, PSNR, AD, SSIM, NAE, and NCC 

for an image's ROI and non-ROI parts. The ROI part and non-

ROI regions in an image are reconstructed and obtain PSNR 

of 33.81, MSE of 0.022, NCC of 0.982, AD of 0.409, SSIM 

of 0.988, and NAE of 0.181.  

Figure 9 shows the Comparison of ROI and Non-ROI parts 

of an image. Table 2 gives the results achieved for the 

proposed method in terms of PSNR, MSE, NCC, AD, SSIM, 

and NAE evaluated for the gray matter and White matter. 

From Table 2, The Gray matter and White matter in an 

image are reconstructed and obtain PSNR of 35.82, MSE of 

0.027, NCC of 0.979, AD of 0.385, SSIM of 0.980, and NAE 

of 0.177. Figure 10 shows a Comparison of the Gray matter 

and white matter part of an image. 

Table 3 obtains the proposed method results evaluated in 

terms of PSNR, MSE, NCC, AD, SSIM, and NAE with 

respect to the Splenium for the corpus callosum and the non-

ROI part for an image.  

The part of Splenium of the corpus callosum and non-ROI 

part of an image is reconstructed and obtains PSNR of 37.22, 

MSE of 0.054, NCC of 0.974, AD of 0.411, SSIM of 0.982, 

and NAE of 0.154. The present research work obtains overall 

compression reconstruction for compressed sensing. Elapsed 

time is 960.95 seconds. 

 
Table 1. Results achieved for the proposed technique in terms of PSNR, MSE, NCC, AD, SSIM, and NAE for ROI, non-ROI part 

Image PSNR MSE NCC AD SSIM NAE 

ROI part 28.371 0.068 0.977 0.775 0.971 0.105 

Non-ROI part 29.87 0.024 0.983 0.077 0.920 0.153 

Reconstructed Image 33.815 0.022 0.982 0.409 0.988 0.181 
 

Table 2. Results achieved for the proposed technique in terms of PSNR, MSE, NCC, AD, SSIM, and NAE for gray and white matter 

Images PSNR MSE  NCC AD SSIM NAE 

Gray matter 32.52 0.053 0.979 0.808 0.968 0.108 

White matter 33.66 0.023 0.981 0.143 0.924 0.162 

Reconstructed 35.82 0.027 0.979 0.385 0.980 0.177 
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Table 3. Results achieved for the proposed technique in terms of PSNR, MSE, NCC, AD, SSIM, and NAE for Splenium of corpus callosum part for 

non-ROI and reconstructed part in an image 

Regions PSNR       MSE    NCC AD SSIM NAE 

Non-ROI part 38.89 0.090 0.962 0.170 0.914 0.135 

Reconstructed 37.22 0.054 0.974 0.411 0.982 0.154 
 

Table 4. Results achieved for the proposed technique in terms of PSNR, MSE, NCC, AD, SSIM, and NAE for the BraTS dataset  

Regions PSNR       MSE    NCC AD SSIM NAE 

ROI (Tumor) 52.99 0.003 0.993 0.0092 0.999 0.036 

Non-ROI part 46.01 0.016 0.991 0.011 0.989 0.026 

Reconstructed 41.68 0.044 0.996 0.0115 0.975 0.033 

Table 5. Compressive sensing ratio 

CS Ratio PSNR MSE    NCC AD SSIM NAE 

10% 39.3 0.0011 0.993 0.117 0.963 0.052 

20% 40.89 0.0012 0.99 0.072 0.97 0.043 

30% 42.4 0.0044 0.995 0.035 0.978 0.025 

40% 42.03 0.004 0.992 0.073 0.977 0.035 
 

Table 6. Comparative analysis 

Method Dataset PSNR SSIM 

Lifting Wavelet Transform [11] 

MRBrain S13 

- 0.7551 

Reconstruction Network (RecNet) [16] 31.82 0.894 

Ensemble of dual-domain networks [17] - 0.878 

Deep Convolutional Encoder-Decoder algorithm 

[18] 
BraTS2018 39.58 0.9618 

Proposed Hybrid Compressive method 
MRBrain S13 35.62 0.984 

BraTS2018 41.68 0.977 

Table 7. Compressive sensing ratio compared among proposed and existing models with respect to the MRBrain S13 dataset 

CS ratio Methods PSNR SSIM 

10% 
Proposed Hybrid CS 39.3 0.963 

Meta-learning [19] 22.043 0.6279 

20% 
Proposed Hybrid CS 40.89 0.97 

Meta-learning [19] 24.7162 0.697 

30% 
Proposed Hybrid CS 42.4 0.978 

Meta-learning [19] 26.45 0.735 

40% 
Proposed Hybrid CS 42.03 0.977 

Meta-learning [19] 27.53 0.77 
 

 

 
Fig. 9 Comparison of ROI and Non-ROI parts of an image 
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Fig. 10 Comparison of gray matter and white matter part of an image 

 
Fig. 11 PSNR values to the Splenium of the corpus callosum with the Non-ROI and reconstructed part 

 
Fig. 12 PSNR values of ROI, Non-ROI and reconstructed part for BraTS dataset 
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Fig. 13 PSNR values in comparative analysis 

Figure 11 shows the PSNR values to the Splenium of the 

corpus callosum with the Non-ROI and reconstructed part. 

The Compressed sensing obtained an Elapsed time of 87.96 

seconds. Similarly, over (Reconstruction) compressed sensing 

Elapsed time is 1474.3 seconds and Compressed sensing 

Elapsed time is 317.7 seconds.  

Table 4 displays the results achieved for the proposed 

method in terms of PSNR, MSE, NCC, AD, SSIM, and NAE 

for the BraTS dataset. Table 5 shows the Quantitative results 

of PSNR, MSE, NCC, AD, NAE and SSIM using a dataset 

with different sampling rates.  

4.3. Comparative Analysis  
Table 6 gives a comparative analysis done among the 

available methods. The existing Lifting Wavelet Transform 

method obtained an SSIM of 0.7551. Similarly, the MRI 

reconstruction network obtained a PSNR of 31.82 dB and 

SSIM of 0.894. Whereas the proposed method obtained a 

PSNR of 35.62 dB and SSIM of 0.984 were better when 

compared to the available methods. The existing models 

showed a recovery quality in ROIs improvement that made the 

network focus on loss function, recovered the ROI and 

obtained 29.55 dB of PSNR.  

Similarly, fine-tuning was performed for the network 

reconstruction that provides better quality reconstructions on 

the ROI obtained 31.82 dB of PSNR. 

Similarly, the existing model constructed the network 

design where the feature fusion operations were performed to 

improve through attention mechanisms obtained SSIM of 

0.878. The proposed Hybrid Compressive sensing showed 

better values of PSNR and SSIM of 35.62 and 0.984. Table 7 

shows Compressive Sensing Ratio compared among the 

proposed and the existing Meta-learning model with respect 

to the MRI dataset. 

5. Conclusion  
The present research work used a hybrid Compressive 

Sensing Algorithm from where the Region of Interest is 

compressed with lossless compression and the non-ROI. The 

lossy models are irreversible and achieve higher compression 

ratio visual quality during image reconstruction showed better 

Compression Ratio. The existing approaches were not 

satisfied with medical image transmission as they showed an 

emerging signal processing for storage. Initially, the bit error 

loss is checked for receiving a signal and to compare it with 

the optimized reconstruction model performances. The bit 

error loss has occurred that performed regrouping the 

measurement matrix method. If it does not perform the 

compression for ROI and Non-ROI parts, then the Inverse 

transform function schemes are applied. The inverse 

transform function schemes are applied for the parts of ROI to 

process for decompression.  

Thus, the decompressed image for the non-ROI part is 

received at the output. The proposed method results showed 

that the model attained a PSNR of 35.62 dB and SSIM of 

0.984 better when compared to the existing ROI-CSNet-based 

model obtained a PSNR of 29.55 dB and SSIM of 0.89. 

However, in the future, an image's ROI and non-ROI parts can 

be subdivided into lossy and lossless components to improve 

the complexity problem more effectively. 
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