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Abstract - Navigation of a lander craft to accurately soft land in a predetermined spot on an extra-terrestrial body is a 

challenging task. Due to the absence of GPS and real-time ground communication links, the lander craft has to navigate 

autonomously to the targeted landing site solely with the help of its onboard sensors. One of the major challenges in position 

estimation of the lander craft is the measurement inaccuracies associated with the inertial navigation systems. Optical 

landmark detection-based techniques are employed to aid the lander navigation and guidance system. In this technique, 

craters and their relative positions are used as landmarks for position estimation. Typical crater detection algorithms employ 

handcrafted feature extractors for crater identification. Recently deep learning-based approaches have been employed for 

crater detection, mainly for geomorphological studies and cataloguing. This paper proposes using deep learning-based object 

detection techniques applied to autonomous landing missions and their implementation on a Xilinx MPSoC FPGA device. 

Prototype hardware has been developed, and the YOLOv4-tiny algorithm has been implemented on it with an inference time of 

471 ms per image. The results are presented, and their performance is evaluated. 

Keywords - Crater detection, CNN, Deep learning, FPGA, Object detection, YOLO.

1. Introduction  
Autonomous landing missions are undertaken to carry 

out in situ measurements on extra-terrestrial bodies. 

Currently, a considerable number of interplanetary missions 

have been accomplished, and even many more are being 

planned shortly. The landing site for a mission is chosen 

based on various considerations, viz., terrain with minimal 

hazards, an area rich in geological features etc.  To 

accurately soft-land on a particular area of interest, estimates 

of the lander craft's positional parameters are essential. In 

addition, GPS-based navigation and real-time 

communication with ground stations are not available in 

extra-terrestrial landing missions. Navigation based on 

inertial sensors is prone to error accumulation in the long 

term (due to the integration of biases and noise). It needs 

periodic corrections from other sensors for accurate estimates 

of the positional parameters. Typically, vision-based sensors 

are employed for this purpose. Based on these inputs, the 

guidance system activates the on board thrusters/actuators for 

necessary course correction and subsequent landing of the 

lander craft. 

2. Lander Mission Scenario and Requirements 
Landing missions aim to soft land safely within a 

predetermined distance (typically within 100m radii) of the 

planned landing spot. Lunar landing is accomplished in 

various progressive phases, namely the De-orbit phase; 

powered descent phase; approach phase; and terminal 

descent phase.  The navigation and guidance system driving 

the lander craft must have an accurate estimate of its position 

in the descent trajectory to control the lander craft and transit 

from the current operational phase to the next operational 

phase. In the absence of GPS and real-time ground 

communication, the lander craft has to rely only on board 

sensors for the required estimates. Measurements only from 

inertial systems lack the accuracy based on which reliable on 

board decisions can be made. These inertial systems must be 

corrected periodically with inputs (Position, velocity, altitude 

etc.) from additional sensors.  

The lander craft's position needs to be estimated at a 

larger scale (i.e. concerning a global coordinate system 

during powered descent and approach phase at a higher 

altitude) and also at a local scale (i.e. within an image at 

higher resolution during the terminal descent phase, just 

before touch down).  For position estimation, Terrain 

Relative Navigation (TRN) scheme is employed. In TRN, the 

instantaneous position of the lander craft is estimated by 

comparing terrain features (sensed on board using the 

camera) with a reference map generated a priori. 

http://www.internationaljournalssrg.org/
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Fig. 1 Lander descent profile 

 
Fig. 2 Onboard processing scheme for a typical soft landing mission 

 
Fig. 3 Block diagram of Yolov4-tiny model
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The lander descent profile and mission scenario are 

depicted in Figure 1 and Figure 2. This work focuses on 

using deep learning-based models for real-time feature 

detection (highlighted box in Figure 2). Once the features are 

detected, they are matched with the catalogue/reference 

database for position estimation. The reference 

database/catalogue of the landing area of interest is generated 

using a database of images acquired during previous orbital 

missions. The metric distance between the identified features 

is used as a signature for the matching operation. The 

catalogue stored on board consists of feature maps covering a 

larger swath around the area of interest. 

 

3. Landmarks for Vision-based Position 

Estimation  
Craters are the most abundant landmarks are lunar 

surfaces. Craters are bowl-shaped depressions on the surface 

of extra-terrestrial bodies, which are formed by the frequent 

bombardment of meteorites. The life span of medium to 

large-sized craters is quite large since their degradation or 

deformation is slow, particularly in atmosphere-less bodies 

similar to our moon. Due to their longevity and uniqueness in 

distribution, craters are ideal candidates to be used as 

landmarks for the geolocation of lander craft on alien bodies. 

[1] Apart from craters, image-based landmarks have also 

been used for position estimation. [2-7] for the current work, 

craters have been used as landmarks for TRN. 

 

4. Crater Detection Techniques  
Studies of crater densities and their distribution are 

carried out to estimate the age of the extra-terrestrial body. 

Manual counting of craters has been traditionally used, 

which is a tedious process and restricted to cataloguing larger 

craters. Researchers have employed various automatic 

techniques for crater detection. Both image-based 

(Panchromatic) and elevation map-based (DEM/DTM) data 

[5-9] are utilized for Crater Detection Algorithm (CDA).  

Specifically, elevation-based datasets are used for offline 

identification and classification of craters and subsequent 

cataloguing in a database. Traditionally handcrafted methods 

were devised for automatic crater detection. This involved 

identification and extraction of crater feature like rims, 

shapes, unsupervised learning, template matching, SIFT etc. 

[2-3]. However, these methods are not robust enough to 

varying illumination conditions, scale changes, object 

rotation and imaging geometry. 

5. Deep Learning based Techniques for Object 

Detection  
Deep learning has become the latest tool for solving 

problems which are/were difficult to counter with rule-

based/handcrafted techniques. Convolutional Neural 

Networks (CNN) has been employed in a variety of 

computer vision-based applications.  

Object detection [11-12] involves identifying the exact 

location of the objects in an image or video apart from its 

classification. Two broad categories of techniques are 

applied for object detection, namely multi-stage and single-

stage detector. In the multi-stage detection technique, the 

input image is segmented into various regions using 

algorithms like selective search etc. Subsequently, these 

segments of images are passed on to a Convolutional Neural 

Network (CNN) to extract various features. The extracted 

features are used for classification using a Support Vector 

Machine (SVM) followed by bounding box regression. The 

multi-stage methods are accurate, albeit at the expense of 

increased computation. Some of the widely used multi-stage 

algorithms are the R-CNN, Fast R-CNN, Faster R-CNN etc. 

[13-17] Single-stage object detectors apply a single neural 

network to obtain both position and classification in a single 

pass. The most widely used single-stage object detection 

models are YOLO (You Only Look Once), YOLOv2, 

YOLOv3, YOLOv4, SSD etc. [18,30] These single-stage 

detectors are fast and with low latency, making them ideal 

candidates for real-time applications. 

6. YOLO-based Crater Detection  
YOLO (You Look Only Once) is a popular framework 

used for object detection. Other object detection networks 

employ multiple stages to accomplish object detection tasks. 

YOLO, as the name suggests, employs a single stage to 

detect the objects in an image along with the probability 

score conveying the confidence of its predictions.  YOLOv4-

tiny is a trimmed-down version of YOLOv4. [30] YOLOv4-

tiny has fewer layers than the original YOLOv4 model, and 

only two detection heads exist. YOLOv4-tiny [20-21] is 

much simpler and faster to compute when compared to a full-

fledged YOLOv4 model. Considering the real-time 

processing requirements for crater detection, the YOLOv4-

tiny model has been selected for prototype implementation. 

YOLOv4-tiny uses CSPDarknet-53 as the backbone for 

feature extraction. Figure 3 gives the block diagram of the 

YOLOv4-tiny algorithm. 

7. Data Curation and Training  
We use lunar images from NASA's Lunar 

Reconnaissance Orbiter (LRO).  A Lunar Reconnaissance 

camera (LROC) is a system of three cameras mounted on the 

LRO.  LROC consists of two NACs (Narrow-angle camera 

with 0.5m resolution and 5 km swath) and a WAC (Wide 

Angle Camera with 100m resolution and a 60 Km swath).  

Specifically, images from Narrow Angle Camera (NAC) 

were used for training (Figure 4). Figure 5 gives the 

photograph of the LROC NAC camera. As no labelled crater 

data sets were available, data curation and manual data 

labelling were carried out.  About 500 images were manually 

labelled using the Yolomark tool [22-23]. 
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Fig. 4 LROC NAC images used for training  

  
Fig. 5 LROC NAC camera [25]  

A total of about 10000 labelled craters were used for 

training. Google Colab platform [24] was used for training 

the YOLOv4-tiny model, and it took 14 hours for training. 

The training configuration is given in Table 1.  Figure 6 

gives the training loss curve. 

8. Prototype Hardware Configuration and 

Implementation 
Onboard digital processing hardware for space missions 

is constrained by stringent SWaP (Size, Weight and Power) 

requirements. Apart from the SWaP requirements, all space 

missions typically employ radiation-hardened devices to 

withstand harsh radiation environments. The functional 

requirements of onboard space-borne digital hardware are 

classified into two categories, viz. control and data/signal 

processing.  

Control functionalities typically involve coordinating a 

sequence of events (like powering on the other subsystems), 

monitoring the health of multiple systems, telemetry etc. 

These are realized using radiation-hardened 

processors/ASICs based on LEON/PowerPC/SPARCv7 

cores. Signal processing functionalities encompass a wide 

range of tasks like filtering, data compression, parameter 

estimation etc.    FPGAs, with their concurrent processing 

capability, are the ideal candidates to implement signal/data 

processing algorithms requiring high processing throughput. 

 
Fig. 6 Training-loss curve 

Table 1. Training parameters and configuration 

Parameter Specification 

Image type Panchromatic 

Source LROC, NAC 

Resolution and Swath 0.5m and 5 Km 

Input image dimensions 608 x 608 x 3 

Total images for training 

and validation 
500 

Total number of craters ~10000 

Number of training 

iterations 
40000 

Anchor boxes used for 

training 

[116 90; 156 198; 373 326] 

[30 61; 62 45; 59 119] 

[10 13; 16 30; 33 23] 

Mini batch size 64 

Learning rate 0.0026 

Hardware platform for 

training 

NVIDIA A100-SXM4-

40GB 

Train test validation 80%:10%:10% 

 

Various radiation-hardened FPGAs are employed in 

various missions with the different underlying technology, 

namely Xilinx Virtex-5QV FPGA [19] (SRAM-based 

technology), RTG4 (Flash-based technology), RTAX2000 

(Anti-fuse) etc. These devices do not have sufficient logic 

resources to implement a DNN-based model for inference. 

For EDGE-based inference, usually, GPUs (NVIDIA 

Jetson Nano, NVIDIA T4 etc.) are the first choice.  GPUs 

and other commercial embedded processors are unsuitable 

for reliable operation in the harsh space environment. Also, 

purely processor-based architecture lacks the parallel 

processing power of FPGAs. On the other hand, 

implementing deep learning models on FPGA is tedious and 

time-consuming. 
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Fig. 7 MPSoC processor architecture [26] 

Table 2. Specifications and performance of MPSoC-based hardware 

Parameter Specification 

FPGA XCZU7EV 

PL Operating Frequency 200 MHz 

Memory DDR 4GB + 1 GB 

Control Interface MIL 1553B 

Camera Interface 
LVDS / RS422 / 

Ethernet 

Programming/ Debug 

interface 
USB 

Total Inference time with 

overheads 
558.79 ms. 

Effective inference time 

without overheads 
470.44 ms. 

 

An ideal processing platform would be a combination of 

both CPU and FPGA functionalities on a single chip. Xilinx 

MPSoC FPGA [27] (Figure 7) combines the best of both 

worlds, as it is a combination of both CPU and FPGA. It 

consists of Quad-core ARM cortex A53 processor, dual-core 

Arm R5F processor, and programmable FPGA fabric.  

A hardware platform (Figure 8) based on Xilinx MPSoC 

FPGA to carry out crater detection based on YOLOv4-tiny 

has been developed. It is based on Xilinx MPSoC SOM 

(System On Module) mounted on a customized daughter 

card which has various interfaces such as MIL1553, 

Ethernet, LVDS, RS422, USB etc.  

 
Fig. 8 Photograph of prototype hardware 

 Inbuilt LVDS/RS422/Ethernet interfaces are available 

for ingesting data from the optical camera. The hardware has 

MIL 1553 interface to communicate the results to the 

mission/navigation computer.  The specifications of the 

hardware are given in Table 2. 
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Fig. 9 Precision-recall curve 

 
Fig. 10 Crater detection output using MPSoC hardware 

 
Fig. 11 Layer-wise inference time breakup 

9. Results and Performance Evaluation 
To evaluate the performance of the YOLOv4-tiny 

detector, the following metrics, namely, precision, recall, and 

mean Average Precision (mAP), were employed. 

Precision =
True Positives

True Positives + False Positives 
 

Recall =
True Positives

True Positives + False Negatives
 

Intersection over Union (IoU)  =
Area of Overlap 

 Area of Union 
 

The trained model was evaluated on 50 (~1000 craters) 

images, and a mean average precision (mAP) of 75% @ IoU 

= 0.5 was achieved. Figure 9 gives the Precision-Recall 

curve, and Figure 10 gives the YOLOv4-tiny predicted input 

from the prototype hardware. 

A high-level synthesis (HLS) approach was adopted for 

YOLOv4-tiny detector implementation on the MPSoC 

processor. MATLAB Deep Learning HDL toolbox was 

extensively used to implement the various layers of the 

object detector. MATLAB does not provide a YOLOv4-tiny 

detector, which can be directly synthesized for hardware 

implementation. The YOLOv4-tiny model trained in the 

Colab environment was imported to MATLAB. The Deep 

Learning HDL library did not support a few layers. For 

example, the slice layer (For channel slicing) is not a 

supported layer and was replaced with a 2D convolution 

layer with filters tuned to perform the function of channel 

slicing.  

With this configuration, the total processing time per 

frame comes out to be 558.79 ms. The effective processing, 

not considering the slice layers, comes out to be 470.44 ms. 

Figure 11 gives the layer-wise processing time breakup. 
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10. Conclusion and Future Work  
This paper investigated the application of deep learning-

based techniques for use in autonomous soft landing 

missions. We employed an off-the-shelf YOLOv4-tiny object 

detection algorithm in the position estimation pipeline for the 

feature detection process.  

• A hardware test bed based on Xilinx MPSoC FPGA was 

developed to prototype the YOLOv4-tiny model 

• About 10000 manually labelled craters were used to train 

the YOLOv4-tiny model in the google Colab environment, 

and a mAP of 75% was achieved. The mAP can be further 

improved by increasing the datasets, training iterations and 

fine-tuning the hyper-parameters parameters. 

• The object detector was prototyped on Xilinx MPSoC 

FPGA-based hardware, and an effective inference time of 

471 ms (with floating-point weights and biases) was 

achieved. This inference time may be sufficient for the 

global position estimation phase of a soft landing. 

However, for the local position estimation/hazard detection 

phase, the inference time has to be kept as low as possible 

owing to onboard fuel constraints of the lander craft 

• Further reduction in inference time is possible by weight-

bias quantization, network pruning, paralleling the 

implementation using hand-coded RTL etc. 

• In future, we plan to extend this work to improve the mAP 

of detection and implement the entire position estimation 

pipeline, including feature matching, feature database 

generation etc. and evaluate the same on the prototype 

hardware. 
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