
SSRG International Journal of Electrical and Electronics Engineering    Volume 10 Issue 3, 67-72, March 2023 

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V10I3P108              © 2023 Seventh Sense Research Group® 

         

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

Neumann Series based Precoding Matrix Generation 

for Next Generation High throughput Satellite 

Neeraj Mishra1, Deepak Mishra2, Nagendra Gajjar3, Kiran Parmar4 

 
1,2Space Applications Centre, Indian Space Research Organization, Gujarat, India. 

3Institute of Technology, Nirma University, Gujarat, India. 
4Adani Institute of Infrastructure Engineering, Gujarat, India. 

 

 
1Corresponding Author : neerajsci@sac.isro.gov.in  

 

Received: 19 January 2023  Revised: 04 March 2023  Accepted: 16 March 2023               Published: 29 March 2023 

Abstract - In next-generation high throughput satellite (NGHTS), precoding (a preprocessing technique at the gateway (GW) 

can mitigate the interbeam interference with no additional resource at the user terminal. However, the calculation of 

precoding requires matrix inversion, which involves huge complexity in terms of hardware resources with real-time 

calculation for near error-free results. This paper proposes a novel approach for precoding matrix calculation using the 

Neumann series. In this way, the algorithm does not directly compute the matrix inversion. Hence the computational 

complexity is highly reduced. The proposed method uses the 4th-order iterative series with the initial guess as an inverse of 

the diagonal matrix of the input to construct the Neumann series. This leads to fast convergence of the matrix inversion 

process with fewer resources. The algorithm is claimed to be generic as it is seamlessly applied to any linear precoding 

scheme. The paper examines the resource complexity, convergence probability and Bit Error Rate (BER) performance for 

the proposed method with Zero Forcing (ZF) and Regularized Zero Forcing (RZF) based linear precoding scheme. 

Experiment results demonstrate that the proposed algorithm accomplishes superior performance with fewer resources 

compared to the Neumann series and Joint iterative Newton/Chebyshev-based Neumann series methods. 

Keywords - Precoding, Interbeam interference, Neumann series, Matrix Inversion Approximation (MIA), Next Generation 

High Throughput Satellite. 

 

1. Introduction 
Communication satellites' design and utilization 

techniques are undergoing disruptive but positive paradigm 

transformations [1-2]. The NGHTS uses numerous spot 

beams with full or nearly full frequency reuse factors 

amongst the user beams. In these scenarios, NGHTS 

forward link behaves as an interference-limited link rather 

than a conventional thermal noise-constraint link. Despite 

all these developments, new methods still need to be 

investigated to solve this problem. Precoding is one of the 

multiple input, multiple outputs (MIMO) based interference 

mitigation strategies. [3-9]. The scientific community has 

recently become quite interested in using precoding 

techniques in SATCOM services [10-13]. Recently, the 

efficacy of precoding in SATCOM has been successfully 

demonstrated with EUTELSAT 7B and EUTELSAT 10A 

satellites [14]. 

Further, the publication of the digital video broadcast 

standard DVB-S2x provides the utilization strategy for 

precoding in multi-beam high throughput satellite (HTS) 

systems [15]. However, from the perspective of NGHTS, 

calculating the precoding matrix requires the inverse of the 

large matrix size. This is an important practical issue as 

matrix inversion operation requires a huge resource for real-

time calculations and updates of the precoding matrix. A lot 

of work has been published in this domain by various 

authors. Direct inversion [16], Newton Raphson iteration 

[17], Chebyshev iteration [18], and Toutounian iteration 

[19] have recently been used in matrix inversion. The initial 

value guess and the number of iterations control the 

performance of these methods. Recently, the Neumann 

series has been proposed for the inverse of the matrix via an 

approximation approach [20]. The single-shot calculations 

in the Neumann series are thoroughly examined for matrix 

inversion approximation (MIA). However, the use of the 

Neumann series for precoding matrix calculation has been 

constrained by sluggish convergence or non-convergence in 

certain circumstances. The combined use of iterative series 

and Neumann series techniques have recently attracted a lot 

of attention in research activity. 

The matrix inversion is performed by using Joint-

Newton Iteration and Neumann series (Joint-NINS) in [21] 

and also through joint Chebyshev Iteration and Neumann 

series (Joint-CINS) in [22]. These approaches efficiently 

find the initial step of the Neumann series using either 

Newton or Chebyshev iteration method. However, all these 

researches are mainly focused on terrestrial communication, 

and less work is done on NGHTS. We suggest a unique 

approach using joint Toutounian iteration and Neumann 

Series (Joint-TINS) for the NGHTS scenario. In the Joint-
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TINS, the Toutounian iteration provides the pivotal point for 

an efficient search direction for matrix inversion via the 

Neumann series. Furthermore, a convergence condition of 

the Joint-TINS is derived for the NGHTS scenario. The 

structure of the paper is as follows. 

Section II defines the system architecture of NGHTS 

with full frequency reuse amongst receiving beams. Section 

III presents the Joint-TINS algorithm, its convergence 

condition and its complexity. Section IV provides details of 

the experiment results of the Joint-TINS method and a 

comparison with other methods for 16 Beams NGHTS 

design.  

Notation: A capital letter denotes the matrix, while a 

small letter denotes the vector. B is a matrix, while b is a 

vector. BT is a transpose matrix, B−1 is an inverse matrix, B† 

is a conjugate (Hermitian) transpose matrix, and ‖B‖ is a 

Forbenius norm of matrix B. The ON is N x N zero matrix, 

while IN N x N is the identity matrix.  

2. Problem Formulation 
Figure 1 shows the typical NGHTS architecture in bent 

pipe configuration. The satellite is equipped with N transmit 

antenna chains to provide the coverage area in K-shaped 

ground beams. The system is employed with full frequency 

reuse and uses precoding for interference mitigation. 

Further, it is assumed that GW has full knowledge of the 

channel state information matrix of the network and forward 

link is fully calibrated. We consider the precoded transmit 

signal as given in equation (1).  

𝑦𝑘 = ℎ𝑘
†

√𝑝𝑘
2 𝑠𝑘𝑤𝑘 +  ℎ𝑘

† ∑

𝑘≠𝑗

√𝑝𝑘
2 𝑠𝑗𝑤𝑗 + 𝑛𝑘    (1) 

Where sk denotes the unit power symbol, pk represents 

the gain factor, and wk is a normalized N x1 size precoding 

vector, respectively, for the user receiver in the kth beam. 

Further ℎ𝑘
†
 denotes the conjugate transpose of the channel 

state vector ℎ𝑘   for the corresponding kth beam. It is 1 × N 

vector composed of the channel state coefficients  (mainly 

 
Fig. 1 Forward link architecture of NGHTS 

consisting of propagation loss, feeder losses, antenna gains, 

and associated phase shift of local oscillators in the payload) 

between the user receiver in the kth beam and the satellite. 

Further, nk represents zero mean additive white Gaussian 

noise (AWGN) at the kth user receiver. 

The signal-to-noise-and-interference ratio (SNIR) and 

achievable rate for the kth beam for the system are given by 

equations (2) and (3), respectively. 

𝑆𝐼𝑁𝑅𝑘 =
𝑝𝑘|ℎ𝑘

†𝑤𝑘|
2

1 + ∑𝑗≠𝑘 𝑝𝑗|ℎ𝑗
†𝑤𝑗|

2      (2) 

𝑟 = ln{1 + 𝑆𝐼𝑁𝑅𝑘}    (3) 

Further, for the performance validation of Joint-TINS, 

the paper considers the ZF and RZF precoding described by 

equation (4) and equation (5) 

𝑊𝑍𝐹 = [𝐻†𝑃𝐻]−1𝐻†    (4) 

𝑊𝑅𝑍𝐹 = [𝛽𝑅𝑍𝐹𝐼𝑁 + 𝐻†𝑃𝐻]−1𝐻†     (5) 

Where 𝛽𝑅𝑍𝐹  is the SINR controlling parameter 
defined as [24]. 

3. Proposed Algorithm 
We can see from equations (4) and (5) that the 

calculation of the precoding matrix involves a step of 

finding the inverse of the matrix. This matrix in the NGHTS 

scenario is huge; thus, the operation requires overwhelming 

resources. In this regard, we propose the Neumann series 

based fourth-order iterative series method (based on the 

Toutounian series) to calculate the inverse with reduced 

complexity.  

The Neumann series is described in equation (6). 

Equation (7) is a prerequisite for equation (6). 

𝑍−1 = ∑(𝐼𝑘 − θ𝑍)𝑛θ

∞

𝑛=0

    (6) 

𝑙𝑖𝑚𝑛→∝(𝐼𝑘 − θ𝑍)𝑛 =  0𝑘    (7) 

Where Z is the input matrix whose inverse is to be 

calculated, the θ is the initial guess for the Neumann series. 

The initial guess (θ) controls the convergence and speed of 

convergence of the process. Thus θ should be intelligently 

selected to resolve sluggish convergence and non-

convergence of the Neumann series. The Joint-TINS 

algorithm first finds a suitable θ and uses it to approximate 

the matrix inversion via equation (6).  

Let the equation for the inverse function is defined as 

(8) 

𝑓(𝑥) = 𝑥 − 𝐴−1     (8) 

For the solution 𝑥 = 𝐴−1  or f(x) = 0, we use a three-

step method defined in equation (9) to equation (11) 
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𝑣𝑖 =  𝑥𝑖 −
𝑓(𝑥)

𝑓′(𝑥)
     (9) 

𝑢𝑖 =  𝑥𝑖 −
𝑓(𝑥𝑖)

2
{

1

𝑓′(𝑥𝑖)
+

1

𝑓′(𝑣𝑖)
}    (10) 

𝑥𝑖+1 =  𝑣𝑖 −
𝑓(𝑣𝑖)

𝑣𝑖 − 𝑥𝑖

{𝑓(𝑣𝑖) − 𝑓(𝑥𝑖)}   (11) 

If we apply equation (8) in equations (9) to (11), then 

the following iterative series is obtained [12]. 

𝑍𝑖+1 =  
𝑍𝑖

2
[9𝐼 − 𝐴𝑍𝑖{16𝐼 − 𝐴𝑍𝑖(14𝐼 − 𝐴𝑍𝑖(6𝐼 −

𝐴𝑍𝑖))}],   𝑖 = 0,1,2,    (12)  

Z0 is the initial value at the start of the calculation of 

equation (12). Additionally, [23] demonstrated that setting 

Z0 to D−1 (inverse of a matrix consisting only of diagonal 

elements of the input matrix) meets the convergence 

requirement of equation (7). As equation (12) is of four 

order, it accelerates the convergence speed for the Neumann 

series. This inspired us to use the first iteration output Z1 as 

an initial guess for the Neumann series. This performs well 

in practice and only requires a few iterations. Thus, the 

Joint-TINS scheme can be obtained as per table 1. 
 

Table 1. The proposed algorithm (Joint-TINS) 

Algorithm 

1. Calculate  𝑍1 =  
𝐷−1

2
[9𝐼 − 𝐴𝐷−1{16𝐼 −

𝐴𝐷−1(14𝐼 − 𝐴𝐷−1(6𝐼 − 𝐴𝐷−1))}] 

2. Construct the Neumann series using the Z1 to 

find out the A-1 as 𝐴−1 ≈ ∑ (𝐼𝑘 − 𝐴𝑍1)𝑛𝑍1
𝑚
𝑛=0  

for initial m terms. 

3. Calculate the precoded signal as illustrated by 

equation (4) and equation (5) 

4. Repeat the process from step 2 to step 3 until the 

performance index (SINR/Bit error rate 

performance/Residual Error etc.) is achieved in 

the  desired threshold range 

 

The suggested Joint-TINS precoding technique 

requires an additional 1-time series iteration to solve Z1 in 

comparison to the Neumann series precoding technique. 

However, this makes the overall convergence faster. 

Compared with Joint-NINS or Joint-CINS, the Joint-TINS 

method is faster as Joint-NINS or Joint-CINS are two-order 

and three-order series equations, respectively. Additionally, 

when the number of terms in the Neumann series is less, 

equation (6) may not converge with any general initial value 

(θ). However, using Z1 to build the Joint-TINS precoding 

produces a more suited output and enables faster 

convergence with fewer iterations than the Neumann series. 

As a result, the performance is enhanced, and resource usage 

is decreased. 

 

3.1. Convergence Analysis 

The law of matrix power series states that the product 

of BN will only converge for a square matrix B of size K x 

K when its spectral radius of B, i.e. 𝜌(𝐵) is smaller ss than 

1. Now the Joint-TINS algorithm converges when   

=> 𝑙𝑖𝑚𝑛→∝(𝐼𝑘 − 𝑍1𝐴)𝑛 =  0𝑘     (13) 

=> spectral line of 𝜌(𝐼𝑘 − 𝑍1𝐴) < 1    (14) 

=> the eigenvalue o 𝜆(𝐼𝑘 − 𝑍1𝐴) < 1   (15) 

Further, Note that 𝑙𝑖𝑚𝑛→∝(𝐼𝑘 − 𝑍1𝐴)𝑛𝑍1 converges 
when 

=> |𝐵(𝜆)|
< 1 𝑤ℎ𝑒𝑟𝑒 𝜆(𝐴)𝑖𝑠 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐵 𝑤ℎ𝑒𝑟𝑒 𝐵
=  𝐼𝑘 − 𝑍1𝐴 

Now for B convergence condition can be proved as per 

below  

i.e. 𝜌(𝐵) < 1 

 𝜌(𝐼𝐾 − 𝐷−1𝐴) < 1, 𝑓𝑜𝑟 𝐵
=    𝐼𝐾 − 𝐷−1𝐴        

Now, 𝐵 =  𝐼𝑘 − 𝑍1𝐴, replacing  𝑍1 by the equation (12) 

with 𝑍𝑖 by 𝐷−1 as suggested in [23] 

=> 𝐵 = 𝐼𝑘 − 
𝐷−1

2
[9𝐼𝑘

− 𝐴𝐷−1{16𝐼𝑘

− 𝐴𝐷−1(14𝐼𝑘

− 𝐴𝐷−1(6𝐼𝑘 − 𝐴𝐷−1))}]𝐴 

=>  𝐵 =
1

2
(𝐼𝑘 − 

𝐷−1

2
[9𝐼𝑘 − 𝐴𝐷−1{16𝐼𝑘 − 𝐴𝐷−1(14𝐼𝑘 −

𝐴𝐷−1(6𝐼𝑘 − 𝐴𝐷−1))}]𝐴)  

=> 𝐵 =
1

2
(𝐼𝑘 + 𝑅)(𝑅)4, where R = 𝐼𝑘 − 𝐴𝐷−1 

=> 𝐵 =  
1

2
(𝑅4 + 𝑅5) 

From the subordinate matrix norm, we can have 

||𝐵|| ≤ ||
1

2
(𝑅4 + 𝑅5)|| ≤

1

2
(||𝑅4|| + ||𝑅5||) 

=> 𝐵𝑦 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔   𝑜𝑓 𝑅 𝑎𝑠 ||𝐼𝑘 − 𝐴𝐷−1|| < 1 

=> ||𝐵|| ≤
1

2
||𝑅|| < 1 

Further, based on [25], the convergence condition for 
∑∞

𝑛=0 (𝐼𝑘 − 𝑍1𝐴)𝑛𝑍1 can be derived as   



Neeraj Mishra et al. / IJEEE, 10(3), 67-72, 2023 

 

70 

 
Fig. 2 Convergence probability vs Number of transmit antenna 

 

𝑁

𝐾
>

1

(√2
2

− 1)
2 > 5.8284              (16) 

Hence, the Joint-TINS method satisfies the 

convergence condition. Table 2 shows the maximum 

allowable number of Beams (K) to the number of transmit 

antennas (N) in the NGHTS network design for Joint-TINS. 

Figure 2 displays the convergence probability vs transmit 

the number of the antenna (minimum value of N as per 

equation (13)). It is clearly visible that the algorithm is 

achieving a very high value of convergence with a 

probability as high as 0.9995. Furthermore, the convergence 

probability of Joint-TINS increases as the ratio of N/K 

increases. Additionally, the Joint-TINS algorithm performs 

better for a lower value of N.  

3.2. Estimation of Complexity Analysis  

The Joint-TINS scheme's computational complexity 

can be divided into three sections. The first step of the Joint-

TINS yields the first component of the computation. This 

step has a complexity of 4NK + K. The second section 

comes from the computation of the Neumann series. It is 

evident that the computing cost of this step is (i − 2) K3, 

where i denotes the total number of terms in the Neumann 

Series.  

The last section of the estimation originates from the 

computation of matrix multiplication of the calculated 

matrix [𝐻†𝑃𝐻]−1/[ 𝛽𝑅𝑍𝐹𝐼𝑁 +  𝐻†𝑃𝐻] with 𝐻. The 

assumption in these steps is that once the system 

configuration has been completed, the values of 𝛽𝑅𝑍𝐹 , P and 

H are known and the inner matrix in equation (4) and 

equation (5) is available at the start of the algorithm. Thus, 

the number of complex multiplications require are M + MK 

for both ZF and RZF.  

Table 2. Maximum 𝐾 values vs transmit antenna (N) chains under the 

condition of (16) 

N 64 128 256 512 

K 10 21 43 87 

 

Table 3. The complexity of different algorithms for calculation of ZF 

and RZF precoding matrix 

Algorithm Complexity 

Direct Method N+NK+2NK2+K3 

Neumann Series N+NK+(i-2)K3 

Joint-NINS N+K+3NK+(i-2)K3 

Joint-CINS N+K+4NK+(i-2)K3 

Joint-TINS N+K+6NK+(i-2)K3 

 

Table 3 compares the complexity of calculating the 

precoding matrix via different algorithms. Table 3 illustrates 

that the computational complexity of Joint-TINS is 

comparable to that of Joint CINS and Joint NINS. On the 

other hand, since the Neumann series in Joint-TINS has 

fewer iterations, this precoding scheme shows a higher 

convergence probability and faster convergence rate. In 

contrast to other algorithms, the Joint-TINS technique 

achieves a superior balance between performance and 

complexity.  

4. Simulation Results 
We demonstrate the Joint-TINS algorithm's 

performance in this section through a number of 

experiments. The Joint-NINS, Joint-CINS, and Neumann 

series-based ZF and RZF precoding methods are compared 

to the Joint-TINS algorithm. The benchmarking is done 

through classical ZF and RZF precoding with exact matrix 

inversion. A typical downlink NGHTS, with uniform 32 

APSK modulation, N×K = 128×16 and flat fading with 

AWGN channel, is considered. Further, GW knows the 

channel state information matrix of all users, and the 

forward link is fully calibrated. 

The experiments are BER measurements for ZF and 

RZF precoding schemes, comparing convergence speed and 

residual error amongst the different methods. 

4.1. Experiment 1 (ZF BER) and 2 (RZF BER) 

Figures 3 and 4 show the BER performance of the Joint-

TINS, Neumann series, Joint-CINS, and Joint-NINS for ZF 

and RZF precoding, respectively. The stopping criteria are 

that BER performance is better than 10-5. As can be 

observed, all techniques perform better in terms of BER 

with the increase in the number of terms in the Neumann 

series. It is clear that the Joint-TINS-based precoding 

technique can obtain enhanced performance than all other 

precoding techniques. For illustration, Joint-TINS achieves 

the stopping criteria at 30 dB, while the Joint-NINS, Joint-

CINS and benchmarked approach (Direct Inversion) stops 

at SNR value 36 dB, 32 dB and 28 dB, respectively. In the 

case of RZF, Joint-TINS terminates at SNR value 24 dB 

against 22, 28 and 26 dB for direct, Joint-NINS and Joint-

CINS. Furthermore, the Joint-TINS precoding requires 

fewer iterations to reach a similar performance. The Joint-

TINS precoding only requires 2, while Joint-CINS and 

Joint-NINS series require 3, 4, and 6 Neumann series terms, 

respectively, for both ZF and RZF precoding. As a result, 

the Joint-TINS precoding scheme can produce nearly ideal 

results with fewer iterations, resulting in a lower resource 

requirement.  
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Fig. 3 BER performance comparison for ZF precoding 

 

 
Fig. 4 BER performance comparison for RZF precoding 

It is evident that the Joint-TINS scheme outperforms 

the Joint-CINS, Joint-NINS and Neumann series to achieve 

the BER performance. Therefore, the Joint-TINS precoding 

approach efficiently reduces the interference amongst the 

beam. 

4.2. Experiment 3 (Convergence speed) and 4 (Residual 

error) 

In this experiment, we compare the convergence speeds 

of the Joint-TINS method with Joint-CINS, Joint-NINS and 

Neumann series. The convergence speeds are measured in 

terms of iteration required to meet the stopping criteria. In 

this experiment, we use the three types of random matrix 

with the size 100 x 16, 400 x 64 and 900 x 144. These 

matrices are chosen as per the condition of equation (16). 

The stopping criteria for the experiment is 
 

‖
𝑅𝑘

𝑅0
‖ < 10−5 , where, 𝑅𝐾 =  𝐼 − 𝐴0

−1𝐻 , 𝑅0 =  𝐼 −

𝐴𝑘
−1𝐻,  

where 𝐴0
−1 is initial guess  and 𝐴𝑘

−1 is the kth iteration 

output. Table 4 shows the number of iterations required for 

the Neumann series, Joint-NINS, Joint-CINS and Joint-

TINS algorithm. 

 
Fig. 5 Residual error comparison  

Table 4. The complexity of various algorithms with different input 

matrix sizes 

   

It can be seen that Joint-TINS converges almost three 

times faster than the Neumann series, twice compared to 

Joint-NINS and 1.2 to 1.3 times fast compared to Joint-

CINS. Figure -5 shows the residual error data for the 

Neumann series, Joint-NINS, Joint CINS and Joint-TINS 

algorithm for a random matrix of size 100 x 16. The residue 

of the Joint-TINS algorithm is less than the Neumann series, 

Joint-NINS and Joint-CINS scheme due to the 

preconditioning of the initial guess through steps 1 and step 

2 of the Joint-TINS. This is one of the novelties of the 

algorithm.  

5. Conclusion 
In the paper, we put forth a novel approach for 

calculating the precoding matrix to achieve the near-ideal 

downlink performance for NGHTS's. The Joint-TINS 

algorithm's methodological steps are derived in this paper. 

The paper establishes the convergence condition in the 

NGHTS scenario. Even if the Joint-TINS algorithm 

performs better, the research asserts and demonstrates that 

its complexity is comparable to that of the Joint-NINS and 

Joint CINS algorithms. The algorithm's efficacy is proven 

through characterization in ZF and RZF scenarios. The 

experiment results validate that the Joint-TINS method 

outperforms the existing Neumann series-based Joint 

iterative precoding schemes. Further, the algorithm 

converges fast due to the preconditioning applied for the 

Neumann series.  

 

Matrix Size/ 

Algorithm 

100x16 

 

400x64 

 

900x144 

 

 Average  Neumann series term 

Neumann 

Series 
25 48 90 

Joint-NINS 18 36 54 

Joint-CINS 11 20 30 

Joint-TINS 8 16 20 
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