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Abstract – The latest wireless sensor network (WSN) developments in critical applications have introduced security risks, like 

jamming. Intrusion Detection System (IDS) in WSN is the method of recognizing malevolent or unauthorized activities in the 

network. The intruder's presence to launch different attacks within the network cannot be disregarded. Despite a great deal of 

effort by the researcher workers, IDS still experienced difficulties enhancing recognition performance while minimizing the false 

alarm rate and identifying novel intrusions. Recently, Deep Learning (DL) and Machine Learning (ML) based IDS system has 

been deployed as promising solution to effectively identify intrusion across the network. Therefore, the study presents a Moth 

Search Optimization with DL-based Intrusion Detection (MSODL-ID) method in the WSN. The MSODL-ID technique aims to 

effectually identify the occurrence of malicious activities or intrusions in the network. To accomplish this, the MSODL-ID 

technique undergoes two stages of preprocessing: data conversion and data scaling. In addition, the MSODL-ID technique 

employs Convolutional Recurrent Neural Network (CRNN) model with a Hopfield layer for intrusion detection purposes. For 

optimal hyperparameter selection of the CRNN model, the MSO algorithm is used and thereby enhances the classification 

performance of the CRNN model. The stimulation analysis of the MSODL-ID system is tested by means of Kaggle datasets, and 

the outcomes exhibit the promising performance of the MSODL-ID system over other current DL approaches. 

Keywords - Intrusion Detection System, Wireless Sensor Networks, Deep Learning, Security, Moth Search Optimizer. 

1. Introduction 
Wireless Sensor Network (WSN) presents a wide range 

of applications over their reasonably massive number of 

wireless sensor nodes (SNs) [1]. The nodes in WSN were 

resource limited in terms of computational capabilities, 

storage, and communication. Though it has limitations, 

because of cost and extended coverage WSNs are generally 

preferred for applications like traffic control, habitat 

monitoring, home automation, and environment monitoring. 

Like other networks [2], WSNs are exposed to security 

menaces because of their dispersed and wireless 

characteristics [4].  

The limited battery power needs less computation to 

increase the network lifetime, which avoids the disposition of 

standard security techniques and makes the network 

susceptible. Invaders can easily use these vulnerable networks 

and obtain access to the network, which was a main security 

problem in WSN [5]. Network intrusion detection systems 

utilized in the WSNs identify intrusions or security attacks and 

secure the network. IDS were indispensable for authorization, 

user authentication, and dealing with doubtful actions [6]. In 

general, intrusions refer to malicious actions to perform 

unauthorized tasks and obtain network access. IDS secures the 

network by identifying those malicious unauthorized actions. 

To solve these issues, researchers have started to 

concentrate on framing IDS utilizing ML approaches [7]. ML 

is a type of Artificial Intelligence (AI) approach that can 

automatically find valuable data from massive datasets. ML-

related IDS can achieve satisfactory detection levels if 

sufficient training data is accessible [9] and ML methods have 

sufficient generalizability to find new attacks and attack 

variants. Also, ML-related IDS do not hinge on field 

knowledge; thus, it is easy to build and design [10]. Deep 

learning (DL) refers to a subdivision of ML that could reach 

outstanding performances. Compared with classical ML 

approaches [11], DL techniques are better at handling big data. 

Likewise, DL methods can learn feature representations 

automatically from raw information and output outcomes; 

they work in an end-to-end manner and are practical [12]. One 

notable feature of DL is the deep structure, which has many 

hidden layers [13, 14, 16]. 
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The study presents a Moth Search Optimization with the 

DL-based Intrusion Detection (MSODL-ID) method in the 

WSN. The MSODL-ID technique aims to effectually identify 

the occurrence of malicious activities or intrusions in the 

network. To accomplish this, the MSODL-ID technique 

undergoes two stages of preprocessing: data conversion and 

data scaling. In addition, the MSODL-ID technique employs 

Convolutional Recurrent Neural Network (CRNN) model 

with a Hopfield layer for intrusion detection purposes. For 

optimal hyperparameter selection of the CRNN model, the 

MSO algorithm is used, enhancing the classification 

performance of the CRNN model. The stimulation analysis of 

the MSODL-ID system is tested by means of the Kaggle 

dataset. 

2. Related Works 
Kagade and Jayagopalan [17] intend to set up a new IDS 

using a DL method. First of all, optimum cluster heads (CHs) 

have opted amongst the SNs, where the SNs that have 

maximum energy act as CH. In the presented technique, the 

selection of CH was assessed effectively through 

consideration of the energy parameter under the limitations 

like distance and delay. An innovative technique called Self 

Improved Sea Lion Optimization (SI-SLnO) method was 

presented for optimal selection. Muruganandam et al. [19] 

developed a DL-related feed-forward ANN technique that 

enables accurate predictions of the k-barrier counting for 

potential ID and lessening. The four potential characteristics 

of sensing transmission area, the area of the ROI, many 

sensors, and sensor sensing areas are utilized to assess and 

learn the feed-forward ANN method. Otair et al. [20] devised 

a method to detect intrusions and address feature selection 

problems utilizing the Grey Wolf Optimization (GWO) 

combined with PSO to use the optimal values for updating the 

data of all greys wolf locations. This method preserved the 

individual's optimum location data by the PSO method that 

prevented the GWO method from getting trapped in local 

optima.  

Amaran and Mohan [22] presented an innovative 

optimum SVM (OSVM) related IDS in WSN. The proposed 

technique contains the fruitful selection of the best kernels in 

the SVM method using WOA for ID. The usage of OSVM 

approach is employed for identifying intrusion with potential 

outputs since the SVM kernel gets converted through WOA, 

in [25], proposed an optimized collaborative IDS (OCIDS) for 

WSN. It utilizes an improved ABC optimization method for 

optimizing the hierarchical IDS employed to WSN by means 

of the consumption of limited resources and the precision of 

ID. Also, this presented system optimized the weighted SVM 

technique for enhancing detection accuracy and reducing false 

alarm rates. 

In [26], the authors presented an innovative, robust 

network intrusion classifier structure that depends on the 

improvised Visual Geometry Group (VGG-19) pretrained 

method for extending the WSN performance. Principally, for 

training the parameters of VGG-19, the pretrained weights 

from the ImageNet dataset were used.  

Then, a method called a Hybrid DNN related to CNN and 

LSTM will be used to extract the features from the network 

traffic dataset and increase the ID accuracy. This VGG19 with 

the Hybrid CNN-LSTM method uses multi-classification and 

binary classification to classify assaults as either attacked or 

normal. Jianjian et al. [27] offer an ID technique modelled as 

an IDS for WSNs-DoS attacks related to the improved 

AdaBoost-RBFSVM technique. The effect of training was 

attained for making the RBF-SVM method the AdaBoost 

weak classification. Conversely, the eigenspace for the attack 

is devised afterwards investigating the DoS attack, and the 

respective IDS was modelled.  

3. The Proposed Model 
In this research, we have designed an automated IDS 

using the MSODL-ID model for WSN. The MSODL-ID 

technique aims to effectually identify the occurrence of 

malicious activities or intrusions in the network. It follows a 

three-stage process: preprocessing, CRNN with Hopfield-

based intrusion detection, and MSO-based hyperparameter 

tuning. Figure 1 represents the working process of the 

MSODL-ID system. 

3.1. Data Preprocessing 

Initially, the MSODL-ID technique undergoes two stages 

of preprocessing: data conversion and data scaling. At the time 

of the data conversion procedure, categorical information can 

be transformed into numerical values. Next, min-max 

normalizing is employed to scale the input data. It is widely 

applied for calculating the similarity degree amongst the 

points. Consider 𝐴 as data which is mapped from the data 

ranges from Amin to Amax, as follows: 

𝐴𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐴−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛
  (1) 

The employment of min-max normalization guarantees 

that the feature was extracted at a similar scale. 

3.2. Intrusion Detection using CRNN with Hopfield Network 

In this work, the MSODL-ID technique exploited the 

CRNN model with the Hopfield layer for intrusion detection 

purposes. CNN includes multiple fully connected and 

convolutional layers [29]. One or more neurons encompass 

every layer. Every neuron evaluates the weight afterwards, 

getting the value from the feature vectors and later transferring 

the weight to the following layer. Since language and audio 

are transferred through waveforms, an RNN transforms 

information into a pattern defined by human semantics.  
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Fig. 1 Working process of MSODL-ID system  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Architecture of CRNN with hopfield layer 

The right side is a diagrammatic representation extended 

on the time axis, and The left side is the fundamental structure 

of the model where 𝑂𝑡  shows the hidden and the output layers, 

and 𝐼𝑡 indicates the input at time 𝑡, respective to 𝐻𝑡 . The study 

incorporates the RNN and CNN methods to present the CRNN 

employed for intrusion classification in the WSN. The CRNN 

includes one layer of RNN and four layers of CNN. The 1st 

layer output is 32, inputted to the 2nd layer afterwards, passing 

over the maximum pooling layer. The 2nd layer output is 64 

and then inputted to the 3rd layer afterwards, passing over the 

max pooling layer. The 3rd layer output is 128, which is 

inputted to the subsequent layer afterwards, the max pooling 

layer. The 4th output layer is 256 and is outputted to the RNN 

layer. The process of the pooling layer is to increase the 

computation speed and decrease the computation complexity. 

The study adopts the max pooling layer that reduces the matrix 

by taking the largest value, as follows. 

𝜇𝛽 ←
1

𝑚
∑ 𝑥𝑖
𝑚
𝑖=1   (2) 

𝜎𝛽
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝛽)

2𝑚
𝑖=1   (3) 

�̂�𝑖 ←
𝑥𝑖−𝜇𝛽

√𝜎𝛽
2+𝜖
  (4) 

yi ← 𝛾�̂�i + 𝛽 ≡ 𝐵𝑁𝛾𝛽(𝑥𝑖)  (5) 
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Moreover, Dropout is used to reduce the existence of 

over-fitting. It is a method utilized in the DL method for 

reducing over-fitting. Once the training NN is done, it is 

utilized for randomly disconnecting a few neurons, viz., this 

neuron does not participate during training. Afterwards, 

iterated for optimization, every iteration implements this 

random sampling to create a subnet from the new network. 

Also, its architecture is not similar to the original network, 

hence avoiding the overfitting problem. Figure 2 illustrates the 

structure of CRNN with the Hopfield Layer. 

The size of 1st convolution layer is 3233, and then 

transmitted to the 2nd convolution layer afterwards the 

Dropout, ReLU function, and the max pooling layer. The size 

of 2nd convolution layer is 6433, and then transmitted to the 

3rd layer afterwards the Dropout, ReLU function, and max 

pooling layer. The 3rd convolution layer is 12833, then 

transmitted to the 4th convolution layer afterwards the 

Dropout, ReLU function, and max pooling layer. The 4th 

complex layer is 25633 and is sent to the RNN layer after the 

Dropout, the ReLU function, and the max pooling layer. The 

RNN layer is 25128 and lastly outputted after being organized 

by the RNN. 

 As the parameter of the prior layer changes during 

training, the distribution of every input layer changes. The 

internal covariance migration phenomenon needs a low 

learning rate, resulting in complexity in NN training. To 

resolve the situation of internal covariant migration, the BN 

technique can be implemented before the activation function 

and in every convolution layer. 

The ReLU has added every convolution layer, and the 

function is utilized afterwards. The mathematical formula of 

Leaky ReLU is given below: 

𝑦𝑡 = {
𝑋𝑖 , 𝑖𝑓𝑥i ≥ 0
𝑥𝑖

𝑎𝑖
, 𝑖𝑓𝑥i < 0 

 (6) 

Where 𝑎𝑖 denotes a fixed parameter between 1 and +∞. 

In addition, the Hopfield layer is included in the CRNN 

model for enhanced results. It is widely known that Hopfield 

neural network (HNN) simulates and describes brain activities 

in terms of memory and learning process [30]. In these types 

of neurons, the circuit equation is defined as follows: 

𝐶𝑖
𝑑𝑥𝑖

𝑑𝑡
= −

𝑥𝑖

𝑅𝑖
+ ∑ 𝑤𝑖�̇�

𝑛
𝑗=1  tanh (𝑥�̇�) + 𝐼𝑖   (7) 

In Eq. (7), 𝑅𝑖 denotes a resistor based on the membrane 

robustness between the outside and inside of the neuron. 𝐼𝑖  
symbolizes the input bias current. tanh (𝑥𝑗) denotes the 

smooth neuron activation function demonstrating the voltage 

input from the 𝑗‐ 𝑡ℎ neurons. 𝑥𝑖 denotes the state variable 

respective to the voltage across the capacitor 𝐶𝑖 . The matrix 

𝑊 = 𝑤𝑖𝑗  is an 𝑛 × 𝑛 synaptic weight matrix. Consider that 

𝐶𝑖 = 1, 𝑅𝑖 = 1, 𝐼𝑖 = 0 and 𝑛 = 4. The synaptic weight 𝑤𝑖𝑗  has 

been chosen using the trial and error method for generating 

irregular dynamical behaviors. 

𝑊 = [

𝑤11 𝑤12 𝑤13 𝑤14
𝑤21 𝑤22 𝑤23 𝑤24
𝑤31 𝑤32 𝑤33 𝑤34
𝑤41 𝑤42 𝑤43 𝑤44

] = [

𝑤11 −6 4 1
2 𝑤22 −1 0
−1 4 1.5 𝑤34
𝑤41 4 −5 2

]  (8) 

The smooth non-linear 4th order differential equation 

highlights the dynamics of four neurons based Hopfield NNs 

are considered in a non-dimensional structure as follows: 

{
 

 
�̇�1 = −𝑥1 +𝑤11 tanh (𝑥1) − 6 tanh (𝑥2) + 4 tanh (𝑥3) + tanh (𝑥4)

�̇�2 = −𝑥2 + 2 tanh (𝑥1) + 𝑤22 tanh (𝑥2) + tanh (𝑥3)

�̇�3 = −𝑥3 −  tanh (𝑥1) + 4 tanh (𝑥2) + 1.5 tanh (𝑥3) + 𝑤34 tanh (𝑥4)
𝑥4̇ = −𝑥4 +𝑤41 tanh (𝑥1) + 4 tanh (𝑥2) − 5 tanh (𝑥3) + 2 tanh (𝑥4)

 (9) 

3.3. Hyperparameter Tuning using MSO Algorithm 

For optimum tuning selection of the CRNN method, the 

MSO algorithm is used and thereby enhances the 

classification performance of the CRNN model. Wang 

proposed an MSO algorithm, a novel swarm intelligence 

technique that can be stimulated by the most representative 

features of phototaxis [31], moths and Lévy flights (LFs). The 

moth has a small distance from the better one and will be 

flying towards the better individual by LFs. The remaining 

will fly to the better one in line. The population was split into 

two subgroups.  

The moth in subgroup 1 is nearer to the optimum 

individual than in subgroup 2. The offspring of subpopulations 

1 and 2 are generated by LFs and fly straightly, 

correspondingly. MS is extensively used for resolving many 

different problems of complicated optimization in real-time. 

Despite its wider usage and quick searches with higher 

accuracy, MS suffer from a poor balance between exploration 

and exploitation. LF has a random walk with a continuous 

heavy-tailed distribution. Even though LF enhances the 

achievement of the MS method, in the later phase of the 

algorithm, the MS is jumped away from the optimum solution 

due to its alternative pattern with longer and shorter jumps for 

LFs. Thus, several researcher workers have developed an MS 

variant of 𝑡 to enhance the global search capability. 

3.3.1. Lévy Flights 

Lévy flight (LF) is a random walking method that fulfils 

heavy-tailed distribution, making more significant jumps at 

local locations with higher probability. 
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Algorithm 1: Pseudocode of MSO algorithm 

Begin 

Initialization: Random initialization of population of 

NP moths, the maximum generation Max_Gen; 

Determine individuals based on location; 

While 𝑇 < 𝑀𝑎𝑥_𝐺𝑒𝑛 do 

      Arrange every moth based on fitness; 

      For 𝑖 = 1 to 𝑁𝑃/2 (subgroup 1), do 

            Determine 𝑥𝑖
𝑡+1 using Lévy flights; 

      End for 𝑖 
            For 𝑖 = 𝑁𝑃/2 + 1 to 𝑁𝑃 (sub-group 2), do 

            If 𝑟𝑎𝑛𝑑 > 0.5 then 

                  Determine 𝑥𝑖
𝑡+1 by Eq. (13);  

                  Else 

                  Determine 𝑥𝑖
𝑡+1 by Eq. (14); 

            End If 

      End for 𝑖 
      Compute population based on upgraded 

localization; 

𝑇 = 𝑇 + 1, 
      End while 

      Display optimal solution 

End 

The density likelihood distribution of LF has three 

fundamental characteristics: sharp peaks, trailing and 

asymmetry. The moth flies towards the better individual using 

LF. For every individual 𝑖 in subpopulation1, the position is 

upgraded by LFs, as follows. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼𝐿(𝑠)  (10) 

In Eq. (10), 𝑥𝑖
𝑡+1 denotes the updated location, and 𝑥𝑖

𝑡 

indicates the original location at 𝑡 generation. 𝐿(𝑠) signifies 

the step drawn for LFs. 𝛼 denotes the scalings factor that is 

shown below: 

𝛼 =
𝑆 max 

𝑡2
  (11) 

Where 𝑆max specified the max walk step. 𝐿(𝑠) can be 

expressed by: 

𝐿(𝑠) =
(𝛽−1)𝛤(𝛽−1) sin(

𝜋(𝛽−1)

2
)

𝜋𝑠𝛽
  (12) 

In Eq. (12), 𝐿(𝑠) denotes the gamma function, and 𝑠 
represents the location of the moth individual that is greater 

than 0. 𝛽 = 1.5. 

3.3.2. Fly Straightly 

It is noted that phototaxis is moth tends to fly towards the 

illumination source. The change in angle will be discernible 

clearly once the moth gets closer towards the illumination 

source for navigating with the short distancing. 

Table 1. Details of database 

Class No. of Samples 

Normal 340066 

Blackhole 10049 

Grayhole 14596 

Flooding 3312 

Scheduling Attacks 6638 

Total Number of Samples 374661 

 

𝑥𝑖
𝑡+1 = 𝜆 × (𝑥𝑖

𝑡 + 𝜑 × (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡))  (13) 

In Eq. (13), 𝜑 represent an acceleration factor. 𝑥𝑏𝑒𝑠𝑖
𝑡  

indicates the better moth at 𝑡‐ 𝑡ℎ generation. 𝛬 show the scale 

factor that could control the convergence rate and enhance 

population diversity. At the same time, once the moth flies 

further than the illumination source, then the location for moth 

𝑖 can be expressed by: 

𝑥𝑖
𝑡+1 = 𝜆 × (𝑥𝑖

𝑡 +
1

𝜙
× (𝑥𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡))  (14) 

In Eq. (14), 𝑥𝑏𝑒𝑠𝑡
𝑡  and 𝑥𝑖

𝑡 denote the better and original 

location for moth 𝑖; correspondingly, 𝜆 denotes the scaling 

feature, and 𝜙 represents the acceleration feature. The MSO 

approach not only derives a fitness function from achieving 

the improved achievement of classifying but also determines 

a +ve integer for characterizing the superior achievement of 

the solution candidate. The lessening of the classifier error rate 

is considered the fitness function.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100  (15) 

4. Results and Discussion 
In this section, the experimental results analysis of the 

MSODL-ID method is investigated on the WSN-DS database 

[32], which encompasses 374661 sampling with five classes, 

as defined in the below Table 1. 

Figure 3 demonstrates the classifier results of the 

MSODL-ID technique under 80:20 of TRP/TSP. Figure 3a 

depicts the confusion matrices provided by the MSODL-ID 

approach under 80% of TRP. The figure indicated that the 

MSODL-ID model had identified 271533 samples under 

normal, 7664 samples under BH, 11008 samples under GH, 

2618 samples under FD, and 4795 samples under TDMA. 

Also, Figure 3b illustrates the confusion matrices produced by 

the MSODL-ID system under 20% of TSP.  

The figure indicated that the MSODL-ID approach had 

identified 67866 samples under normal, 1956 samples under 

BH, 2703 samples under GH, 609 samples under FD, and 

1282 samples under TDMA.  
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(a)  (b) 

                     
                                                                 (c)                                                                                                                           (d) 

                     
 (e)  (f) 

Fig.  3 Results of (80:20) training set a) Confusion matrices b) Confusion matrices c) PR-curve d) PR-curve e) ROC testing set f) ROC 
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Fig. 4 Average outcome of MSODL-ID approach on 80:20 of TRP/TSP 

 
Fig. 5 TACY and VACY outcome of MSODL-ID method on 80:20 of TRP/TSP 

 
Fig. 6 TLOS and VLOS outcome of MSODL-ID approach on 80:20 of TRP/TSP 
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(a)  (b) 

                    
                                    (c)  (d) 

           
 (e)  (f) 

Fig. 7 Results of (70:30) training set a) Confusion matrices b) Confusion matrices c) PR-curve d) PR-curve e) ROC testing Set f) ROC 
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Table 2. IDS outcome of MSODL-ID method on 80:20 of TRP/TSP 

Training / Testing Phase (80:20) 

Labels 𝐀𝐜𝐜𝐮𝐲 𝐒𝐞𝐧𝐬𝐲 𝐒𝐩𝐞𝐜𝐲 𝐅𝐬𝐜𝐨𝐫𝐞 𝐌𝐂𝐂 

Training Phase 

Normal 99.58 99.80 97.44 99.77 97.51 

Blackhole 99.71 95.73 99.82 94.66 94.52 

Grayhole 99.61 93.88 99.84 94.92 94.72 

Flooding 99.88 97.40 99.91 93.75 93.76 

TDMA 99.81 91.54 99.95 94.29 94.23 

Average 99.72 95.67 99.39 95.48 94.95 

Testing Phase 

Normal 99.60 99.81 97.55 99.78 97.61 

Blackhole 99.72 95.74 99.83 94.86 94.72 

Grayhole 99.62 94.18 99.84 95.03 94.83 

Flooding 99.88 97.60 99.90 92.98 93.02 

TDMA 99.80 91.57 99.96 94.58 94.53 

Average 99.72 95.78 99.42 95.45 94.94 

Likewise, Figures 3c-3d exhibits the PR analysis of the 

MSODL-ID model under 80:20 of TRP/TSP. The figures 

demonstrated that the MSODL-ID method had attained 

maximum PR achievement under total classes. Finally, figures 

3e-3f illustrate the ROC investigation of the MSODL-ID 

method under 80:20 of TRP/TSP. The figure portrayed that 

the MSODL-ID technique has given an outcome in superior 

outcomes with higher ROC values under various class labels. 

In Table 2 and Figure 4, the IDS outputs of the MSODL-

ID technique are reported for 80:20 of TRP/TSS. The results 

reveal that the MSODL-ID technique accurately recognizes all 

different types of attacks. For instance, with 80% of TRP, the 

MSODL-ID technique gains an average accuy of 99.72%, 

sensy of 95.67%, specy of 99.39%, Fscore of 95.48%, and 

MCC of 94.95%. Meanwhile, with 20% of TSP, the MSODL-

ID technique gains an average accuy of 99.72%, sensy of 

95.78%, specy of 99.42%, Fscore of 95.45%, and MCC of 

94.94%. 

The TACY and VACY of the MSODL-ID method on 

80:20 of TRP/TSP have been defined in Figure 5. The figure 

indicated that the MSODL-ID approach had exhibited 

improved achievement with maximum TACY and VACY 

values. It is evident that the MSODL-ID method has obtained 

higher TACY outcomes. 

The TLOS and VLOS of the MSODL-ID method on 

80:20 of TRP/TSP have been defined in Figure 6. The figure 

concluded that the MSODL-ID approach had illustrated 

improved achievement with minimum TLOS and VLOS 

values. It is evident that the MSODL-ID method has given an 

outcome in lesser VLOS. 

 

Table 3. IDS outcome of MSODL-ID method on 70:30 of TRP/TSP 

Training / Testing Phase (70:30) 

Labels 𝐀𝐜𝐜𝐮𝐲 𝐒𝐞𝐧𝐬𝐲 𝐒𝐩𝐞𝐜𝐲 𝐅𝐬𝐜𝐨𝐫𝐞 𝐌𝐂𝐂 

Training Phase 

Normal 99.60 99.77 97.91 99.78 97.61 

Blackhole 99.65 91.19 99.89 93.39 93.24 

Grayhole 99.53 96.29 99.66 94.06 93.84 

Flooding 99.88 96.40 99.91 93.63 93.61 

TDMA 99.81 91.82 99.95 94.49 94.43 

Average 99.69 95.09 99.46 95.07 94.55 

Testing Phase 

Normal 99.61 99.78 98.02 99.79 97.70 

Blackhole 99.65 91.09 99.88 93.31 93.16 

Grayhole 99.51 96.12 99.65 93.91 93.69 

Flooding 99.87 96.21 99.91 92.83 92.83 

TDMA 99.84 92.90 99.97 95.47 95.42 

Average 99.70 95.22 99.49 95.06 94.56 

 

Figure 7 demonstrates the classifier results of the 

MSODL-ID technique under 70:30 of TRP/TSP. Figure 7a 

depicts the confusion matrices provided by the MSODL-ID 

technique under 70% of TRP. The figure indicated that the 

MSODL-ID model had identified 237516 samples under 

normal, 6399 samples under BH, 9836 samples under GH, 

2278 samples under FD, and 4232 samples under TDMA. 

Also, Figure 7b illustrates the confusion matrices produced by 

the MSODL-ID system under 30% of TSP.  

The figure indicated that the MSODL-ID technique had 

identified 101780 samples under normal, 2762 samples under 

BH, 4211 samples under GH, 913 samples under FD, and 

1885 samples under TDMA. Similarly, Figures. 7c-7d 

exhibits the PR analysis of the MSODL-ID method under 

70:30 of TRP/TSP. The figures demonstrated that the 

MSODL-ID method had attained maximum PR achievement 

under total classes. Lastly, Figures 7e-7f illustrate the ROC 

inspection of the MSODL-ID method under 70:30 of 

TRP/TSP. The figure exhibited that the MSODL-ID method 

has given an outcome in superior outcomes with high ROC 

values under various class labels. 

In Table 3 and Figure 8, the IDS results of the MSODL-

ID technique are reported for 70:30 of TRP/TSS. The 

outcomes reveal that the MSODL-ID method accurately 

recognizes all different types of attacks. For instance, with 

70% of TRP, the MSODL-ID method gains an average accuy 

of 99.69%, sensy of 95.09%, specy of 99.46%, Fscore of 

95.07%, and MCC of 94.55%. Meanwhile, with 30% of TSP, 

the MSODL-ID method gains an average accuy of 99.70%, 

sensy of 95.22%, specy of 99.49%, Fscore of 95.06%, and 

MCC of 94.56%. 
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Fig. 8 Average outcome of MSODL-ID approach on 70:30 of TRP/TSP 

 
Fig. 9 TACY and VACY outcome of MSODL-ID method on 70:30 of TRP/TSP 

 
Fig. 10 TLOS and VLOS outcome of MSODL-ID method on 70:30 of TRP/TSP 
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Fig. 11 𝐀𝐜𝐜𝐮𝐲 outcome of MSODL-ID technique with other IDS methods 

 
Fig. 12 𝐒𝐞𝐧𝐬𝐲 outcome of MSODL-ID technique with other IDS methods   

 
Fig. 13 𝐒𝐩𝐞𝐜𝐲 outcome of MSODL-ID technique with other IDS methods   
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Fig. 14. 𝐅𝐬𝐜𝐨𝐫𝐞 outcome of MSODL-ID technique with other IDS methods 

Table 4. Comparative outcome of MSODL-ID approach with other IDS 

techniques   

Methods 𝐀𝐜𝐜𝐮𝐲 𝐒𝐞𝐧𝐬𝐲 𝐒𝐩𝐞𝐜𝐲 𝐅𝐬𝐜𝐨𝐫𝐞 

MSODL-ID 99.72 95.78 99.42 95.45 

AdaBoost 96.30 94.96 94.47 91.09 

GB Model 94.23 96.95 94.55 92.43 

XGBoost 95.91 94.75 94.14 90.70 

KNN 96.40 96.99 96.20 90.79 

KNN-PSO 96.47 94.10 94.21 92.59 

 

The TACY and VACY of the MSODL-ID method on 

70:30 of TRP/TSP are defined in Figure 9. The figure is 

implicit that the MSODL-ID model has exhibited maximum 

achievement with improved TACY and VACY values. It is 

evident that the MSODL-ID method has given an outcome in 

higher TACY. 

The TLOS and VLOS of the MSODL-ID method on 

70:30 of TRP/TSP are defined in Figure 10. The figure 

represents that the MSODL-ID model has exhibited maximum 

achievement with the lower TLOS and VLOS values. It is 

evident that the MSODL-ID approach has given an outcome 

in minimum VLOS. 

Table 4 deliberates the comparison results of the 

MSODL-ID technique with other IDS models [28, 33]. In 

Figure 11, a relative 𝑎𝑐𝑐𝑢𝑦 assessment of the MSODL-ID 

approach is made.  

The experimental outcomes imply that the GB model 

shows a lower 𝑎𝑐𝑐𝑢𝑦 of 94.23%, while the XGBoost model 

reaches a slightly improvised 𝑎𝑐𝑐𝑢𝑦 of 95.91%. Concurrently, 

the AdaBoost, KNN, and KNN-PSO models accomplish 

moderately closer 𝑎𝑐𝑐𝑢𝑦 of 96.30%, 96.40%, and 96.47% 

correspondingly. But the MSODL-ID method gains maximum 

performance with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 99.72%. 

In Figure 12, a relative 𝑠𝑒𝑛𝑠𝑦  assessment of the MSODL-

ID method is made. The experimental outcomes imply that the 

KNN-PSO method shows a lower 𝑠𝑒𝑛𝑠𝑦  of 94.10%, while the 

XGBoost model reaches a slightly improvised 𝑠𝑒𝑛𝑠𝑦  of 

94.75%. Concurrently, the AdaBoost, GB, and KNN methods 

achieve moderately closer 𝑠𝑒𝑛𝑠𝑦  of 94.96%, 96.95%, and 

96.99%, correspondingly. But the MSODL-ID method gains 

maximum performance with a 𝑠𝑒𝑛𝑠𝑦  of 95.78%. 

In Figure 13, a relative 𝑠𝑝𝑒𝑐𝑦 assessment of the MSODL-

ID method is made. The experimental outcomes imply that the 

XGBoost method reveals a lower 𝑠𝑝𝑒𝑐𝑦 of 94.14%, while the 

KNN-PSO method obtains a slightly improvised 𝑠𝑝𝑒𝑐𝑦 of 

94.21%. Concurrently, the AdaBoost, GB, and KNN models 

achieve moderately closer 𝑠𝑝𝑒𝑐𝑦 of 94.47%, 94.55%, and 

96.20%, correspondingly. But the MSODL-ID method gains 

maximum performance with a 𝑠𝑝𝑒𝑐𝑦 of 99.42%. 

In Figure 14, a relative 𝐹𝑠𝑐𝑜𝑟𝑒 assessment of the MSODL-

ID technique is made. The experimental outcomes show that 

the XGBoost model shows a lower 𝐹𝑠𝑐𝑜𝑟𝑒 of 90.70%, whereas 

the KNN model reaches a slightly improvised 𝐹𝑠𝑐𝑜𝑟𝑒 of 

90.79%. Concurrently, the AdaBoost, GB, and KNN-PSO 

models achieve moderately closer 𝐹𝑠𝑐𝑜𝑟𝑒 of 91.09%, 92.43%, 

and 92.59%, correspondingly. But the MSODL-ID method 

gains maximum performance with 𝑎 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.45%. These 

results assured the supremacy of the MSODL-ID technique on 

the intrusion detection process in WSN. 

5. Conclusion  
In this study, we have designed an automated intrusion 

detection technique using the MSODL-ID model for WSN. 

The MSODL-ID technique aims to effectually identify the 

occurrence of malicious activities or intrusions in the network. 

It follows a three-stage process: preprocessing, CRNN with 

Hopfield-based intrusion detection, and MSO-based 
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hyperparameter tuning. Initially, the MSODL-ID technique 

undergoes two stages of preprocessing: data conversion and 

data scaling. Next, the MSODL-ID technique exploited the 

CRNN model with the Hopfield layer for intrusion detection 

purposes. The MSO algorithm is used for optimum 

hyperparameter selection of the CRNN model and thereby 

enhances the classification performance of the CRNN model. 

The simulation analysis of the MSODL-ID system is tested by 

means of Kaggle datasets, and the outcomes exhibit the 

promising performance of the MSODL-ID system over other 

recent DL techniques. In future, the feature selection process 

can be designed to increase the performance of the MSODL-

ID technique. 
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