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Abstract - Rice crop yield prediction suggests the procedure of estimating the rice quantity which is harvested in a provided 

land region dependent upon several features like farming practices, weather conditions, and soil quality. The main aim of rice 

crop yield prediction is to offer farmers and agricultural planners correct crop yield calculations in progress, creating 

informed decisions assuming harvesting, marketing, and planting their crops. It supports farmers in optimizing their 

production and enhancing their profitability, but also improving food security by ensuring an even supply of rice for 

consumers. Deep learning (DL) approaches are utilized for predicting crop yield by leveraging the influence of neural 

networks for learning complex patterns and connections in data. This study presents a Teaching and Learning Based 

Optimization with Deep Learning for Rice Crop Yield Prediction (TLBODL-RCYP) technique. The proposed TLBODL-RCYP 

approach emphasizes the accurate forecasting of the rice yield using DL and hyperparameter optimizers. To accomplish this, 

the TLBODL-RCYP technique performs different preprocessing stages to improve the data quality. Besides, the TLBODL-

RCYP technique employs a hybrid Convolution Recurrent HopField Neural Network (HCRHNN) model for yield prediction. 

At last, the TLBO algorithm was utilized to adjust the hyperparameter values of the HCRHNN technique and thereby enhance 

the predictive results. The experimental outcome investigation of the TLBODL-RCYP approach is tested with the Kaggle 

dataset, and the outcomes assured the improvized predictive results of the TLBODL-RCYP method over other recent DL 

techniques. 
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1. Introduction 
Accurate crop yield predictions enhance decisions 

regarding exports, and imports of agricultural goods, 

planning effective crop management, preparing aid 

distributions, and allotting government resources [1]. 

However, due to complicated communications between 

yield-influencing natural factors and crop growth like 

disease, weather, and soil conditions, and anthropogenic 

factors like rotation, irrigation, tillage, seed varieties, and 

fertilizers, yield predictions have become a challenge [2]. 

Continuously breeding new rice varieties with high nutrient 

utilization rate, high yield, raising yield per unit area, and 

good stress resistance, and evolving the genetic potential of 

rice yield are significant objectives in the cultivation and rice 

breeding field in recent times [3]. Learning the features of 

rice yield was extremely important to increase farmers' 

income, support land scale management, and ensure 

countrywide food safety, which is of utmost value to mitigate 

the food shortage problem efficiently [5]. 

The conventional technique of measuring yield in the 

domain found to be destructive that is, as per the principle of 

average sampling or equivalent area in groups [6], choose 

certain small domains, clean, thresh, weigh, and dry the rice 

after harvesting, subsequent measures the content of water 

with a moisture meter, and compute the final yield as per the 

quantity of japonica rice and indica rice of 14.5 and 13.5 

percentages [7]. This technique is burdensome and consumes 

several material resources and a workforce. Hence, learning a 

novel method for precise rice yield anticipation in the 

domain is vital [8].  

Various governments worldwide are more concerned 

about food shortage and food security [9]. Accurate crop 

yield prediction becomes a foundation for agriculture 

departments to perform scientific production regulation and 

cultivation management that can be a significant reference 

for nations to develop appropriate crop management [10, 11]. 

Different parameters influence crop yield, and it is tough to 

construct a reliable prediction method with conventional 

approaches [12]. However, the training and advancement of a 

new technique for crop yield prediction are possible with 

progressions in computational technology [13, 14]. Deep 

learning (DL) is an effective method widely utilized in 
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agriculture since its numerous high-performance computing 

and data technologies [15]. DL is a class of machine learning 

that includes many layers of neural networks that can learn 

from unlabelled and unstructured data, whereby the learning 

can be unsupervised, supervised, or semi-supervised [16].  

This study presents a Teaching and Learning Based 

Optimization with Deep Learning for Rice Crop Yield 

Prediction (TLBODL-RCYP) model. The TLBODL-RCYP 

technique performs different stages of preprocessing to 

improve the data quality. Besides, the TLBODL-RCYP 

technique employs a hybrid Convolution Recurrent HopField 

Neural Network (HCRHNN) model for yield prediction. At 

last, the TLBO algorithm is utilized to adjust the 

hyperparameter values of the HCRHNN approach and 

thereby enhance the predictive results. The experimental 

outcome investigation of the TLBODL-RCYP approach is 

tested through the Kaggle dataset. 

2. Related Works 
Cao et al. [17] present 11 combinations of climate 

dataset, geography, and phenology tested to predict the site-

related rice yield with the traditional regression-oriented 

method (multiple linear regression, MLR) and three ML 

approaches: BP, SVM, and RF. Bondre and Mahagaonkar 

[18] present a system to forecast agricultural yields from 

earlier datasets. This can be accomplished using ML 

techniques such as SVM and RF on crop data and suggesting 

fertilizers appropriate for all crop yields. This study focuses 

on forming predictive models that might be used for the 

future prediction of crop yields. Nosratabadi et al. [19] 

developed two ML algorithms for forecasting food 

manufacturing. The MLP and Adaptive Network Oriented 

Fuzzy Inference System methods were utilized to advance 

the predictive techniques. In this article, two parameters, 

cattle and farming manufacturing, are the sources of food 

production. The parameters have been used for assessing 

livestock production, such as live animals, livestock yield, 

and animals slaughtered. Two parameters have been utilized 

for evaluating agricultural production losses and yields. 

In [21], the authors presented a new approach to 

sugarcane yield prediction using Normalized Vegetation 

Index (NDVI), Long Term Time Series (LTTS), Supervised 

ML (SML), and Weather-and-soil qualities. The technique 

splits yield prediction into 3 phases, 1) weather-and-soil 

characteristics were forecasted for the period of SCLC, 2) 

sugarcane crop was forecasted through SVR by taking NDVI 

as input into account 3) NDVI is forecasted by considering 

the weather -and-soil characteristics as input through Support 

Vector Machine Regression (SVR) method. Paudel et al. [22] 

devised a crop yield prediction technique for many spatial 

levels depending on region-wise crop yield prediction from 

ML. With its data-driven method, ML can capture nonlinear 

relations between yield and predictors at the regional level 

using extensive data. 

In [23], the authors compared and proposed four 

methods to forecast rice blast diseases, two operational 

process-related methods Water Accounting Rice Model and 

Yoshino, and two techniques depending on ML techniques 

(RNN and M5Rules), building a NN and the latter inducing 

rule-related approach. Lamba et al. [25] developed a hybrid 

predictive method for estimating other cruelty of blast 

ailment levels depending on affected plant imaging. With the 

CNN technique, features are first extracted. After the 

classification and identification of the severity level of blast 

diseases were carried out utilizing an SVM. 

3. The Proposed Model 
In this study, we introduced a new TLBODL-RCYP 

technique for accurately anticipating crop yield. The goal of 

the presented TLBODL-RCYP technique focuses lies on the 

precise forecasting of the rice yield using DL and 

hyperparameter optimizers. To accomplish this, the 

TLBODL-RCYP technique involves three crucial processes: 

data preprocessing, HCRHNN-based forecasting, and TLBO-

based tuning process. Figure 1 represents the comprehensive 

flow of the TLBODL-RCYP algorithm.  

3.1. Data Preprocessing 

The TLBODL-RCYP technique performs different 

stages of preprocessing to improve the data quality. 

Primarily, the categorical values are transformed into 

numerical values. Then, the null values in the dataset are 

removed. Thirdly, the input data gets normalized by the use 

of min-max normalizing.  

3.2. Yield Forecasting by Implementing HCRHNN 

Approach 

In this study, the HCRHNN approach is enforced for 

forecasting crop yield. The HCRHNN architecture comprises 

the LSTM layer, input layer, CSV matrix, Hopfeld network, 

an output layer, recurrent neural network, and summation 

function [26]. A CSV matrix was generated by applying the 

Python libraries when preprocessing of input data was 

accomplished and fed into the LSTM layer. One type of 

RNN, the LSTM, learns order dependency in prediction 

based on applications. The network architecture of LSTM 

was similar to RNN. The process inside various LSTM cells 

differs. The LSTM exploits the process of forgetting or 

remembering knowledge. The hidden layer amount in the 

dropout rate was fixed to 0.25, and LSTM was fixed to 100. 

The 5-fold cross-validation was mainly based on the training 

set for every sample, and the key hyperparameter was 

finetuned to obtain the optimal efficiency. The computation 

part of LSTM has been formulated in the following: 

𝑎(𝑥) = 𝑠(𝑊(𝑖)𝑧(𝑥) + 𝑈(𝑎)ℎ(𝑥 − 1))  (1) 

A summation function is applied for input gate 𝑎n (𝑥) in 

Eq. (1). 



S. Thirumal & R. Latha / IJEEE, 10(4), 105-114, 2023 

107 

 
Fig. 1 Overall flow of TLBODL-RCYP algorithm 

𝑏(𝑥) = 𝑠(𝑊(𝑖)𝑧(𝑥) + 𝑈(𝑏)ℎ(𝑥 − 1)) (2) 

A summation function was applied for forgot gate 

𝑏(𝑥) in Eq. (2). 

𝑐(𝑥) = 𝑠(𝑊(0)𝑧(𝑥) + 𝑈(𝑐)ℎ(𝑥 − 1)) (3) 

A summation function applied for output gate 𝑐(𝑥) in Eq. (3)  

𝑑(𝑥) =  tanh (𝑊(𝑐)𝑧(𝑥) + 𝑈(𝑐)ℎ(𝑥 − 1))  (4) 

A tangent function for novel memory cell creation 

denotes eq. (4). 

𝑒(𝑥) = 𝑐(𝑥) ∗ 𝑑(𝑥 − 1) + 𝑎(𝑥) ∗ 𝑑(𝑥)  (5) 

Eq. (5) signifies the last memory cell creation. 

𝑛(𝑥) = 𝑐(𝑥) ∗  tanh (𝑒(𝑥))  (6) 

Eq. (6) illustrates the LSTM output. 

Now 𝑛(𝑥) denotes the new hidden state, 𝑠 indicates the 

sigmoid function, 𝑎n (𝑥) represents the input gate, 𝑏(𝑥) 

represents forget gate, 𝑐(𝑥) denotes the output gate, 𝑑(𝑥) 

shows the presented cell value, and 𝑒(𝑥) indicates the true 

cell value. 

In the beginning, the LSTM eradicates the problems of 

exploding gradient. Since the LSTM was activated through 

the hyperbolic tangent activation function and 0.25% dropout 

was set, the method was not overfitting. Eq. (7) shows the 

investigation metrics required to compute hidden state 𝑛(𝑥). 

𝑛(𝑥) = tanh (𝑊. 𝑛(𝑥 − 1) + 𝑉. 𝑧(𝑥 − 1)) (7) 

Where 𝑛(𝑥) represents the past data repeated by the 

hidden layer, the weight parameter is characterized as 

𝑂, 𝑉, 𝑎𝑛𝑑 𝑊. Eq. (8) evaluates 𝑝(𝑧(𝑥 + 1)|𝑛(𝑥)), which 

represents the possibility of predicting diseases. 

𝑝(𝑧(𝑥 + 1)|𝑛(𝑥)) ∝  exp (𝑂. 𝑛(𝑥))  (8) 

The overall probability for the sequence of input vectors 

𝑦 = {𝑦1, 𝑦2 , 𝑦3 … 𝑦𝑡} is shown. 



S. Thirumal & R. Latha / IJEEE, 10(4), 105-114, 2023 

108 

 
Fig. 2 Structure of HNN 

𝑝(𝑦) = ∑ 𝑝𝑇
𝑡=1 (𝑧(𝑥)|𝑛(𝑥 − 1))  (9) 

Eq. (6) shows the joint probability that assists in training 

and testing the model. 

The outcomes of LSTM can be fed as input to Hopfield 

Networking, having neurons of four layers. Every neuron 

was connected. The outputs of neurons were supplied as 

input in each neuron. The weight connections among two 

interlinked neurons are symmetric, viz., when there exist two 

𝑛1 neurons and an n2 neuron, the weight connection of both 

neurons is similar to the weight connection of n2 with 𝑛1. It 

was a distinct Hopfeld networking as the weight connection 

of neurons with itself is often: 

𝑤𝑖𝑗 = ∑ [𝑃
𝑝=1 2𝑠𝑖(𝑝) − 1][2𝑠𝑗(𝑝) − 1] 𝑓𝑜𝑟 𝑖 ≠ 𝑗  (10) 

In Eq. (10), 𝑠 indicates the sequence of binary patterning 

taken from CSV datasets, 𝑖 and 𝑗 denote the two diverse 

neurons, and 𝑤𝑖𝑗 shows the weighted matrices of two 

neurons. The summation function employed through these 

patterns ranges from one to P. 

The result of the Hopfeld networking was supplied to the 

two‐way RNN. Bi-directional RNN (Bi-RNN) seems to be 

just two individual RNNs linked together. For single 

networking, the input series can be given in time series, 

while for others, it is specified in inverse time series. At 

every sample break, the outcome of 2 networking is 

commonly integrated.  

This architecture enables the system to have both ahead 

and prior information about the event. The output value is 

provided in the summation function for getting better 

knowledge from the presented architecture through the 

transfer learning method. Figure 2 illustrates the structure of 

HNN. 

3.3. Hyperparameter Tuning using TLBO Algorithm 

At last, the TLBO model is implemented to adjust the 

hyperparameter values of the HCRHNN method. The TLBO 

model is a compelling human population‐based technique 

[27]. This model resembled the teach-learn method of the 

teacher and learner in the lecturer's classroom. In the 

presented model, a group of learners in the class is regarded 

as a populace. As well, the learner’s knowledge was the 

objective function.  

The number of subjects provided to the learner can be 

variable, and the learner's outcome is the fitness value. This 

variable regarded in the objective function is the variable for 

the presented issue, and the better fitness values of the 

primary process are considered the better solution. The 

proposed technique is separated into the tutor and learner 

phases. Initially, the learner is learning from the teacher, and 

then, the learner is learning by discussing with others. The 

stages of TLBO are defined in the following. 

3.3.1. Teaching Phase 

Here, the tutor constantly attempts to enhance the mean 

results of the classroom for the topic. The better resolution 

determined by the objective function can be regarded as a 

tutor in that populace. This stage begins to identify the better 

solution. Firstly, produce an arbitrary population having 𝑁 

rows and 𝑆 columns where 𝑁 indicates the populace 

magnitude (amount of learners present in classroom 𝑖 =
1,2, … , 𝑁) and 𝑆 shows the designing parameters number 

(amount of topics 𝑗 = 1,2, … , 𝑆). The 𝑗𝑡ℎ parameter of the 

𝑖𝑡ℎ learner can be randomly initialized by Eq. (11), 

𝑋𝑖,𝑗
1 = 𝑋𝑗

 min + 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑗
 max − 𝑋𝑗

 min )  (11) 

Where 𝑟𝑎𝑛𝑑 represents a uniform distribution random 

integer within [0,1] and 𝑋𝑗
min and 𝑥𝑗

max characterize the 

minimal and maximal values for 𝑡ℎ𝑒 𝑗𝑡ℎ variable.  
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Fig. 3 Results of training dataset on different runs 

 
Fig. 4 Results of testing dataset on different runs 
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Fig. 5 MSE on training and investigating dataset by means of various epochs 

Table 1. Classifier outcome of TLBODL-RCYP approach under five runs  

No. of Runs MSE RMSE MAE R2-Score 

RUN-1 0.0013 0.1391 0.0194 0.8994 

RUN-2 0.0013 0.1379 0.0190 0.8721 

RUN-3 0.0010 0.1312 0.0172 0.8829 

RUN-4 0.0014 0.1388 0.0193 0.8781 

RUN-5 0.0016 0.1496 0.0224 0.8624 

AVERAGE 0.0013 0.1393 0.0195 0.8790 

 

The difference 𝑖𝑠 𝐷𝑑𝑖𝑓𝑓𝑗

𝑘 . Amongst better resolution and 

mean results of classroom or the 𝑗𝑡ℎ subject in the 𝑘𝑡ℎ 

iterating was represented. 

𝐷𝑑𝑖𝑓𝑓𝑗
𝑘 = 𝑟𝑎𝑛𝑑(𝑋𝑇,𝑗

𝑘 − 𝑇𝐹𝑀𝑗
𝑘)  (12) 

In Eq. (12), 𝑀𝑗
𝑘 denotes the mean results of the learner 

for 𝑡ℎ𝑒 𝑗𝑡ℎ subject and 𝑋𝑇,𝑎𝑛𝑑 𝑗
𝑘  signifies the better solution 

for the 𝑗𝑡ℎ subject at the 𝑘𝑡ℎ iterating. The tutor features TF, 

as shown in (15), which is suggestive of the tutor's capability 

of the tutor, where the mean results of the topic will be 

changed. The value can be chosen between zero and one. 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑎𝑛𝑑 (0,1)  (13) 

The solution for the problems is upgraded at all the 

iterations using 

𝑋𝑛𝑒𝑤,𝑖,𝑗
𝑘 = 𝑋𝑜𝑙𝑑,𝑖,𝑗

𝑘 + 𝐷𝑑𝑖𝑓𝑓𝑗

𝑘   (14) 

In Eq. (14), 𝑋𝑜𝑙𝑑𝑖 𝑎𝑛𝑑 𝑗
𝑘  represent the older solution for 

the 𝑗𝑡ℎ subject in the prior iteration and 𝑋𝑛𝑒𝑤𝑖 𝑎𝑛𝑑 𝑗
𝑘  shows 

the newest solution for the 𝑗𝑡ℎ subject. When the upgraded 

solution exceeds the prior one, it becomes a suitable solution 

and inputs to the following stage. 

3.3.2. Learner Phase 

In this phase, the learner improves the knowledge via 

mutual interaction. In the presented algorithm, every random 

learner interacts with others to assist in knowledge sharing 

based on their knowledge level. Based on knowledge 

sharing, the solution to the problem is upgraded. To 

mathematically characterize it, two learners are randomly 

regarded as 𝑋(𝑖)
𝑘  and 𝑋(𝑟)

𝑘 . The upgraded solution is given as 

follows. 
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Fig. 6 Classifier outcome of TLBODL-RCYP system (a) MSE, (b) RMSE, (c) MAE, and (d) R2-score 

   
Fig. 7 Average outcome of TLBODL-RCYP system  

with various measures   

Fig. 8 MSE analysis of TLBODL-RCYP approach  

with recent systems 

 



S. Thirumal & R. Latha / IJEEE, 10(4), 105-114, 2023 

112 

Table 2. MSE analysis of TLBODL-RCYP approach with recent algorithms  

Methods MSE 

TLBODL-RCYP 0.0013 

ANN-LM 0.0400 

ANN-BR 0.0930 

ANN-SCG 0.0840 

 

𝑋𝑛𝑒𝑤,𝑖
𝑘 = {

𝑋𝑖
𝑘 + 𝑟𝑎𝑛𝑑 × (𝑋𝑖

𝑘 − 𝑋𝑟
𝑘) 𝑖𝑓(𝑋𝑖

𝑘 < 𝑋𝑟
𝑘)

𝑋𝑖
𝑘 + 𝑟𝑎𝑛𝑑 × (𝑋𝑟

𝑘 − 𝑋𝑖
𝑘) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (15) 

The better solution for the various subjects is accepted, 

and this solution is input for the tutor stage. The tutor and 

learner stages are reiterated till the ending condition is 

satisfied.  

During this case, the TLBO algorithm was utilized to 

ascertain the hyperparameter contained in the DL technique. 

The MSE can be assumed that the primary function is 

determined as: 

𝑀𝑆𝐸 =
1

𝑇
∑ ∑ (𝑦𝑗

𝑖 − 𝑑𝑗
𝑖)

2𝑀
𝑖=1

𝐿
𝑗=1   (16) 

In which 𝑀 and 𝐿 imply the outcome of layer and info 

value, 𝑦𝑗
𝑖  and 𝑑𝑗

𝑖 indicate the accomplished and suitable 

magnitudes for 𝑡ℎ𝑒 𝑗𝑡ℎ unit in the outcome networking layer 

in time 𝑡uy’. 

4. Results and Discussion 
In this segment, the yield prediction outputs of the 

TLBODL-RCYP technique are studied under varying runs. 

Figure 3 demonstrates the actual vs predicted outcomes of 

the TLBODL-RCYP technique on the training data 

presented. The results show that the variance between the 

predicted and actual values is considered low. 

Figure 4 demonstrates the actual vs predicted outcomes 

of the TLBODL-RCYP method on the testing data. The 

results reveal that the variance among the predicted and 

actual values is considered low. 

Figure 5 shows the predicted results of the TLBODL-

RCYP technique under training and testing data. The result 

indicates that the TLBODL-RCYP technique reaches closer 

results under training and testing data.  

Table 1 and Figure 6 exhibits brief predictive results of 

the TLBODL-RCYP approach under five runs. The figure 

indicates that the TLBODL-RCYP method improved results 

under all runs. For example, with run-1, the TLBODL-RCYP 

methodology offers MSE, RMSE, MAE, and R2-score of 

0.0013, 0.1391, 0.0194, and 0.8994, correspondingly. 

Meanwhile, with run-2, the TLBODL-RCYP technique 

offers MSE, RMSE, MAE, and R2-score of 0.0013, 0.1379, 

0.0190, and 0.8721, respectively. Eventually, with run-4, the 

TLBODL-RCYP approach offers MSE, RMSE, MAE, and 

R2-score of 0.0014, 0.1388, 0.0193, and 0.8781 

correspondingly. Finally, with run-5, the TLBODL-RCYP 

technique offers MSE, RMSE, MAE, and R2-score of 

0.0016, 0.1496, 0.0224, and 0.8624, respectively.  

Figure 7 reveals the average prediction outcomes of the 

TLBODL-RCYP approach. The results exhibit that the 

TLBODL-RCYP technique reaches effectual MSE values. In 

addition, it is noticeable that the TLBODL-RCYP technique 

gains an average MSE of 0.0013, RMSE of 0.1393, MAE of 

0.0195, and R2-score of 0.8790. 

Finally, a comparative MSE analysis of the TLBODL-

RCYP technique with current methods is given in Table 2 

and Figure 8 [28].   

The figure demonstrates that the ANN-BR and ANN-

SCG models obtain lower MSE values of 0.0930 and 0.0840. 

Simultaneously, the ANN-LM method has resulted in a 

moderate MSE of 0.0400. However, the TLBODL-RCYP 

technique performs better with a minimal MSE of 0.0013. 

These results confirmed the enhanced performance of the 

TLBODL-RCYP technique over other methods. 

5. Conclusion 
In this research, we have suggested a new TLBODL-

RCYP method for accurate crop yield forecasting. The 

proposed TLBODL-RCYP approach's end goal focuses on 

the precise forecasting of the rice yield using DL and 

hyperparameter optimizers. To accomplish this, the 

TLBODL-RCYP technique involves three crucial processes: 

data preprocessing, HCRHNN based on prediction, and 

TLBO based on parameter tuning. Finally, the TLBO 

algorithm is utilized to adjust the hyperparameter values of 

the HCRHNN technique and thereby enhance the predictive 

results. The experimental outcome investigation of the 

TLBODL-RCYP approach is tested using the Kaggle dataset, 

and the outcomes assured the improvized predictive 

outcomes of the TLBODL-RCYP approach over other recent 

DL methods. 
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