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Abstract - Recently, Human Activity Recognition (HAR) is becoming one of the prevalent study fields. HAR is a powerful tool 

for monitoring a person's dynamism, and it can be accomplished through machine learning (ML) techniques. HAR is a 

technique of automatically analysing and recognizing human activities depending on information from several wearable 

devices and smartphone sensors, like location, accelerometer, gyroscope, duration, and other environmental sensors. This 

study introduces a new Robust Human Activity Recognition using Equilibrium Optimizer with Deep Extreme Learning 

Machine (RHAR-EODELM) model. The presented RHAR-EODELM technique mainly identifies different classes of human 

activities. It follows a three-stage process. Initially, the RHAR-EODELM technique employs a min-max normalization process 

for scaling the activity data. Next, the RHAR-EODELM technique exploits a deep extreme learning machine with a radial 

basis function (DELM-RBF) model for the prediction process. Finally, the EO approach is enforced to adjust the parameters 

associated with the DELM-RBF method. A large-scale simulating process highlights the improved HAR results of the RHAR-

EODELM method. The experimental values signify that the RHAR-EODELM method reaches improved predictive outcomes 

over other models. 

Keywords - Activity recognition, Brain-computer interface, Equilibrium optimizer, Machine learning, Parameter tuning. 

1. Introduction 
Recently, the research community has focused much on 

the domain of Human Activity Recognition (HAR), so the 

large scale of its real-world applications in real-time usages, 

like surveillance by authorities, biometric user detection, and 

health monitoring of elderly persons [1]. Several types of 

research on HAR are increasing rapidly as sensors are more 

broadly accessible, power and cost consumption have 

diminished due to technological advancements in machine 

learning techniques. The Internet of Things (IoT) and 

Artificial Intelligence (AI) can be streamed live [2]. The 

development of HAR has enabled real-time applications in 

many real-time areas that comprises the healthcare field, the 

recognition of violence and crime, tactical military 

applications and sports science [3]. Mathematical methods, 

depending on HAR info, consent to the detection of various 

human actions, for instance, standing, running, walking, and 

sitting [4]. 

Many difficulties in HAR occur; for instance, biometric 

user detection can use HAR detection techniques to capture 

the person behavioural paradigms of an individual [5, 6], like 

motion capture signs, as biometric is a science in which 

efficiency for detecting person, related to their features for 

accessing devices without authorization, was learned [7]. 

Currently, the basis of biometric detection mainly includes 

the physiological property of an individual. However, strong 

concerns concerning HAR and privacy are imposed by such 

physiological features [8], which are observed as a feasible 

substitute, working just as a system for behavioural 

biometrics. Currently, both technology to process sensor data 

and sensor technology have progressed [9]. The outstanding 

presentation of deep learning (DL) in speech recognition and 

image recognition has promoted the implementation of DL in 

sensor-related HAR [10, 11, 12] and authors have proven 

that better performance can be achieved through DL. The 

three-axis accelerometer was typically utilized sensor in 

sensor-related HAR [13, 14]. So, integrating the features of 

HAR technology and embedded technology for studying the 

application of HAR systems related to convolutional neural 

networks (CNN) on embedded platforms includes some 

practical values for developing AI marginalization [15, 16]. 

This study introduces a new Robust Human Activity 

Recognition using Equilibrium Optimizer with a deep 
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extreme learning machine (RHAR-EODELM) model. The 

presented RHAR-EODELM technique mainly identifies 

different classes of human activities. It follows a three-stage 

process. Initially, the RHAR-EODELM technique employs a 

min-max normalization process for scaling the activity data. 

Next, the RHAR-EODELM technique exploits a deep 

extreme learning machine with a radial basis function 

(DELM-RBF) model for the prediction process. Finally, the 

EO approach is enforced to adjust the parameters associated 

with the DELM-RBF method. A large-scale simulating 

process is performed to highlight the improved HAR results 

of the RHAR-EODELM method. 

2. Related Works 
Santosh Kumar Yadav et al. [17] present a technique 

called novel deep convolutional LSTM (ConvLSTM) 

networking for skeleton-related activity detection and fall 

recognition. ConvLSTM networking was a serial hybrid of 

fully connected layers, CNNs, and LSTM networks. The 

acquisition mechanism implements pose estimation and 

human detection for pre-calculating skeletal coordinates from 

imageries or video series. To build the new guided features, 

the ConvLSTM method utilizes the basic skeleton 

coordinates in addition to their characteristic kinematic and 

geometrical attributes. Muhammad Bilal et al. [18] devised a 

DL-oriented spatial and temporal HAR structure for 

overlapping human activities in long videos. TL methods 

were utilized for extracting the in-depth features. Optimally 

pre-trained CNN-tuned methods study spatial relations at the 

framing stage. An optimum Deep AE has been utilized to 

squeeze high-dimension in-depth features. An LSTM with 

RNN has been utilized for learning the long-term temporal 

relation. 

Young Li and Luping Wang [19] present a DL method 

related to bi-directional LSTM (BiLSTM) and residual 

block. The method initially extracted spatial factors of multi-

dimensional signalling of MEMS inertial nodes mechanically 

utilizing residual blocking and gains the backward and 

forward dependency of factor serial utilizing Bi-LSTM. At 

last, the attained features were given into the Softmax layer 

for completing the HAR. Imran Ullah Khan et al. [20] 

suggested a fusion method incorporating LSTM and CNN 

for recognizing activity. In contrast, CNN was implemented 

for the spatial extracting of features, and the LSTM network 

can be used for temporal information learning.  

Huaijun Wang et al. [21] present a DL-related technique 

that can identify particular actions and transitions among two 

discrete actions of less frequency and a short period for 

healthcare applications. In this article, the authors construct a 

deep CNN to derive attributes from sensor data. Afterwards, 

the LTSM network was utilized to capture long-term 

dependency between two activities to enhance the HAR 

recognition rate. By integrating LSTM and CNN, a wearable 

sensor-oriented technique was devised to recognize actions 

and their transitions precisely. Ohoud Nafea et al. [22] 

introduced a new technique utilizing CNN with changing 

kernel dimensions and bi-directional LSTM (BiLSTM) for 

capturing attributes at different resolutions. The originality of 

the present study falls in the potential choice of optimum 

video depictions and the potential extracting of 

spatiotemporal factors from sensor info utilizing Bi-LSTM 

and conventional CNN. The authors [23] offered a 

supervised dual-channel method that contains an attention 

system and LSTM. The authors even introduced an adaptive 

channel-squeezing operation for fine-tuning CNN feature 

extraction ability through multichannel dependency.  

3. The Proposed Model 
In this research, an automated activity recognition 

method called the RHAR-EODELM model is developed. 

The presented RHAR-EODELM technique mainly identified 

different classes of human activities. It follows a three-phase 

procedure: preprocessing, activity recognition using DELM-

RBF, and an EO-based tuning process. Figure 1 represents 

the workflow of the RHAR-EODELM model.  

3.1. Data Preprocessing 

Firstly, the RHAR-EODELM technique employs a min-

max normalizing procedure to scale the activity info. The 

standard scalar method can eliminate the mean and scaling 

info into the unit discrepancy. The main idea behind the 

standard scalar technique is that it converted the information 

to dispersion, holding an average value of 0 and a standard 

deviating value of 1. For multi-variable data, the 

preprocessing was carried out factor-wise. For a presented 

data dispersion, all distinct values in the dataset have 

deducted mean values and then categorized by the standard 

deviation of the complete dataset. 

3.2. Activity Recognition using DELM-RBF Model 

The RHAR-EODELM approach exploited the DELM-

RBF model for the prediction approach in this research. 

Huang et al. developed an ELM feedforward network with 

one hidden layer (HL) and three modules: hidden, input, and 

output neurons [24]. Figure 2 demonstrates the framework of 

ELM. The DELM has lately attracted the interest of several 

research workers. It overcomes various problems in a way 

that other approaches cannot owe to assurance of a particular 

level of learning accuracy, more vital generalization ability, 

and lower reliance on manual intervention. It saves a cost 

and a great deal of time than CNN. There exist N unique 

instances (xi, yi) for the classification problems, where xi =
[xi1, xi2, … , xin]

T ∈ Rn represents the sample input vector 

and yi = [yi1, yi2, … , yim]T ∈ Rm denotes the output vector, 

whereas n shows the feature numbers of training samples, 

and m indicates the overall amount of training samples. 
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Fig. 1 Workflow of RHAR-EODELM algorithm

L specifies the nodes utilized in the HL of ELM. The 

output of ELM is expressed as follows: 

∑ Ωi
L
i=1 g(ωi. xj + ui) = Qj′j = 1,2, … , N  (1) 

In Eq. (1), g(•) indicates the activation function, and 

ωi = [ωi1, ωi2, … , ωin]
T represent the inputted weightage 

vector that interconnects the nodes of the inputted layer to 

the HL node. Ωi = [Ωi1, Ωi2, … , Ωin]
T specifies the resulting 

weightage vector that will act as a linkage connecting the 

output layer and the HL sensors. ui denotes the offset value 

of the initial sensor in the HL. ωi.χj shows the weight 

allocated to the innermost product and the training sample 

values. 

 

Input: Training Dataset 
Data Preprocessing 

(Min-Max Normalization) 

Prediction Process 

(Extreme Learning Machine with 

Radial basis Function) 

Performance Measures 

(Accuracy, Sensitivity, Specificity, F-Score, MCC) 

Parameter Optimizer 

(Equilibrium Optimizer Algorithm) 
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Fig. 2 ELM structure 

Qj indicates the actual output of the network. The 

presented method aims to minimalize the error value of the 

output using the following equation: 

∑ ‖N
j=1 Qj − yj‖ = 0   (2) 

In Eq. (2), yj denotes predicted output, and ‖‖ represents 

the bounded operators between normal spaces: 

∑ Ωi
L
i=1 g(ωi. xi + ui) = yj′j = 1,2, … , N  (3) 

The subsequent simplification of Eq. (3) can be made 

Based on the matrix: 

HΩ = T   (4) 

In Eq. (4), H represents the resulting value matrix of HL, 

Ω shows the reweighting matrices extending from the HL to 

the resulting layer, and T signifies the predictable resulting 

matrices. Furthermore, T and Ω are formulated as: 

H = [
g(ω1.⋅ x1 + u1)  g(ωL. x1 + uL)

   
g(ω1. xN + u1)  g(ωL. xN + uL)

]

N×L

  (5) 

Ω = [
Ω1

T

⋮
ΩL

T
]

L×m

 (6) 

T = [
y1

T

⋮
yL

T
]   (7) 

The formula HΩ = T could not be illustrated in most 

cases. Many conditions are defined for training the network, 

along with Ωi, ωi, and ui. The following formula illustrates 

the importance of altering these conditions to accomplish the 

least potential error: 

‖H(ωi, u1)Ωi − T‖ = min
wi,Ωi,ui

‖H(ωi, ui)Ωi − T‖  (8) 

Algorithm 1: Typical DELM Process  

Input: Activation function g(•) 

#Neurons of HL L 

N training instances (xi, yi), xi ∈ Rn, yi ∈ Rm, i ∈
{1,2, … , N}. 
 

Output: The resulting weight Ω from the HL to the 

output layer. 

 

Begin 

      Randomly initialize the input weight ωi and the 

offset of HL ui 

      Compute the output weight of HL H  

      Compute the resulting weight from HL to the 

resulting layer Ω. 
End 
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ELM is strongly recommended because it includes 

simple implementation that needs lesser time spent on 

training, without iteration adjustment, and has excellent 

generalizability. 

Unlike DELM, DELM‐RBF implements RBF kernel 

rather than the SLFN for improving model performance [25]. 

The cluster centres and influence widths of the RBF kernel 

can be initialized arbitrarily. Besides, the resultant of HLs is 

connected to the particular tasking.  

For sample, in multiple label classifier, dimensional 

outcome was equivalent to the count of classes. Besides, the 

kernel function in DELM‐RBF has been formulated as Eq. 

(9). 

hk(x) = h(ck, σk, x) 

= exp (−‖x − ck‖
2/(σk

2)), k = 1,2, … , K   (9) 

whereas χ refers to the inputted vector. ck signifies the 

centre of the kth cluster from the RBF kernel, and σk implies 

the influence width of the clustering. The outcome of 

DELM‐RBF is exposed in Eq. (10). 

f(x) = ∑ βj
L
i=1 hj(x) = h(x)β  (10) 

whereas βi represents the resultant weight. The 

optimized target of DELM‐RBF was defined as: 

Hβ = T   (11) 

In which H demonstrates the resultant matrix of HL, and 

T refers to the outcome labelling matrix. It represents that 

RBF function is vital in the novel ELM system and its 

improved methods. RBF function is a significant standard 

activating function of ELM, and it was also the critical K‐

ELM's kernel style. It can be reasonable to consider that an 

improved ELM technique utilizing RBF function as an 

important infrastructure like DELM‐RBF will be an effectual 

system. 

3.3. Parameter Tuning using EO Algorithm 

In the last phase, the EO approach is implemented for 

parameter altering associated with the DELM-RBF approach. 

EO is a metaheuristic algorithm that relies on the law of 

physics and is used to balance mass in equilibrium and 

dynamic states [26, 27]. This technique could resolve multi-

engineering issues such as PV parameter estimation, image 

recognition and power systems. The study exploits EO for 

tracking the GMPP under partial shade settings. To 

implement the EO technique, the 3 phases need to be 

followed. 

 

3.3.1. Initialization 

This phase gathers the group of particles where all the 

particles have a resolution for optimizing the problem. 

During the random searching, primary vector concentration 

is produced using the following expression: 

Xi
initia1 = Xlb + (Xub − Xlb) × randi, i = 0,1,2, … np  (12) 

In Eq. (12), Xi
initia1 specifies the particle concentration 

vector, ub and lb indicate the upper and upper limits for the 

dimension, np indicates the number of particles, and the rand 

is the randomly generated with particle ranges from zero to 

one. 

3.3.2. Equilibrium Pool and Candidates 

The EO search for a state of equilibrium; If it reaches the 

near‐optimum resolution for the optimizing problems, it can 

be named an equilibrium state. Generally, the EO does not 

standardize the concentration level under the optimization 

technique. Consequently, EO assigns the four most 

productive particles and the arithmetical mean to improve 

exploitation and exploration as demonstrated in Eq. (13). 

From these Equations; the equilibrium pooling is attained 

and used to generate a vector. 

D⃗⃗ eq,pool = {D⃗⃗ eq,(1), D⃗⃗ eq,(2), … . , D⃗⃗ eq,(n), D⃗⃗ eq,(avg)}  (13) 

Here, all the particles are upgraded in concentration for 

each iteration. 

3.3.3. Concentration Update 

The term exponential (F) is utilized to upgrade the 

concentrating process, as demonstrated in Eq. (14). This is 

highly effective in upgrading the investigation and exploiting 

method. 

F⃗ = e−λ⃗⃗ (t−t0)  (14) 

In Eq. (14), λ indicates a random vector within [0, 1], 

and t signifies the iterating time. The t value is minimized 

with maximum iterating. The selection of fitness was a 

crucial feature of the EO method. Solution encoding is 

employed to measure the goodness of the candidature 

resolution. The precision values are the major state employed 

in designing a fitness function.  

Fitness =  max (P)  (15) 

P =
TP

TP+FP
   (16) 

From the above expression, TP and FP signify the true 

and false positive values. 
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                Training Phase (70%) - UCI HAR 
A

ct
u

al
 

0 1084 9 37 9 46 12 

1 3 927 13 54 31 89 

2 113 9 744 7 57 39 

3 15 30 11 1148 21 10 

4 35 15 26 23 1192 45 

5 33 10 37 12 25 1238 

 0 1 2 3 4 5 

  Predicted 

(a) 

                Testing Phase (30%) - UCI HAR 

A
ct

u
al

 

0 465 5 24 9 17 5 

1 1 344 5 31 7 39 

2 37 7 335 4 29 25 

3 12 20 3 494 6 7 

4 12 7 10 8 523 10 

5 21 12 13 10 5 528 

 0 1 2 3 4 5 

  Predicted 

(b)

 
 (c)  (d) 

Fig. 3 Classifier outcome of UCI HAR dataset (a-b) 70:30 of TRS/TSS, (c) PR, and (d) ROC   

4. Results and Discussion 
In the given segment, the experimental validation of the 

RHAR-EODELM approach can be examined by 

implementing two datasets [28, 29]. Table 1 and Table 2 

represent the details of two datasets. Figure 3 shows the 

classifier outputs of the RHAR-EODELM approach under 

the UCI HAR dataset. Figure 3a shows the confusion matrix 

extracted by the RHAR-EODELM method on 70% of TRS. 

The figure demonstrated that the RHAR-EODELM 

methodology had recognized 1084, 927, 744, 1148, 1192, 

and 1238 instances under classes 0-5. Also, Figure 3b 

portrays the confusion matrices presented by the RHAR-

EODELM approach on 30% of TSS. The figure represented 

that the RHAR-EODELM approach has recognized 465, 344, 

335, 494, 523, and 528 instances under classes 0-5. 

Similarly, Figure 3c shows the PR investigation of the 

RHAR-EODELM technique. The figures described that the 

RHAR-EODELM model had gained extreme PR 

accomplishment under the total classes. Lastly, Figure 3d 

represent the RHAR-EODELM model’s ROC study. The 

figure exhibited that the RHAR-EODELM model has 

capable outcomes with maximum ROC values in discrete 

class labelling. 

Table 3 and Figure 4 show HAR outcomes of the 

RHAR-EODELM technique with 70:30 TRS/TSS under the 

UCI HAR dataset. The experimental outputs represent that 

the RHAR-EODELM approach has recognized distinct 

classes. As a sample, with 70% of TRS, the RHAR-

EODELM approach attains an average accuy of 95.95%, 

sensy of 87.31%, specy of 97.56%, Fscore of 87.52%, and 

MCC of 85.17%. Also, with 30% of TSS, the RHAR-

EODELM approach attains average accuy of 95.67%, sensy 

of 86.39%, specy of 97.39%, Fscore of 86.59%, and MCC of 

84.16%. 
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Fig. 4 Average result of RHAR-EODELM technique on UCI HAR database 

 
Fig. 5 TACC and VACC outcome of RHAR-EODELM technique on UCI HAR database 

 
Fig. 6 TLOS and VLOS outcome of RHAR-EODELM technique on UCI HAR database 
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Table 1. UCI HAR dataset details 

UCI HAR 

Label Class 
Instance  

Numbers 

0 Walking 1722 

1 Walk-Toward-Upstairs 1544 

2 Walk-Toward-Downstairs 1406 

3 Sit-Position 1777 

4 Stand-Position 1906 

5 Lying 1944 

Total Instances 10299 
 

Table 2. Details of the USC HAD dataset 

USC HAD 

Label Class 
No. of  

Instances 

0 Walking-Left 70 

1 Walk-Toward-Downstairs 70 

2 Running-Forward 70 

3 Stand-Position 70 

4 Sleep-Position 70 

5 Elevating-Up 70 

Total No. of Instances 420 

Table 3. HAR outcome of RHAR-EODELM technique with 70:30 of TRS/TSS on UCI HAR dataset 

UCI HAR 

Class 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Training Phase (70%) 

0 95.67 90.56 96.69 87.42 84.88 

1 96.35 82.99 98.80 87.58 85.63 

2 95.16 76.78 98.01 81.00 78.39 

3 97.34 92.96 98.24 92.28 90.68 

4 95.51 89.22 96.94 88.04 85.28 

5 95.67 91.37 96.67 88.81 86.18 

Average 95.95 87.31 97.56 87.52 85.17 

Testing Phase (30%) 

0 95.37 88.57 96.76 86.67 83.90 

1 95.66 80.56 98.08 83.70 81.28 

2 94.92 76.66 97.93 81.02 78.26 

3 96.44 91.14 97.57 89.98 87.83 

4 96.41 91.75 97.46 90.41 88.21 

5 95.24 89.64 96.56 87.78 84.86 

Average 95.67 86.39 97.39 86.59 84.06 
 

The TACC and VACC values of the RHAR-EODELM 

algorithm on the UCI HAR data are represented in Figure 5. 

The figure presented that the RHAR-EODELM model has 

depicted an enhanced accomplishment with an enhanced 

TACC and VACC values. In particular, the RHAR-

EODELM algorithm has maximal TACC outputs. 

The TLOS and VLOS of the RHAR-EODELM 

algorithm on the UCI HAR data are represented in Figure 6. 

The figure exhibited that the RHAR-EODELM model has 

advanced achievement with minimal TLOS and VLOS 

values. The RHAR-EODELM algorithm has decreased VLS 

outputs. 

Figure 7 depicts the classifier outcomes of the RHAR-

EODELM method under the USC HAD dataset. Figure 7a 

exhibits the confusion matrix presented by the RHAR-

EODELM method on 70% of TRS. The figure represented 

that the RHAR-EODELM approach has recognized 45, 42, 

42, 45, 41, and 43 instances under classes 0-5. Moreover, 

Figure 7b illustrates the confusion matrix attainable by the 

RHAR-EODELM approach on 30% of TSS. The figure 

represented that the RHAR-EODELM approach has 

recognized 21, 21, 18, 21, 13, and 19 instances under classes 

0-5. Similarly, Figure 7c exhibits the PR investigation of the 

RHAR-EODELM technique. The figures represented that the 

RHAR-EODELM method has gained extreme PR 

achievement under the total classes. Lastly, Figure 7d 

demonstrates the RHAR-EODELM model’s ROC study. The 

figure illustrates that the RHAR-EODELM model has 

efficient outputs with utmost ROC values in diverse class 

labelling. 

Table 4 and Figure 8 show HAR outcomes of the 

RHAR-EODELM approach with 70 and 30 percent of 

TRS/TSS under the USC HAD dataset. The outputs illustrate 

that the RHAR-EODELM approach has identified distinct 

classes. In the case with 70% of TRS, the RHAR-EODELM 

approach attains average accuy of 95.92%, sensy of 87.88%, 

specy of 97.55%, Fscore of 87.80%, and MCC of 85.43%. 

Similarly, with 30% of TSS, the RHAR-EODELM approach 

attains average accuy of 96.56%, sensy of 89.40%, specy of 

97.93%, Fscore of 89.37%, and MCC of 87.76%. 
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                Training Phase (70%) - USC HAD 
A

ct
u

al
 

0 45 0 0 0 1 2 

1 0 42 0 1 1 2 

2 0 1 42 1 1 5 

3 3 0 1 45 0 0 

4 2 3 2 2 41 1 

5 3 1 2 0 1 43 

 0 1 2 3 4 5 

  Predicted 

(a)  

                             Testing Phase (30%) - USC HAD 

A
ct

u
al

 

0 21 0 0 0 0 1 

1 0 21 1 1 0 1 

2 0 0 18 0 0 2 

3 0 0 0 21 0 0 

4 1 3 0 1 13 1 

5 1 0 0 0 0 19 

 0 1 2 3 4 5 

  Predicted 

(b)

 
(c)      (d) 

Fig. 7 Classifier outcome of USC HAD dataset (a-b) 70:30 of TRS/TSS, (c) PR, and (d) ROC   

Table 4. HAR outcome of RHAR-EODELM technique with 70:30 of TRS/TSS on the USC HAD dataset 

USC HAD 

Class 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 MCC 

Training Phase (70%) 

0 96.26 93.75 96.75 89.11 87.01 

1 96.94 91.30 97.98 90.32 88.51 

2 95.58 84.00 97.95 86.60 84.01 

3 97.28 91.84 98.37 91.84 90.20 

4 95.24 80.39 98.35 85.42 82.82 

5 94.22 86.00 95.90 83.50 80.04 

Average 95.92 87.88 97.55 87.80 85.43 

Testing Phase (30%) 

0 97.62 95.45 98.08 93.33 91.92 

1 95.24 87.50 97.06 87.50 84.56 

2 97.62 90.00 99.06 92.31 90.94 

3 98.41 100.00 98.10 95.45 94.64 

4 95.24 68.42 100.00 81.25 80.49 

5 95.24 95.00 95.28 86.36 84.02 

Average 96.56 89.40 97.93 89.37 87.76 
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Fig. 8 Average outcome of RHAR-EODELM technique on the USC HAD dataset 

 
Fig. 9 TACC and VACC result of RHAR-EODELM technique on USC HAD dataset 

 
Fig. 10 TLS and VLS outcome of RHAR-EODELM approach on USC HAD dataset 

80

84

88

92

96

100

Accuracy Sensitivity Specificity F-Score MCC

A
v
g
. 

V
al

u
es

 (
%

)

Training Phase (70%) Testing Phase (30%)



L. Maria Anthony Kumar et al. / IJEEE, 10(5), 1-13, 2023 

 

11 

 
Fig. 11 𝐀𝐜𝐜𝐮𝐲 analysis of the RHAR-EODELM approach under the UCI HAR dataset 

 
Fig. 12 𝐀𝐜𝐜𝐮𝐲 analysis of the RHAR-EODELM approach under the USC HAD dataset 

Table 5. Relative investigation of the RHAR-EODELM approach with other systems under two datasets 

Methods UCI HAR USC HAD 

CNN 89.456 85.264 

LSTM 89.674 83.084 

CNN-LSTM 87.339 87.414 

Convolution LSTM 90.851 84.862 

RHAR-EODELM 95.950 95.920 

 

The TACC and VACC of the RHAR-EODELM model 

on the USC HAD database are represented in Figure 9. The 

figure denoted that the RHAR-EODELM model has 

enhanced achievement with enhanced TACC and VACC 

values. In particular, the RHAR-EODELM model has 

maximal TACC results. The TLS and VLS values of the 

RHAR-EODELM technique on the USC HAD database are 

exemplified in Figure 10. The represented figure concluded 

that the RHAR-EODELM model has enhanced achievement 

with lesser TLS and VLS values. Seemingly the RHAR-

EODELM technique has mitigated VLS outputs.  
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Table 5 provides a relative examination of the RHAR-

EODELM technique with existing models [30]. Figure 11 

depicts a relative training of the RHAR-EODELM technique 

with other DL models under the UCI HAR database. The 

figure demonstrates that the CNN-LSTM technique reaches 

the least 𝑎𝑐𝑐𝑢𝑦 of 87.339%. Next, the CNN and LSTM 

models attain closer accuy of 89.456% and 89.674%, 

respectively. Meanwhile, the Conv. LSTM technique obtains 

reasonable accuy of 90.851%.  

However, the RHAR-EODELM technique reaches a 

higher accuy of 95.950%. Figure 12 demonstrated a relative 

training of the RHAR-EODELM method with other DL 

approaches under the USC HAD dataset. The outputs 

demonstrate that the LSTM approach attains a minimum 

accuy of 83.084%. Next, the CNN and Conv. LSTM 

methods attain closer accuy of 85.264% and 84.862%, 

correspondingly. In the meantime, the CNN method gets a 

reasonable accuy of 85.264%. But, the RHAR-EODELM 

technique reaches a higher accuy of 95.920%. These results 

exhibited the maximum performance of the RHAR-

EODELM technique. 

5. Conclusion 
In this research, an automated activity recognition 

method termed the RHAR-EODELM model, is developed. 

The presented RHAR-EODELM technique mainly identified 

different classes of human activities. It follows a three-stage 

process. Initially, the RHAR-EODELM technique employs a 

min-max normalization process for scaling the activity data. 

Next, the RHAR-EODELM technique exploited the DELM-

RBF model for the prediction process. Lastly, the EO model 

is implemented for adjusting the parameters relevant to the 

DELM-RBF method. To highlight the enriched HAR 

outcomes of the RHAR-EODELM method, a large scale of 

simulations was achieved. The simulation values signify that 

the RHAR-EODELM approach reaches improved predictive 

outcomes over other models. Later, the efficiency of the 

RHAR-EODELM technique will be boosted by hybrid DL 

methods. 
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