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Abstract - Wireless Sensor Network (WSN) based on the Internet of Things (IoT) involves the process of transmitting the data 

acquired by sensors mounted on the Sensors Node (SN) to the Base Station (BS). WSN Lifespan is highly dependent on the 

higher battery life or energy of SNs resulting in a longer lifespan. The WSN sustained operation can be attained with the 

efficient utilization of SN energy.  Clustering stands as one popular technique for increasing the WSN's lifespan. The optimum 

number of Cluster Heads (CHs) and the way of organizing the clusters were the main problems that needed to be solved in the 

clustering approaches. This study develops an Enhanced Flower Pollination based Energy Aware Clustering Scheme for 

Lifetime Maximization (EFPB-EACSLM) in IoT-enabled WSN. The core aim of the EFPB-EACSLM methodology is to 

properly construct the clusters in WSN and effectively identify the CHs in the network. In the presented EFPB-EACSLM 

methodology, the first-order radio energy model was exploited. Besides, the EFPB-EACSLM model calculates a Fitness 

Function (FF) so that energy consumption is mitigated and the lifespan is increased. For validating the performance of the 

EFPB-EACSLM model, numerous simulation analyses are carried out and the experimental outcomes are compared with 

current methods. The gained outcomes portrayed the superior performance of the EFPB-EACSLM technique through diverse 

measuring. 

Keywords - Flower Pollination Algorithm, Internet of Things, Wireless Sensor Networks, Clustering, Energy efficiency, 

Lifetime maximization. 

1. Introduction 
WSNs consisting of several distributed SNs are among 

the subsections of ad-hoc networking. Such nodes are 

utilized in systems containing the IoT [1]. WSN can be 

leveraged in various applications like automobiles, traffic 

monitoring, health monitoring, agriculture, etc [2]. In IoT, 

devices transfer and process information using intellectual 

sensors lacking human intervention. Thus, SNs are one key 

factor of the IoT [3]. WSNs present a structure to manage 

SNs. In WSN-based IoT, several SNs work together for 

environment monitoring[4]. They were linked to the Internet 

through the SN or BS [5]. SNs utilized in WSN-related IoT 

networks have several limitations on processing power, 

energy sources, and radio range [6]. Given that attaining the 

most extended lifespan becomes a significant problem in 

such networks, the core challenge in such networks was 

saving SNs energy [7]. 

The authors are deeply indulged in devising energy-

efficient solutions, but network lifespan can be prolonged by 

enforcing a proper plan for energy-efficient methods [8]. It is 

recognized that the cluster-related hierarchical method was a 

potential means to save energy for dispersed WSNs [9], 

increasing the span of the networking life by effectively 

utilizing the node energy and supporting the dynamic WSN 

atmosphere [10, 11]. In cluster-related WSN, SN was 

classified into many groups known as clusters with group 

leaders known as CHs [12].  

Clustering has numerous merits over traditional 

methods. Initially, data aggregation can be implemented on 

the dataset [13, 14] from several SNs within a cluster to 

diminish the data that should be sent to BS; thus, energy 

necessities decline sharply [15]. Then, the rotation of CHs 

aids in ensuring a balanced power utilization in the network 

[16] that avoids getting particular nodes starved because of a 
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lack of energy [17]. However, selecting suitable CH with the 

best abilities while balancing the network's energy-efficiency 

ratio was a well-distinct NP-hard optimized issue in WSNs 

[18]. Therefore, Computational Intelligence (CI) related 

techniques like Artificial Bee Colony (ABC), Evolutionary 

Algorithms (EAs), Artificial Immune Systems (AIS), and 

Reinforcement Learning (RL) were utilized widely as 

population-related metaheuristics for energy-efficient 

clustering protocols in WSN[19]. This study develops an 

Enhanced Flower Pollination based Energy Aware 

Clustering Scheme for Lifetime Maximization (EFPB-

EACSLM) in WSN. The key objective of the EFPB-

EACSLM method is to properly construct the clusters in 

WSN and effectively identify the CHs in the network. In the 

presented EFPB-EACSLM technique, the first-order radio 

energy method was employed. Besides, the EFPB-EACSLM 

technique computes an FF so that the utilization of the 

energy is reduced and the lifespan is increased. Numerous 

simulation analyses were carried out to validate the 

performance of the EFPB-EACSLM technique. 

2. Literature Review 
Yadav and Mahapatra [20] modelled a novel Energy-

Aware CH-selection structure by the Hierarchical Routing 

(EACH-HR) in the WSN through a fusion-optimized 

method[21]. Besides, CH-selection can be done by 

considering the eminence of the service, delay, energy, and 

distance. A novel hybrid technique called Particle Distance 

Updated Sea Lion Optimizer (PDU-SLnO) system is 

presented for choosing the best CH that integrates the PSO 

and Sea Lion Optimization (SLnO) method. Umamaheswari 

and Kumar [22] present an Energy-Aware Metaheuristic-

Related Path Planning with Mobile Sinks (EAM-PPMS) 

method for WSNs. The EAM-PPMS approach primarily 

executes the Chicken Swarm Optimizer (CSO) related cluster 

method for choosing the CH set and organising the network 

into a cluster set. 

In [23], a Self-Adaptive Cuckoo Search-Related CH-

Selection (SACS-CHS) method was devised to maximize 

network lifespan with sustained energy stability of SNs. The 

method mentioned above was modelled with adaptive 

parameters that attribute to a superior selection of CH 

without tuning the used parameters. It involved the mitigated 

populace proportion idea depending on the fitness assessed 

relies upon the current best and previous solution. Yadav and 

Mahapatra [24] introduced a method called an innovative 

EACH-HR in the WSN by an innovative hybrid optimizer 

technique. Additionally, choice goes with some criteria i.e., 

reduction of delay during data transmission, energy 

stabilization, and reduction of distance amongst nodes. The 

described non-linear objective function achieves lifespan 

lengthening by choosing the best CH. This technique was 

called Cuckoo Insisted-Rider Optimizer Algorithm (CI-

ROA), hybridizing Cuckoo Search Algorithm (CSA) and 

ROA. 

In [25], a hybrid Sparrow Search Algorithm (SSA) with 

Differential Evolution (DE) techniques was projected to 

overcome the problematic situation of energy effectiveness 

by the CH-selection in WSN Networking. The proposed 

technique implements the high-level search effectiveness of 

SSA and the DE's potential that enriches the node lifespan. 

Wang et al. [26] present a method to optimize the endurance 

time of WSN routing with an efficient routing technique 

related to an elite hybrid meta-heuristic optimizer system. 

The formulating system derives as an innovative approach 

that brings together the global searching abilities of the PSO; 

differential procedures can be difference operators and 

pheromones of ACO to evade local search and preserve the 

population’s diversity. 

3. The Proposed Model 
In the present article, a novel EFPB-EACSLM model for 

WSN. The main target of the EFPB-EACSLM model is to 

correctly build the clusters in WSN and effectively classify 

the CHs in the network. In the presented EFPB-EACSLM 

model, the first-order radio energy method was leveraged. 

Figure 1 illustrates the comprehensive procedure of the 

EFPB-EACSLM approach. 

3.1. Design of EFPA Short  

The low search efficiency, lack of diversity agents, and 

optimal local trap are presented in the FPA technique as its 

shortcomings while handling complex optimization 

problems. Diverging agents, adapting hop size, and 

diversifying local search were the different methods 

designated from the SCA method used to accurately depict 

the presented model to avoid the drawbacks of the FPA 

technique [27]. Initially, adapting hop size takes place, also 

known as step size, to add Levy Flight (LF) as exploring 

pollination updating equation to accelerate convergence. 

Meanwhile, pollen works in FPA depend on the rule of LF 

for updating global pollination values; the LF equation that 

may affect convergence speed using 𝜇 × 𝐿 is known, 

whereas 𝜇 indicates the parameter given as follows: 

𝜇 = ℎ𝑤 − (ℎ𝑤 − 𝑙𝑤) ⋅
𝑖𝑡𝑒

𝐼𝑡𝑒𝑟 Max 
  (1) 

Whereas ℎ𝑤 and 𝑙𝑤 denote the weighted co-efficient 

constant of the control step length coefficient, ℎ𝑤 was fixed 

as 0.9 and 𝑙𝑤 is fixed as 0.2; 𝑖𝑡𝑒 denotes existing iteration; 

𝐼𝑡𝑒𝑟𝑀𝑎𝜒 represents the overall iterating amount). 

The global pollination’s uniform mutation operator 

processes by step size parameter concerned results in a 

considerable changing hop in an earlier phase that could 

make the process converge to optimum value rapidly as 

follows: 

𝑆𝑖
𝑡+1 = 𝑆𝑖

𝑡 + 𝜇 × 𝐿(𝑔𝑏𝑒𝑠𝑡 − 𝑆𝑖
𝑡) + 𝑟𝑎𝑛𝑑(𝑆𝑗

𝑡 − 𝑆𝑘
𝑡) (2) 
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Fig. 1 Overall procedure of the EFPB-EACSLM approach 

Application Layer 

User Server 

IoT Management Platform 

Transport Layer 

Sensing Layer (WSN) 

Source Sensors Destination 

Clustering Process : Enhanced Flower Pollination 

Fitness Function 

Residual Energy of the Nodes Distance to the Neighbors 

Distance to the Base Station Node Degree, Node Centrality 

Path 



A. Gayathri et al. / IJEEE, 10(7), 63-75, 2023 

 

66 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Steps involved in FPA 

Where 𝑆𝑖
𝑡+1 and 𝑆𝑖

𝑡 denote the location of pollen solution 

𝑖 at existing iteration 𝑡, 𝑆𝑗
𝑡 and 𝑆𝑘

𝑡  represents pollen solution 

at 𝑗 and 𝑘 randomly generated; 𝑔𝑏𝑒𝑠𝑡  shows the optimum 

global pollen solution. The following approach is to diversify 

local search. It was utilized as a mutation model with a more 

negligible probability revised to make it easier to escape 

from the local optimum solution. As per the benefits of the 

mutation process, certain modifying and adjusting methods 

are performed in the local search process, and it can be stated 

in the equation as follows: 

𝑆𝑖
𝑡+1 = (

𝑆𝑖
𝑡+𝑔𝑏𝑒𝑠𝑡

2
) 𝑟𝑎𝑛𝑑 + 휀(𝑆𝑎

𝑡 − 𝑆𝑏
𝑡) (3) 

Where (𝑆𝑖
𝑡 + 𝑔𝑏𝑒𝑠𝑖)/2 retains the beneficiary data of the 

present optimum individual and valuable data of individual 𝑖 
that was directed to the best location; 𝑆𝑖

𝑡 shows the operator 

itself; 𝑟𝑎𝑛𝑑 denotes the random value; 𝑆𝑎
𝑡  and 𝑆𝑏

𝑡 show the 

random vector. The more negligible mutation probability is 

utilized to check the value of the boundary to escape from 

the local optimum solution to the best promising region 

based on fitness value. If the agent is above the upper or 

lower boundary, then place it in a space search’s radius as 

follows: 

𝑆𝑖
𝑡 = {

𝑈 (1‐ 𝑟𝑎𝑛𝑑), if iteration is 𝑒𝑣𝑒𝑛
𝐿𝑏 ⋅ (1 + 𝑟𝑎𝑛𝑑) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

Where 𝐿𝑏 and 𝑈𝑏 denote lower and upper limitations of 

search space; 𝑟𝑎𝑛𝑑 indicates a randomly generated value. 

The randomness neighbour search is employed to reduce the 

lower search efficacy problem caused. Figure 2 depicts the 

steps that take part in FPA. The third strategy, variant agent, 

is utilized to vary local search during the search stage. The 

typically used variation technique is derived out of the local 

differential search that considerably improves optimization 

technique, and it can be formulated by: 

𝑆𝑖
𝑡+1 = {

𝑆𝑖
𝑡 + 휀 × 𝑠𝑖𝑛(𝛼) × |𝑟1𝑔𝑏𝑒𝑠𝑖 − 𝑆𝑖

𝑡| 𝑖𝑓 𝜔 ≤ 0.5

𝑆𝑖
𝑡 + 휀 × 𝑐𝑜𝑠(𝛼) × |𝑟1𝑔𝑏𝑒𝑠𝑡 − 𝑆𝑖

𝑡| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

Where 𝛼 denotes the randomly generated value is fixed 

as 2 ∙ 𝜋 ∙ 𝑟𝑎𝑛𝑑(0,1); 휀 indicates the scaling factor; 𝑟1 shows 

the random number within [0,1] 𝜔 denotes the choosing 

coefficient quality pollination agent that is shown below: 

𝜔 = 1 −
𝑓𝑖𝑡(𝑖)−𝑏𝑒𝑠𝑡𝑓𝑖𝑡

𝑤𝑜𝑟𝑠𝑒𝑓𝑖𝑡−𝑏𝑒𝑠𝑡𝑓𝑖𝑡
, (6) 

In Eq. (6), 𝑓𝑖𝑡(𝑖) Indicates the fitness value of objective 

function attained corresponding to 𝑖𝑡ℎ pollination; 𝑏𝑒𝑠𝑡𝑓𝑖𝑡 

and 𝑤𝑜𝑟𝑠𝑒𝑓𝑖𝑡 denote best and worst fitness values. The 

algorithm convergence was essential to find the optimum 

outcome, allowing for "jumping from" the local optimum 

point. The convergence term is regarded as an optimum 
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measure to obtain a better solution and was possibly seen in 

assessment techniques for optimum solutions. The HSFPA is 

created depending on FPA and a few strategies upgrading 

from the SCA technique. Pollination diversity has improved, 

and an arbitrarily generated segment was utilised to produce 

a new solution. 

3.2. Process Involved in EEPA-Based Clustering  

The EFPB-EACSLM model calculates an FF so that 

energy utilisation is mitigated and the lifespan is increased. 

The FF of the EFPB-EACSLM model is performed to select 

an optimum CH from the collection of SNs in the networking 

[28].  

The RE deliberated in the FF was exploited to avoid the 

dead nodes as a CH at the clustering method. Then, the 

candidate CH to the BS distancing and the distancing among 

nodes are exploited for choosing an optimal CH to 

minimalize the energy depletion of the node. Furthermore, 

the high centrality to the cluster member minimises 

communication distancing between cluster members to CH. 

The FF can be defined as: 

3.2.1. Residual Energy (RE) 

In RE, CH implements different tasks gathering the 

dataset from regular sensors and conveying information to 

𝐵𝑆. The CH needs higher energy to achieve the task 

mentioned above; hence the nodes with maximum RE are 

selected to be 𝐶𝐻. The RE can be defined as follows: 

𝑓1 = ∑ 1/𝐸𝐶𝐻𝑖
𝑚
𝑖=1   (7) 

In Eq. (7), 𝐸𝐶𝐻𝑖  represents the RE of 𝑖𝑡ℎ CHs. 

3.2.2. Distance between the SNs 

It determines the CH and the routine sensor distancing. 

The energy dissipation of nodes depends mainly on the 

communication path’s distance. The energy depletion of the 

nodes is more minor once selected nodes have less 

communication distance toward BS. The standard sensor and 

CH distancing can be formulated by: 

𝑓2 = ∑ (𝑚
𝑗=1 ∑ 𝑑𝑖𝑠(𝑠𝑖 , 𝐶𝐻𝑗)/𝑙𝑗)

𝐼𝑗

𝑖=1
 (8) 

Where is the distance between 𝑖𝑡ℎ sensors and 𝑗𝑡ℎ CHs 

are denoted by 𝑑𝑖𝑠(𝑠i𝐶𝐻𝑗) and the number of sensors that 

belong to CHs is represented by 𝐼𝑗 . 

3.2.3. The Distance between the CH and BS 

It determines the CH to BS distancing. The node's 

energy depletion mainly relies on the distance over the 

communication channel. For example, if BS was located 

farther from 𝐶𝐻, it requires additional energy for data 

communication. Hence, an unexpected fall of CH might 

happen because of maximum energy depletion. Therefore, 

the node with less distance from BS was selected during data 

transmission. The subsequent signifies the primary function 

of the distance between BS and CH. 

𝑓3 = ∑ 𝑑𝑚
𝑖=1 𝑖𝑠(𝐶𝐻𝑗 , 𝐵𝑆) (9) 

Where, the 𝐶𝐻𝑗 and BS distancing is represented by 

𝑑𝑖𝑠(𝐶𝐻𝑗 , 𝐵𝑆). 

3.2.4. Node Degree 

It determines the total counting of sensors belonging to 

the subsequent 𝐶𝐻. The CH with fewer SNs is carefully 

chosen since the CH with maximum cluster members loses 

the energy in a smaller duration. 

𝑓4 = ∑ 𝑙𝑖
𝑚
𝑖=1  (10) 

Eq. 𝐼𝑖  denotes the number of sensors belonging to 𝐶𝐻𝑖 . 

3.2.5. Node Centrality 

Node centrality (f) determines what amount of the nodes 

are located centrally from the neighbouring node, and the 

following expression formulates it: 

𝑓5 = ∑
√(∑ 𝑑𝑗𝜖𝑛 𝑖𝑠𝑡2(𝑖,𝑗))/𝑛(𝑖)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑚
𝑖=1    (11) 

Where 𝑛(𝑖) denotes the 𝐶𝐻𝑖’s adjacent node numbers. 

The weight values are assigned for all the objective 

values. The numerous objectives were transformed into a 

sole objective function in such cases. The weighted value is 

𝛿1, 𝛿2, 𝛿3, 𝛿4, and 𝛿5. The mathematical expression of the 

primary function was given as follows: 

𝑓 = 𝛿1𝑓1 + 𝛿2𝑓2 + 𝛿3𝑓3 + 𝛿4𝑓4 + 𝛿5𝑓5, 

Where, ∑ 15
𝑖=1 , 𝛿𝑖 ∈ (0,1), (12) 

Where, the 𝛿1, 𝛿2, 𝛿3, 𝛿4, and 𝛿5 values are 0.35, 0.25, 

0.2, 0.1, and 0.1. The 𝛿1 regarded the RE as a greater priority 

to prevent the failure of the node as CH. Consequently, 𝛿2 

and 𝛿3 are taken into account as a secondary and tertiary 

priority to recognize CH in BS with the lesser distancing that 

reduces energy dissipation. The quaternary priority (𝛿4) was 

considered for node degree for choosing CH with a lesser 

degree of the node.  

Furthermore, node centrality was deliberated as the final 

priority 𝛿5 that increases the nearness between cluster 

members and CH. Afterwards, choosing the CHs by the 

EFPB-EACSLM algorithm, the sensors are assigned to the 

CHs with promising functions deliberated. The sensors are 

assigned to the CH with lesser communication distance and 

maximum RE. Thus, the energy expended would be less in 

the data transmission stage. 
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𝑆𝑁𝑝 =
𝑍×𝐸𝑛𝑒𝑟𝑔𝑦(𝐶𝐻𝑗)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑖,𝐶𝐻𝑗)
  (13) 

In Eq. (13), SNs possibly denote 𝑆𝑁𝑝; proportionality 

constant represents 𝑍 and distance (𝑆𝑖 , 𝑐𝐻𝑗) denotes distance 

amongst the 𝐶𝐻𝑗  and sensor 𝑠𝑖 ,⋅ 𝐸𝑛𝑒𝑟𝑔𝑦(𝐶𝐻𝑗) signifies the 

RE of corresponding 𝐶𝐻; The sensors are assigned to 

specific CH with maximum potential. If the distance among 

sensors and two dissimilar CHs were similar, then the 

sensors interconnect to the CH has maximum energy. 

4. Results and Discussion 
In this segment, the clustering achievement of the EFPB-

EACSLM model is examined in detail. The suggested model 

is tested by the process of simulation that utilizes Python 

3.6.5 tool on PC i5-8600k, 250GB SSD, GeForce 1050Ti 

4GB, 16GB RAM, and 1TB HDD. The parameter setups are 

stated as activation: ReLU, rate of learning: 0.01, count of 

the epoch: 50, dropout: 0.5, and batch size: 5. In Table 1 and 

Figure 3, an elaborated End-To-End Delay (ETED) 

assessment of the EFPB-EACSLM method is studied [29]. 

The outputs portray that the EFPB-EACSLM approach 

attains mitigated ETED values.  

For the sample, with 100 SNs, the EFPB-EACSLM 

approach gains a lower ETED of 1.08ms while the MHCRT-

EEWSN, F-GWO, FRLDG, MBC, and HEED techniques 

accomplish higher ETED of 1.41ms, 2.18ms, 3.30ms, 

4.15ms, and 5.32ms respectively.  Meanwhile, with 500 SNs, 

the EFPB-EACSLM method gains a lower ETED of 4.38ms 

while the MHCRT-EEWSN, F-GWO, FRLDG, MBC, and 

HEED techniques accomplish higher ETED of 6.39ms, 

7.89ms, 8.66ms, 9.02ms and 9.53ms correspondingly. 

Table 1. ETED analysis of the EFPB-EACSLM method with other techniques under varying SNs 

ETED (ms) 

Nodes Numbers EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 1.08 1.41 2.18 3.30 4.15 5.32 

200 1.76 2.41 3.21 4.50 4.87 6.04 

300 2.46 3.56 5.01 5.39 6.14 7.35 

400 3.05 4.66 6.16 7.38 7.87 8.62 

500 4.38 6.39 7.89 8.66 9.02 9.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 ETED investigation of EFPB-EACSLM method under varying SNs 

The PDR study of the EFPB-EACSLM method with 

current approaches under several SNs is given in Table 2 and 
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SNs, the EFPB-EACSLM technique accomplishes a 

maximum PDR of 99.84% while the MHCRT-EEWSN, F-

GWO, FRLDG, MBC, and HEED techniques achieve 

minimal PDR of 99.39%, 98.82%, 97.23%, 94.26%, and 

91.86% respectively.  Furthermore, with 500 SNs, the EFPB-

EACSLM system accomplishes a maximal PDR of 98.13% 

while the MHCRT-EEWSN, F-GWO, FRLDG, MBC, and 

HEED techniques attain minimal PDR of 96.46%, 94.59%, 

92.34%, 89.94% and 86.28% subsequently. Table 3 and 

Figure 5 show a brief PLR calculation of the EFPB-

EACSLM method. The outcomes portray that the EFPB-

EACSLM technique reaches reduced PLR values. 
 

Table 2. PDR evaluation of the EFPB-EACSLM method with other techniques under varying SNs 

Packet Delivery Ratio (%) 

No. of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 99.84 99.39 98.82 97.23 94.26 91.86 

200 99.47 98.46 97.48 96.01 92.67 90.67 

300 99.31 97.93 96.38 93.53 91.69 89.05 

400 98.33 96.87 95.28 93.16 90.43 87.46 

500 98.13 96.46 94.59 92.34 89.94 86.28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 PDR investigation of EFPB-EACSLM methodology under changing SNs 

Table 3. PLR evaluation of the EFPB-EACSLM method with other techniques under varying SNs 

Packet Loss Rate (%) 

Number of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 0.16 0.61 1.18 2.77 5.74 8.14 

200 0.53 1.54 2.52 3.99 7.33 9.33 

300 0.69 2.07 3.62 6.47 8.31 10.95 

400 1.67 3.13 4.72 6.84 9.57 12.54 

500 1.87 3.54 5.41 7.66 10.06 13.72 
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Fig. 5 PLR investigation of EFPB-EACSLM methodology under varying SNs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 6 THRO investigation of EFPB-EACSLM methodology under changing SNs 

The THRO investigation of the EFPB-EACSLM values 

with current models under several SNs is illustrated in Table 

4 and Figure 6. The acquired values conclude that the EFPB-

EACSLM approach improves THRO values. For the sample, 

with 100 SNs, the EFPB-EACSLM approach accomplishes a 

maximum THRO of 0.993bps while the MHCRT-EEWSN, 

F-GWO, FRLDG, MBC, and HEED techniques achieve 

minimal THRO of 0.967bps, 0.951bps, 0.882bps, 0.751bps, 

and 0.634bps correspondingly. Also, with 500 SNs, the 

EFPB-EACSLM methodology accomplishes a maximum 

THRO of 0.865bps, while the MHCRT-EEWSN, F-GWO, 

FRLDG, MBC, and HEED techniques achieve minimal 

THRO of 0.777bps, 0.685bps, 0.620bps, 0.489bps, and 

0.415bps respectively. 
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Table 4. THRO evaluation of the EFPB-EACSLM method with other models under varying SNs 

Throughput (bps) 

No. of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 0.993 0.967 0.951 0.882 0.751 0.634 

200 0.979 0.915 0.854 0.772 0.689 0.596 

300 0.946 0.855 0.813 0.701 0.622 0.534 

400 0.905 0.787 0.741 0.670 0.549 0.432 

500 0.865 0.777 0.685 0.620 0.489 0.415 

 

Table 5. ECON investigation of the EFPB-EACSLM method with other models under varying SNs 

Energy Consumption (mJ) 

No. of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 12.26 27.16 50.76 69.38 109.74 142.64 

200 22.82 47.65 68.14 100.42 135.19 163.75 

300 38.96 71.24 99.80 137.05 155.68 176.17 

400 63.17 99.18 133.33 155.06 173.06 196.03 

500 81.80 115.94 157.54 169.34 192.93 230.80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 7 ECON investigation of EFPB-EACSLM methodology under varying SNs 
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Table 5 and Figure 7 show an elaborate ECON 

evaluation of the EFPB-EACSLM model. The outcomes 

portray that the EFPB-EACSLM model reaches reduced 

values of ECON. For the sample with 100 SNs, the EFPB-

EACSLM technique gains a lower ECON of 12.26mJ while 

the MHCRT-EEWSN, F-GWO, FRLDG, MBC, and HEED 

techniques accomplish higher ECON of 27.16mJ, 50.76mJ, 

69.38mJ, 109.74mJ and 142.64mJ correspondingly. In the 

meantime, with 500 SNs, the EFPB-EACSLM approach 

gains a lower ECON of 81.80mJ while the MHCRT-

EEWSN, F-GWO, FRLDG, MBC, and HEED techniques 

accomplish higher ECON of 115.94mJ, 157.54mJ, 

169.34mJ, 192.93mJ and 230.80mJ respectively. 

The NLT inspection of the EFPB-EACSLM approach 

with existing models under several SNs is represented in 

Table 6 and Figure 8. The values gained denote that the 

EFPB-EACSLM approach improves the values of NLT. For 

sample, with 100 SNs, the EFPB-EACSLM technique 

accomplishes a maximum NLT of 5467 while the MHCRT-

EEWSN, F-GWO, FRLDG, MBC, and HEED techniques 

achieve minimal NLT of 5437, 5215, 4741, 4435 and 4091 

respectively. Besides, with 500 SNs, the EFPB-EACSLM 

technique accomplishes a maximum NLT of 5161, while the 

MHCRT-EEWSN, F-GWO, FRLDG, MBC, and HEED 

techniques achieve minimal NLT of 5008, 4573, 4030, 3747 

and 3120 respectively. 

Table 6. NLT investigation of the EFPB-EACSLM method with other models under changing SNs 

Network Lifetime (Rounds) 

Number of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 5467 5437 5215 4741 4435 4091 

200 5421 5314 5001 4680 4320 3892 

300 5345 5138 4726 4351 3961 3380 

400 5253 5077 4642 4122 3801 3128 

500 5161 5008 4573 4030 3747 3120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 NLT analysis of EFPB-EACSLM approach under changing SNs 

Table 7 and Figure 9 show an elaborate BER valuation 

of the EFPB-EACSLM approach. The outcomes portray that 

the EFPB-EACSLM technique reaches reduced BER values. 

For the sample with 100 SNs, the EFPB-EACSLM technique 
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gains a lower BER of 0.3348 while the MHCRT-EEWSN, F-

GWO, FRLDG, MBC, and HEED techniques accomplish 

higher BER of 0.3918, 0.4331, 0.5446, 0.6029 and 0.6502 

correspondingly. In the meantime, with 500 SNs, the EFPB-

EACSLM technique gains a lower BER of 0.2620 while the 

MHCRT-EEWSN, F-GWO, FRLDG, MBC, and HEED 

methods accomplish higher BER of 0.3482, 0.4088, 0.4573, 

0.5495 and 0.5895 correspondingly. These outputs 

demonstrated that the EFPB-EACSLM approach achieves 

more achievement than other approaches. 

 
Table 7. BER analysis of the EFPB-EACSLM system with other techniques under varying SNs 

Bit Error Rate 

No. of Nodes EFPB-EACSLM MHCRT-EEWSN F-GWO FRLDG MBC HEED 

100 0.3348 0.3918 0.4331 0.5446 0.6029 0.6502 

200 0.3251 0.3712 0.4561 0.5459 0.5713 0.6502 

300 0.3118 0.3603 0.4500 0.5216 0.5604 0.6405 

400 0.2948 0.3445 0.4282 0.4925 0.5434 0.6198 

500 0.2620 0.3482 0.4088 0.4573 0.5495 0.5895 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 9 BER analysis of EFPB-EACSLM approach under varying SNs 

5. Conclusion 
In the present article, a novel EFPB-EACSLM model for 

WSN. The primary aim of the EFPB-EACSLM method is to 

correctly build the clusters in WSN and effectively classify 

the CHs in the network. In the presented EFPB-EACSLM 

technique, the first-order radio energy method was 

employed. Besides, the EFPB-EACSLM technique computes 

an FF to mitigate energy consumption and increase lifespan. 

For validating the performance of the EFPB-EACSLM 

technique, numerous evaluation of the simulation is 

achieved, and the experimental outcomes undergo 

comparison with current methods. The acquired results 

portrayed a proficient achievement of the EFPB-EACSLM 

methodology through diverse measuring. In the future, 

unequal clustering techniques can advance the energy 

efficacy of the EFPB-EACSLM methodology. 
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