
SSRG International Journal of Electrical and Electronics Engineering Volume 10 Issue 7, 140-147, July 2023

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V10I7P113 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Implementing Face Detector using Viola-Jones Method

Ali H Alyousef

Information Technology, Saudi Aramco, KSA.

Corresponding Author : aliahy20000@hotmail.com

Received: 09 May 2023 Revised: 03 July 2023 Accepted: 21 July 2023 Published: 31 July 2023

Abstract - This paper presents implementing a face detection algorithm based on the Viola-Jones method. The Viola-Jones

method is a well-known and efficient face detection algorithm that uses Haar-like features, Adaboost, integral images, and the

cascade of classifiers. The implementation in this paper was done in MATLAB and was tested using the MIT + MCU database.

The results show that the detector achieves a detection rate of 60%, which is lower than the 90% detection rate of the original

Viola-Jones method. However, the detector achieves a better false positive rate rejection. The design choices made in this

implementation affect the trade-off between the system’s accuracy and speed.

Keywords - Face detection, Viola-Jones, Haar-like features, Adaboost, Integral images, The cascade of classifiers.

1. Introduction
The primary objective of this paper is to design a robust

face detection system using the Viola-Jones method capable

of accurately identifying and localizing human faces within

images, even in unconstrained environments. The target

detection rate for this system is approximately 90%, with a

minimal number of false detections.

Viola and Jones’ paper inspires our approach, “Rapid

Object Detection using a Boosted Cascade of Simple

Features”, [1, 2] and incorporates Open CV’s pre-trained

classifiers [3, 4] for enhanced performance. The entire

implementation uses MATLAB (R2012a) [5].

2. The Viola and Jones Framework
The Viola-Jones method is an object detection

framework proposed by Paul Viola and Michael Jones in

2001. It comprises four fundamental techniques: Haar-like

features, Integral image, AdaBoost, and the cascade of

boosted classifiers. [1]

The method relies on Haar-like features, which are

rectangle features used to capture image intensity

differences. The features are calculated efficiently using an

intermediate image representation called the Integral image.

The AdaBoost machine learning algorithm is then applied to

select the most relevant features and train the classifiers.

To improve the detection speed, the classifiers are

organized in a cascade structure where each stage is a robust

classifier consisting of a few weak classifiers. The cascade

structure allows for the rapid rejection of non-face image

regions in the early stages. [7, 8]

Fig. 1 Five different types of Haar-feature in different sizes [9]

Only simple rectangular features are used, which can be

computed very fast. The Integral image allows for fast

calculation of the rectangle feature responses. AdaBoost

selects the most essential features from a large set to form a

small collection of critical features. The cascade structure of

increasing complexity classifiers is used to minimize

computation time. [1]

The Viola-Jones method achieves competitive detection

rates at high speed. It was used to develop a face detection

Type 1 Type 2 Type 3 Type 4 Type 5

Feature Pool

Prototype

A

B

C

D

E

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1corresponding.author@mailserver.com

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

141

system approximately 15 times faster than any previous

approach, with over 90% detection accuracy. The key

contributions of this work are introducing new image

representation (Integral image), machine learning method

(AdaBoost), simple rectangular features, and the cascade

structure to optimize speed and performance. [6, 10]

This framework demonstrates how machine learning

techniques can be leveraged to solve complex computer

vision problems efficiently. [1] The Viola-Jones method is an

efficient and scalable object detection framework that builds

a robust classifier from a large set of weak classifiers. It has

become a foundation for many applications in computer

vision and beyond.

3. The Code Implementation
This section focuses on the algorithm implementation in

designing the face detector. The programming language used

was MATLAB (R2012a). The first section covers the initial

pre-processing, including reading the image and changing its

format to a standard one.

The second section includes the calculation of the

integral image and standard deviation. The third section

relates to scaling the image to detect different sizes of faces.

The fourth section focuses on feature extraction. Moreover,

the final section relates to overlapping issues and the

algorithm was written to solve them.

3.1. Pre-Processing

The first step is to read the image. As there are different

image formats, the second step is to convert the image into

grayscale. Gray scale representation converts the image into

a matrix, where each pixel corresponds to one element in the

matrix. The element’s value depends on how bright or dark

the pixel is at that point in the image. There are two classes

of gray scale: double class and unit8 class.

Many functions operate by only using double class, in

which case unit8 class must be converted to double. The

double class assigns a floating value between 0 and 1 to each

pixel, while the unit8 assigns a value between 0 and 255 to

each pixel. The value 0 represents the black pixel, and values

1 and 255 represent the white pixel. These processes are

implemented in MATLAB. Note that Image Processing

Toolbox is needed to use these commands.

Fig. 2 Converting a colour image to grayscale

3.2. Integral Image

The Integral Image technique enhances the speed of

finding the presence or absence of hundreds of Haar features

at every image location. The Integral Image is calculated for

every pixel in the image. The integral value is the sum of all

the pixel values above it and to its left, including the original

pixel value. This process starts at the top left and finishes at

the bottom right. The 2012 MATLAB version has added the

Integral Image command to the Computer Vision System

Toolbox. However, before calculating the integral image, it

is better to resize the images so that the maximum dimension

equals 512 pixels. This step ensures that large images are

resized before further processing. The next piece of code

shows how the resize is implemented.

Then the sum of the Integral Image will be calculated

using this line of code. Note that the ‘integralImage’

command is only introduced on MATLAB R2012a.

 %Read the columns and rows size
 [rows,cols] = size(Input);

% the cols size will be checked first
 if (cols>512)

 cdifference=cols-512;

 else

 cdifference=0;

 end

% then the rows size will be checked
 if (rows > 512)

 rdifference=rows-512;

 else

 rdifference=0;

 end

%then we determine which ratio to take
 if (cdifference>rdifference)

 Ratio=cols/512;

 elseif (rdifference>cdifference)

 Ratio=rows/512;

 else

 Ratio=1;

 end

%we resize the image here depend on the Ratio
Input = imresize(Input, [rows cols]/ Ratio);

 RegionSumIntegral = integralImage(Input);

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

142

However, if the image is compressed, all the pixels will

be darker than the original image. So if the original sub

window contains 3 pixels, [1 0 1] and the Haar-like feature

has three rectangles, each of size 1x1 pixel, and arranged as

[1 -1 1], with a classifier’s threshold of 1.8 when the Haar-

feature activation is computed, the result will be (1*1) + (-

1*0) + (1*1) = 2 > 1.8. This means the feature was detected

successfully. Now consider the same sub-window, but this

time with the image exposed. The feature is still there, but all

the pixels are darker. The sub-window now contains a

different pixel value [0.5 0 0.5]. The result of the

computation is now different (5*1) + (-1*0) + (0.5*1) = 1 <

1.8, which means the feature has not been detected. The

feature was there but too dim to be seen.

Now, consider the standard deviation of the pixel values

to remedy this problem. Still considering the [0.5 0 0.5] sub-

window, its standard deviation is 0.2887. So when you

compare the activation to the threshold, the threshold must

be multiplied by the standard deviation of the pixels in the

sub-window to adjust to the picture’s lighting. The threshold

becomes, in this example, 1.8*0.2887=0.5196. So, this

solves the problem because now the result is 1 > 0.5196. The

feature will be detected. The line of calculating the standard

deviation Integral Image is straightforward.

3.3. Scaling

Faces in images can vary in size. So, the detector is

implemented to scan across the image at multiple scales and

locations. There are two ways in which scaling can be

achieved, either by scaling the image itself or by scaling the

Haar-like feature. Both methods will give the same results,

but scaling the Haar feature was found to take less

computational time. Each scale will be divided into sub-

windows to extract the Haar feature. However, how many

different scales are needed to evaluate the classifier? Let the

scale update equal R. We need to shrink the initial scale to

get down to scale =1. So then the equation will be:

In scale * (Rsn) = 1, solve for sn

Where inscale: is the initial scale

R = scale update

Sn = scale iteration

. : sn = log
1

inscale
 ÷ log R

Then the result needs to be rounded to the nearest

integer toward infinity. So in MATLAB, it appears like this:

The scale update (R) is set to be equal to 0.8. Therefore,

each scale is larger than the previous one by a factor of 0.8.

On the other hand, the initial scale is not a fixed number. It

depends on the image dimension. The highest dimension of

the image is divided by 20. So, for a 512x512 image, the

initial scale is 25.6, giving 18 scales. The choice of values

will be discussed further in the discussion.

After knowing how many scales there are, the next step

is to create a loop that goes through each scale and extracts

its features. As mentioned, each scale will consist of sub-

windows. So to divide the scaled image into sub-windows,

we will generate the set of coordinates (x(k), y(k)).

Later, these sub-windows will be fed into the cascade

classifier to perform face detection.

3.4. Extracting

In order to extract and calculate the Haar feature, we

need to understand the structure of the cascaded open cv

classifier. The cascade classifier has 22 stages. Each stage

has many Haar-feature (trees). Each tree is a vector

consisting of one row and 21 columns. Every value in the

vector corresponds to something related to the feature. Each

Haar feature may contain up to 3 rectangles, and five

essential elements must be known for each feature. The five

elements are the ‘x’ coordinate, ‘y’ coordinate, the width of

the feature, height, and weight. The values from 6 to 10, 11

to 15, and 16 to 20 in the vector correspond to the first,

second, and third rectangles. As you may notice, each

rectangle has five values representing its shape. The

following lines of code show that these values are extracted.

Note that the notation ‘Leaf’ corresponds to Haar-feature.

Also, note that the feature’s elements are multiplied by the

scale to scale the feature instead of the image itself. [11].

 RegionSTDIntegral = integralImage(Input.^2);

 sn=ceil(log(1/inscale)/log(R));

 [x,y]=ndgrid(0:step:(IntegralImages.width-w

1),0:step: (IntegralImages.height-h-1));

 %- Each haar-feature may contain up to 3

rectangles

 for i_Rectangle = 1:3

%- point to the correspond rectangular values

 Rectangle = Leaf(:,(1:5)+i_Rectangle*5);

%- extract the rectangular x coordinate

 RectX = floor(Rectangle(:,1)*Scale+x);

%- The extract the rectangular y coordinate

 RectY = floor(Rectangle(:,2)*Scale+y);

%- The extract the rectangular width

 RectWidth = floor(Rectangle(:,3)*Scale);

%- The extract the rectangular hight

 RectHeight = floor(Rectangle(:,4)*Scale);

%- The extract the rectangular weight either 1

or -1.

 RectWeight = Rectangle(:,5);

end

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

143

The integral image is used for each rectangle in the

feature to find the sum of the pixels’ values inside that

rectangle. However, what are the coordinates for that

rectangle? The following figure 3 illustrates how the values

of the four corners are obtained. Then the integral image

equation mentioned in the theory section is applied to find

the sum of pixel intensities for that particular rectangle in the

image.

Fig. 3 Integral image calculation

The following lines of code show how this is

implemented in MATLAB.

After calculating the sum of pixel intensities for the

rectangle, the algorithm calculates the weighted sum of pixel

values by multiplying the sum of pixel values with the

rectangle weight within the current rectangle. The weighted

sum of pixel values for the three rectangles is added to form

the feature value.

Looking back at the tree vector, the first three elements

are essential. The first value in the vector is the feature (tree)

threshold. The second and third values are ‘right value’ and

‘left value’. The feature value calculated previously is set to

be compared with the feature threshold. The algorithm

assigns the ‘right value’ to the detection result if the feature

value exceeds the threshold. Otherwise, the ‘left value’ is

assigned. Finally, the detection results will be added to form

the stage value at the end of each stage. This stage value will

be compared with the stage threshold. If the result passes the

stage threshold, the sub-windows will get through the next

cascade stage. Otherwise, it continues to the following scale.

On the next page is a summary diagram (Figure 4) of the

structure of the open cv classifier.

Fig. 4 This diagram shows the structure of the open CV classifier

3.5. Overlapping

Since the final detector is insensitive to small changes in

translation and scale, multiple detections will usually occur

around each face in a scanned image. The same is often true

of some types of false positives. In practice, returning one

final detection per face often makes sense. I introduced a

new threshold called the ‘overlapping ratio’ to achieve this.

So, any rectangles overlapped by more than the overlapping

ratio were removed. The choice of which rectangle will

replace the multi-detections depends on the areas of these

rectangles. The rectangle with the most significant area

replaces all other rectangles. This process decreases the

number of false positives since an overlapping subset of false

positives is reduced to a single detection. The overlapping

ratio is a tuneable parameter; 0.8 gives acceptable results.

The complete code was written under MATLAB’s function

‘pruneRectangles’. The following figure 5 shows a detection

result with and without overlapping.

Fig. 5 Image before and after deleting the overlapping

After removing the overlapped windows, the final step is

to display the detection results. The following figure 6 shows

the entire algorithm for this face detection project.

rect_sum =

IntegralImage((xcord+RectWidth)*IIwidth +ycord + RectHeight+1)

+ IntegralImage(xcord*IIwidth+ycord+1)

- IntegralImage((xcord+RectWidth)*IIwidth+ycord+1)

- IntegralImage(xcord*IIwidth+ycord+RectHeight+1)

A

C D

B

X coordinate X coordinate + rectangle width

Y coordinate +

rectangle height

Y coordinate

Stage

1

Stage

22

Stage
2

Stage
3

Feature

1

Feature

2

Feature

3

Stage Threshold

Feature

Threshold

Right

Value
Rectangle

Properties

Cascade Classifier

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

144

Fig. 6 Algorithm summary flow chart

4. Performance
The final detector is tested on the MIT+CMU face

database. The training set contains 130 images and 507 faces.

MIT+CMU are one of the most typical representative test

sets for evaluation. It includes many variations of conditions

such as sizes, scales, illumination, and camera variation. Past

experiments show that systems that perform well on this

database are not brittle or limited to a single set of

conditions. This is due to the complexity of this database.

[14]

The 130 images were tested individually; however, 12

gave an error during the test. The remaining 118 images were

tested successfully. These remaining images contained 430

faces. Two hundred fifty-four of these faces were detected

successfully, while 176 were not detected.

The detection rate for this detector was, therefore, 60%.

The total false positive was 74 sub-windows. These results

will be discussed further in the discussion.

Sensitivity and specificity are statistical measures of

performance, where sensitivity relates to the test’s ability to

identify positive results, and specificity relates to the test’s

ability to identify negative results. The equations for

calculating the sensitivity and specificity are as follows:

Input Image

Read Image and perform some
pre-processing

Create Integral Image

Generate set of search

Coordinates

Haar feature detector

Haar feature detector

Haar feature detector

Open CV XML classifier

file

Read classifier

Build Cascade

Not a face Is a face

Display
results

List of faces found

Save it location

Go to the next

coordinate

Resize image

At last

coordinate

At

smallest

size

Use image patch at

current coordinate

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

145

Sensitivity =
True positive

True positve + False negtive

Specificity =
True negtives

True negtives + False negtives

The sensitivity of the detector was 76.8%. The

specificity, however, cannot be calculated because the true

negative number is unknown. It is unknown because the

MIT+ CMU database does not only contain faces; it also

contains backgrounds. The following figure 7 shows the

confusion matrix of this detector.

Fig. 7 Confusion matrix

Fig. 8 Test images from MIT +CMU test set

5. Discussion
Performance measurements Criteria for any face

detector are accuracy (detection rate and false negatives) and

speed (computation time). A detector is classified as ‘very

good’ if its detection rate is more than 80%. 60% detection

rate is not a very good result compared to results achieved

with other face detectors, especially the Viola and Jones’

detector, which had achieved a 93.9% detection rate.

However, there is always the trade-off issue.

The Viola and Jones’ detector gives 167 false detections,

while this detector only detects 74 false detections using the

same testing database. The classifiers’ threshold and the

number of cascaded stages affect the trade-off between the

detection rate and false detection. A 38-stage cascade

classifier was trained in Viola and Jones’ detector, which

includes 4297 features. However, this detector only has 22

stages and 2135 features. The stage’s number and the

feature’s number slightly affect the efficiency of the

classification and significantly affect the computational time.

Thus, Viola and Jones’ detectors achieve better detection

rates with the cost of more processing time.

The classifiers’ threshold must be lower to achieve

higher detection rates so that more faces are detected with the

cost of numerous false detections. On the other hand, to

lower the false detection, the classifiers’ threshold must

increase. Other factors affect the detector’s accuracy, such as

scale iteration and update. There is no specific method to set

these parameters. The choice of these parameters is not

defined explicitly by Viola and Jones—the more scale

iteration, the higher the chance of detecting the face.

However, the more scales iteration, the longer it takes to

process them. The same trade-off occurs with the scale

update. Lowering the scale update will increase the chance of

finding faces, but it will also increase the computational

time.

In the early stages of pre-processing on the image, the

algorithm defined the maximum image size before

continuing to further stages. The maximum image size is set

at 512x512. Thus, any image with dimensions larger than

defined is resized to the standard size. Therefore, the

maximum scale iteration for the standard size is 18 scales,

with a scale update of 0.8. This is because scale iteration

directly depends on image dimension. Images that are

smaller than the standard size will not be resized. As a result,

their scale iteration will be less than 18. For example,

200x200 images will have 13 scale iterations. During the

design, the maximum scale iteration was initially set at 18,

which proved sufficient for evaluating the image in different

scales. Then, based on that, the equation in Chapter 3.3 was

applied, and the standard image size was set accordingly at

512x512.

Resizing larger images to smaller ones has some

consequences. The pixels’ intensity is not the same after the

resizing due to the effect of noise and errors. As a result,

some features in the original image may not appear after the

resizing. Standard deviation was used to remedy this issue

and improve the detector’s efficiency. It works by calculating

the standard deviation of the pixels inside the feature and

245
True Positives

176
False negtives

74
False Positves

True negatives
unknown

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

146

multiplying it by the threshold to produce a new threshold.

The new threshold will take into account the noise and errors

that were introduced during the resizing.

The final detection result has no overlapping rectangles,

which have been turned into single detection using the

function ‘prune Rectangles. As a result, much false detection

was eliminated. The function looks for any significant

overlap between two rectangles and compares it with the

defined overlap ratio. The overlap ratio was set at 0.8 by trial

and error analysis. Then, if an overlap occurred, the rectangle

with the smaller area was eliminated, leaving the larger one.

Deciding which rectangle to use by replacing it with another

was one of the design choices. The average corners value of

the overlapped rectangles can be used instead of choosing the

most significant area to convert the multi-detection into a

single one.

6. Future Work
This project has covered the implementation of the Viola

and Jones face detector using cascade classifiers provided by

the open-source computer vision library. Overall, the

detector has achieved an acceptable detection rate and a

meagre false positives rate. The face detector performance

can be improved by training the classifiers instead of using

external ones. Moreover, the new classifier could be trained

not only to detect frontal faces but also to detect rotated

faces.

7. Conclusion
The objective of this paper has been achieved by

implementing a face detector that detects and locates human

faces within images. The implemented algorithm was based

on Paul Viola and Michael Jones’ approach based on Haar-

like features. This approach minimizes computation time

while achieving a high detection rate. The implemented face

detector achieved a 60% detection rate and a significantly

low false detection rate. The paper involved design choices

that affected the trade-off between the system’s accuracy and

speed, such as scale iteration and scale update.

Methodology

Standard Terminology

• Detection rate : The number of faces correctly detected

to the number of faces determined by a human expert.

• False positives : This is when an image region is declared

a face, but it is not.

• False negatives : This is when an image region that is a

face is not detected at all.

• False detections : False detections are the sum of False

positives and False negatives.

References
[1] P. Viola, and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Proceedings of the 2001 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 23, no. 1, pp. 51-64, 2001. [CrossRef]

[Google Scholar] [Publisher Link]

[2] D. Betteena Sheryl Fernando et al., “Face Recognition for Home Security,” SSRG International Journal of Computer Science and

Engineering, vol. 6, no. 10, pp. 7-12, 2019. [CrossRef] [Publisher Link]

[3] Open Source Computer Vision Library, 2022. [Online]. Available: https://en.wikipedia.org/wiki/OpenCV

[4] Prasanna Rajendra et al., “Smart Surveillance using Open CV, Motion Analysis and Facial Landmark,” SSRG International Journal of

VLSI & Signal Processing, vol. 7, no. 1, pp. 11-14, 2020. [CrossRef] [Publisher Link]

[5] MATLAB 7.14, The MathWorks Inc., Natick, MA, 2012.

[6] Sunil M P, and Hariprasad S A, “Facial Emotion Recognition using a Modified Deep Convolutional Neural Network Based on the

Concatenation of XCEPTION and RESNET50 V2,” SSRG International Journal of Electrical and Electronics Engineering, vol.

10, no. 6, pp. 94-105, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Ali Tarhini, (2011), Efficient Face Detection Algorithm using Viola Jones Method. [Online]. Available:

https://www.codeproject.com/Articles/85113/Efficient-Face-Detection-Algorithm-using-Viola-Jon

[8] Bhumika Pathya, and Sumita Nainan, “Performance Evaluation of Face Recognition using LBP, PCA and SVM,” SSRG International

Journal of Computer Science and Engineering, vol. 3, no. 4, pp. 58-61, 2016. [CrossRef] [Publisher Link]

[9] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for

Rapid Object Detection,” Pattern Recognition, vol. 2781, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[10] V. Muthuvel Vijai, and P. A. Mathina, “An Effective Ring Partition and Half Toning Combined Face Morphing

Detection,” International Journal of Computer and Organization Trends, vol. 11, no. 4, pp. 10-14, 2021. [CrossRef] [Publisher Link]

[11] Cascade Classifier Training, Open Source Computer Vision. [Online]. Available:

http://docs.opencv.org/doc/user_guide/ug_traincascade.html

[12] Sonia Mittal, and Sanskruti Patel, “Age Invariant Face Recognition Techniques: A Survey on the Recent Developments, Challenges and

Potential Future Directions,” International Journal of Engineering Trends and Technology, vol. 71, no. 5, pp. 435-460, 2023.

[CrossRef] [Publisher Link]

https://doi.org/10.1109/CVPR.2001.990517
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Viola%2C+P.%2C+%26+Jones%2C+M.+J.+%282001%29.+%E2%80%9CRapid+object+detection+using+a+boosted+cascade+of+simple+features.%E2%80%9D%2C+IEEE+transactions+on+pattern+analysis+and+machine+intelligence%2C+23%281%29%2C+51-64.+&btnG=
https://ieeexplore.ieee.org/abstract/document/990517
https://doi.org/10.14445/23488387/IJCSE-V6I10P102
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=346
https://en.wikipedia.org/wiki/OpenCV
https://doi.org/10.14445/23942584/IJVSP-V7I1P103
http://www.internationaljournalssrg.org/IJVSP/paper-details?Id=72
https://doi.org/10.14445/23488379/IJEEE-V10I6P110
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sunil+MP%2C+Hariprasad+.S.A%2C+%22Facial+Emotion+Recognition+using+a+Modified+Deep+Convolutional+Neural+Network+Based+on+the+Concatenation+of+XCEPTION+and+RESNET50+V2%2C%22+SSRG+International+Journal+of+Electrical+and+Electronics+Engineering%2C+vol.+10%2C++no.+6%2C+pp.+94-105%2C+2023.&btnG=
https://www.internationaljournalssrg.org/IJEEE/paper-details?Id=515
https://www.codeproject.com/Articles/85113/Efficient-Face-Detection-Algorithm-using-Viola-Jon
https://doi.org/10.14445/23488387/IJCSE-V3I4P118
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=129
https://doi.org/10.1007/978-3-540-45243-0_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lienhart%2C+R.%2C+Kuranov%2C+A.%2C+Pisarevsky%2C+V.+%282003%29.+Empirical+Analysis+of+Detection+Cascades+of+Boosted+Classifiers+for+Rapid+Object+Detection.+In%3A+Michaelis%2C+B.%2C+Krell%2C+G.+%28eds%29+Pattern+Recognition.+DAGM+2003.+Lecture+Notes+in+Computer+Science%2C+vol+2781.+Springer%2C+Berlin%2C+Heidelberg.+&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-45243-0_39
https://www.ijcotjournal.org/archive/ijcot-v11i4p302
https://ijcotjournal.org/asserts/year/2021/volume-11-issue-4/IJCOT-V11I4P302.pdf
http://docs.opencv.org/doc/user_guide/ug_traincascade.html
https://doi.org/10.14445/22315381/IJETT-V71I5P243
https://ijettjournal.org/archive/ijett-v71i5p243

Ali H Alyousef / IJEEE, 10(7), 140-147, 2023

147

[13] Chandan A D et al., “Survey Paper on Vehicle Security using Facial Recognition & Password,” SSRG International Journal of

Electronics and Communication Engineering, vol. 9, no. 6, pp. 5-9, 2022. [CrossRef] [Publisher Link]

[14] Face Detection Databases, (2004), Carnegie Mellon University. [Online]. Available: https://www.citationmachine.net/apa/cite-a-website

https://doi.org/10.14445/23488549/IJECE-V9I6P102
https://www.internationaljournalssrg.org/IJECE/paper-details?Id=416
https://www.citationmachine.net/apa/cite-a-website

