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Abstract - In this paper, a modified Particle Swarm Optimisation (PSO) algorithm for optimisation has been presented. The 

modified PSO algorithm can optimise nonlinear and multivariate problems that require minimal parameterisation but usually 

lead to efficient, reasonable solutions. The results show that the promising search capability of the optimisation algorithm is 

useful. It provides better outcomes for various test functions. The obtained result has been compared with the Camel algorithm. 

Due to many advantages, the particle swarm optimisation algorithm is the most effective and best for MPP tracking in a PV 

array’s partial shading conditions (PSC). Even though overall PSO in partial shading conditions (PSC) ensures global MPP, 

it has some drawbacks, including local maximum capture because of random population initialisation, longer tracking times, 

more extensive search areas, output power fluctuations, and longer stabilisation. A novel modified PSO-based MPPT 

mechanism to extract global maximum power (GMP) from photovoltaic systems. The newly developed PSO algorithm has been 

compared with the existing MPPT method. In the second part of the article, a novel modified PSO algorithm is implemented on 

a PV hybrid system connected with a grid, and performance has been checked with different loads. Simulation of different 

parts of the PV system is developed with the help of MATLAB/ Simulink. The DC/AC and bi-directional DC/DC converters that 

serve as the foundation of the proposed hybrid network’s power management are used in the proposed control. 

MATLAB/Simulink is used to show how well the suggested control works. 

Keywords - Multidimensional test function, Novel modified PSO algorithm, Parameter setting optimisation algorithm, Camel 

algorithm, MPPT, PV system. 

1. Introduction 

Optimisation problems are common in many real-world 

applications, such as finance, economics, transportation, 

medicine, and engineering. Experts in these fields routinely 

use optimisation techniques to find the best options and 

trade-offs that maximise the trades of the best choices. 

Alternatively, maximise profits, sales, efficiency, and more 

while minimising costs, risks, and losses [1-3]. The basic 

idea behind a novel modified PSO algorithm for optimisation 

is to create an algorithm that moves around the surrounding 

space of the fitness function or test function and looks for the 

best position [4, 5]. The algorithm demonstrates that a novel 

modified PSO algorithm can have better results faster and 

cheaper than the camel algorithm [6-8]. The algorithm has 

not used the gradient of the problem being optimised; also 

algorithm does not require the problem to be differentiable 

[9-12].  

The algorithm’s objective is to minimise the given two 

variables’ test function. Test functions are two variables 

differentiable function test function could be a non-

differentiable function defined by weights of neural networks 

[13, 14]. The concepts behind the optimisation process are. A 

single particle (which can be viewed as a potential problem 

solver) can determine “how good” the current position is [15, 

16].  

We benefit not only from the knowledge gained while 

exploring the problem space but also from the knowledge 

gained and shared by other particles [17]. The probability 

factor of the velocity of each particle causes the particle to 

move through an unknown region of the problem space. This 

property, combined with an excellent initial swarm 

distribution, allows extensive problem space exploration, 

significantly increasing the probability of finding optimal 

solutions efficiently [18].  

Multimodal dimensional test functions are interesting 

not only because of the challenges of avoiding local optima 

or finding multiple global optima simultaneously but also 

because some real-world problems exhibit such 

capabilities[19-21]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Literature Review 

G. C. Kryonidis [22] In this paper, software tools 

perform the simulation of an electrical network under a 

stability state. Its high capability is strong integration even 

for varied generations, showing its ability to contribute and 

replicate network extensions quickly and authentically. The 

present simulations are a combination of MATLAB and 

Open DSS. It is concluded that the technique is initiated for 

solving the unbalancing in power flow, whereas the previous 

techniques are implemented for the droop control of DG 

units. In this simulation, it is proved that it is straightforward 

and valuable for low-voltage network extension. The 

simulation proves that this software tool is useful for simple 

and extended LV network by showing the effectiveness of 

the suggested tool and that implementation is easy and user-

friendly compared to the other traditional software products 

based on the time domain. 

Rajiv K. Varma et al. [23] In this paper, it is proved that 

the secondary drawback of solar power generation is that it 

generates the harmonic in the grid’s power when it is 

synchronised with the grid. So, filters and FACTS devices 

are needed to minimise the harmonic contents in the grid’s 

power by using higher-level inverters. Reactive VAR 

reimbursement is needed for FACTS devices to be utilised at 

the side of the load to boost the quality of power. The main 

lead of solar energy is that this is environmentally friendly, 

low cost and feasible compared to conventional power 

generation.  

Rajiv K. Varma et al. [24] Normally, loads are inductive 

or capacitive, which is why the load can let go or absorb 

reactive VAR other than this, SP is connected to the grid 

with an inverter (power electronics device), which announces 

a large amount of reactive VAR.  

Bhukya M. N. et al. [25] In this paper, a new topology of 

PV inverter for PV generation is proposed. This topology 

consists of a novel MPPT technique for partial shading 

recognition using ANN, dc-dc single I/P and multiple O/P 

converters and ordinary multilevel inverters with minimum 

switches.  

The suggested topology has proved to harvest the 

maximum solar radiant power in any climatic situation. This 

paper proposes a novel PV inverter topology for solar power 

generation. The voltage obtained from PV generation is 

catered for SIMO converter, and the voltage obtained from 

PV generating is segregated into four individual voltages 

having numerable magnitudes.  

It is clear from the obtained experimental results that the 

suggested novel topology is suitable for shaping the voltage 

and current as sinusoidal having 31 levels and catering the 

advantage to maintain the power factor as unity. 

It is authentic to mention that in any weather conditions, 

the PV assemblage topology extracts maximum power to 

cater for the low cost. 

D.V. Bozalakov et. al [26-28]. In this paper, a few 

classical control are used through which the voltage level has 

been controlled with the help of active and reactive powers 

and a modified control is scrutinised.  

The altered damping control techniques are used at a 

regional control algorithm to maintain the unbalanced 

voltage on inverter terminals. 

Rajiv K. Varma et al. [29, 30] and Ali M. Eltamaly et al. 

In this paper, the authors proposed that with the high 

penetration in every network, the active power of distributed 

generation should always be more than the total load demand 

of every network. MLDG systems have various advantages 

simultaneously with new challenges like, voltage and 

balancing, power quality issues, frequency issues, VR and 

compensation of reactive VAR.   

3. Materials and Methods   
The multidimensional test function describes how well 

the positions of ith particles in multidimensional space are 

relative to the desired target, and we model the problem as a 

simple optimisation in d dimensions, where d dimensions are 

optimised [31].  

The position of the multidimensional algorithm is the 

velocity of the particle to be manipulated, which are the d 

component, so the position of the ith particle maybe is 

xi(xi,0,..., xi,d), and the velocity vi (vi,0, 

The Novel modified pso position of ith particle is 

updated with equations (1) and (2). 

𝑉𝑡+1=𝜔𝑡 𝑉𝑡 +𝑐1 𝑟1 (g− 𝑥𝑡) −𝑐2 𝑟2 (P− 𝑥𝑡)  (1) 

𝑥𝑡+1= 𝑥𝑡 +𝑉𝑡+1  (2) 

Where,  𝑥𝑡 and 𝑉𝑡 are the current positions and current 

velocity of the ith particle, whereas P is the best to position 

fitness value, g is the position that obtains its best fitness 

value by an entire swarm, 𝑐1, 𝑐2 are learning constant 

whereas 𝑟1, 𝑟2 are the random number in the range of [0,1] 

and 𝜔𝑡 the damping parameter regulates the transition 

between the exploration and exploitation phases in the 

presented algorithm [32, 33]. 

3.1. Sphere Function 

The Spherical test function can describe in equation (3) 

and presented in figure-1.   

𝑓(𝑥) =  ∑ 𝑥𝑖
2𝑛

𝑖=1   (3) 
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Here n is the dimension the evaluation is done in the 

range of 5≤ 𝑥𝑖 ≥5. Spherical functions are known to have a 

global minimum for x = (0, 0...0). Figure 1 shows a two-

dimensional spherical function [25]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Two-dimension sphere function 

3.2. Exponential Function 

The exponential test function can be described as 

(equation (4)):  

𝑓(𝑥) =  −𝑒−0.5∑ 𝑥𝑖
2𝑛

𝑖=1   (4) 

Here, n is the dimension the evaluation is done in the 

range of -5 ≤ 𝑥𝑖 ≥5. Figure 2 shows a two-dimensional 

exponential function at different ranges[26, 27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Two-dimension exponential function 

3.3. Ackley Function 

The Ackley test function can be described as (equation 

(5)):  

𝑓(𝑥) =  −20𝑒
−0.2(√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 )

− 𝑒
−0.2(√

1

𝑛
∑ 𝑐𝑜𝑠2𝜋𝑥𝑖
𝑛
𝑖=1 )

+ 𝑒1 +
20  (5) 

Here n (1,2,3…) is the dimension the evaluation is done 

in the range of -32 ≤ 𝑥𝑖 ≥32. Figure 3 shows a two-

imensional Ackley function at different ranges[34, 35]. The 

global minima of Ackley function is – 0.34 at   x=(0,0,0..0). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Two-dimension ackley test function 

3.4. Rastrigin Function 

The Rastrigin function has some local minima. Although 

highly multimodal, the positions of the minima are regularly 

spaced. Here n (1,2,3…) is the dimension of the evaluation is 

done in the range of -5 ≤ 𝑥𝑖 ≥5 [36]. Figure 4 shows a two-

dimensional Rastrigin function at different ranges. The 

global minima of the Rastrigin test function is – 0.2F42 at   

x=(0,0,0..0). Rastrigin test function is a highly multimodal 

function. The Rastrigin function can write as (equation(6)): 

          𝑓(𝑥) =  ∑ (𝑥𝑖
2𝑛

𝑖=1 − cos (2𝜋𝑥𝑖) + 10𝑛) (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Tow dimension rastrigin function 

3.5. Griewank Function 

The Griewank function (Figure-5)[1] is often used to test 

convergence optimisation algorithms [31]. With the increase 

in the dimensionality of the function, the number of minima 

increases exponentially. The griewank test is defined in the 

equation-(7).  

𝑓(𝑥) =  
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1  +∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1  +1  (7) 

Sphere Function 

-10 
-5 

5 
0 

10 

-6 -4 -2 0 

0 

2 
4 6 

80 
70 
60 
50 
40 
30 
20 
10 

x1 x2 

F
(x

1
,x

2
) 

-0.5 

0.5 

0 

0.5 

-0.5 

0 

0 
0.5 

x y 

f(
x

,y
,t

=
0

) 

1.5 

1 

x10
-3
 

-6 -4 
2 

-2 

4 

-6 -4 
-2 

0 

0 

2 
4 

6 

x y 

5 

15 

10 

20 

0 

6 

-5 

5 

0 

120 

-5 

0 

100 
5 

x
1
 x

2
 

f(
x

) 

160 

140 

200 

180 



Aizad Khursheed et al. / IJEEE, 10(7), 188-198, 2023 

 

191 

Table 1. Compression of camel algorithm to novel modified PSO algorithm for optimisation 

Test function 
Result obtained by novel modified PSO 

algorithm for optimisation (Iteration 100) 

Result obtained by the camel 

algorithm 

Sphere function -3.9309*10−11 0 

Exponential function -1.3665*10−13 0 

Ackley function -0.34 0 

Rastrigin function – 0.242 0 

Griewank function 0.0085278 0 

Schwefel function 0 0 

 
Table 2. PSO parameters 

PSO Parameters Magnitudes 

Swarm coefficient C1 2.5 

Swarm coefficient C2 2.5 

Min weighting coefficient Wmin  0.6 

Max weighting coefficient Wmax 0.9 

Iteration k 100 

Swarm size n 20 

Lower limit of variables ∆d(k)min [-0.2, -0.22] 

Upper limit of variables ∆d(k)max [ 0.2, 0.22] 

 

The global minima of the function is -0.008527 in the 

range of [-100,100]i, where i is the test function [37]. The 

Gleewank function is a classic multimodal benchmark 

function consisting of a quadratic convex function and an 

oscillatory non-convex function.  

The relative importance of the two main parts of 

Griewank varies by dimension[38, 39]. Unlike most test 

functions, optimising the Griewank function produces 

strange behaviour. The Griewank function is initially more 

challenging and becomes easier to optimise as the dimension 

increases[40].  

3.6. Schwefel Function 

The Schwefel test function shown in Figure -6 is a 

complex problem with many local optimisation points. The 

number of dimensions (two-dimension schwefel) may be 

selected to a favoured number [41, 42]. Schwefel function 

given as (equation (8)): 

𝑓(𝑥) = 418.9829𝑛 − ∑ 𝑥𝑖
𝑛
𝑖=1   (8) 

Where, n is the dimension (n=1, 2, 3….), the evaluation 

is usually done in the range -500 ≤ 𝑥𝑖 ≤ 500. The Schwefel 

function has a global minimum fmin = 0 at x = (420.9687). 

The two-dimensional function of  Schwefel is shown in 

Figure 6 [43-45]. A flowchart of a novel modified PSO 

algorithm has been shown in Figure -7. The optimum value 

of two-dimensional test functions obtained from the Camel 

algorithm has been compared with the novel modified PSO 

algorithm (shown in Table -1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Two-dimension griewank function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Two-dimension schwefel function 
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Fig. 7 Flowchart of novel modified PSO algorithm 
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Table 3. Tracked output under various Irradiation 

Irradiation 

(W/m2) 

Tracked output with P& O 

algorithm  (W) 

Tracked output with novel modified PSO 

algorithm (W) 

200 21.2 24.1 

400 51.5 55.8 

600 103.3 96.2 

800 121.6 122.92 

1000 145.7 149.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Proposed design (a) Grid-connected solar PV with novel PSO-based MPPT [38,39,40] 

 

 

3.7. Modeling of PV Array 
The PSO algorithm is a development of a computational 

process based on the behaviour of birds in nature (swarm 

behaviour). It is used in almost all areas of optimisation and 

computational intelligence. The algorithm guides search 

optimisation through cooperation and competition between 

the objects that make up the intelligent swarm. Equation (9) 

governs the next position and velocity of the particle. 

{
 
 

 
 𝑥𝑖

(𝑘+1)
= 𝑥𝑖

𝑘 + 𝑣𝑖
(𝑘+1)

𝑣𝑖
(𝑘+1)

= 𝑤(𝑘). 𝑣𝑖
(𝑘)
+ 𝑐1. 𝑟. (𝑥𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑥𝑖
(𝑘)
)

𝑤(𝑘) = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
) . 𝑘

𝐹(𝑘) = ∑ |𝑒(𝑖)|𝑁
𝑖=1

+𝑐2. 𝑟. (𝑥𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

(𝑘)
)  (9) 

K = 1, 2, 3, …..n 

𝑥𝑖
𝑘= ith particle position  

𝑣𝑖
𝑘= ith particle velocity  

𝑃𝑏𝑒𝑠𝑡= Best position  

𝑘 = number of iteration 

𝐺𝑏𝑒𝑠𝑡= Best position reached by the particle of the swarm 

𝑟 = Random generated number from -1 to 1 

𝐹(𝑘)= Fitness function  

Figure 8 (a) shows how the model is schematically 

arranged. MATLAB Simulink has been used to create a 

simulated model of the actual process that agrees with the 

physical model to increase productivity. The P&O approach 

is used in the first step to look for the first local maximum 

swiftly. In every control cycle, a small amount (Vc) of the 

operating voltage is altered to check if the algorithm is 

moving up or down the P-V curve (shown in Figure-8(b)).  

The PSO is turned on in the second step to look for the 

GMP. The converged value from the first stage, Vconv, 

serves as the beginning condition for the first particle. Table 

-2 represents the PSO parameters in the proposed algorithm 

that highly influence the performance of our design.  

PV array tracked output power with various Irradiations 

is presented in table-3.In PSO, a set of randomly generated 

solutions (initial population) spans the design space, and the 

population is spread over reasonable solutions through 

several iterations (strokes) based on the amount of design 

information absorbed and shared by all members. 

4. Results And Discussion  
The global minima (Logarithmic Convergence) for two-

dimensional test functions have been represented in Figure- 

9-13. The optimum value of two-dimensional test functions 

obtained from the Camel algorithm has been compared with 

the novel modified PSO algorithm.  

Figure-9 represents the Global minima for the Share test 

function. Global minima for the Exponential test function 

have been represented in Figure- 10 whereas Fig-11, Figure-

12, and Figure-13 show the Global minima for the Ackley 

test function, Global minima for the Rastrigin test function, 

and Global minima for the Griewank test function 

respectively.  
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Figure 14 and 15 shows the PV characteristics and VI 

characteristics of the PV panel, respectively, at 35˚C and 

25W/m2. The analysis was carried out to check the power 

converter’s operation and the proposed system’s operation, 

that is, the control pulse converter (as shown in Figure 16), 

which controls the output voltage of the step-up converter. 

Grid frequency is an important parameter to check the 

feasibility of a robust power system. For a robust power 

system, frequency should be constant in magnitude with 

variation in load. In our prosed MATLAB design, Grid 

frequency is constant (equal to 50 Hz) at steady state, and it 

varies between 50 Hz to 51 Hz at low load (steady state) 

shown in Figure - 17. PV current, PV power, and PV voltage 

are shown in Figure 18. solar array performance parameters  

(a) PV Current, (b) Power, and (c) PV voltage with PSO and 

MPPT (P&O). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

     

   

  

  

  

      

 

 

  

 

  

 

 

 

  

 

 

   

 

 
 

Fig. 8 Proposed design (b) Flow chart of PSO-based MPPT 
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      Fig. 9 Global minima for Share test function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        Fig. 10 Global minima for exponential test function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
         Fig. 11 Global minima for ackley test function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Fig. 12 Global minima for rastrigin test function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Fig. 13 Global minima for griewank test function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                 Fig. 14 PV curve with PSO and MPPT (P&O) 
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Fig. 15 VI curve with PSO and MPPT (P&O) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 Duty cycle with PSO and MPPT (P&O) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17 Grid frequency with PSO and MPPT (P&O) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18 Solar array performance parameter (a) PV Current (b) PV 

Power (c) PV  voltage with PSO and MPPT (P&O) 

5. Conclusion  
The algorithm’s simple structure and efficient search 

capabilities allow it to process multivariate test functions 

efficiently and find optimal solutions even in the most 

challenging cases. The results show that the newly modified 

PSO algorithm can achieve excellent results in the early 

stages of the search process for most test functions and that 

the algorithm can be used in real-time applications to solve 

time-critical optimisation problems.  

Our work’s new and modified PSO algorithm has been 

widely used in various benchmark problems and domains 

due to its features and superior performance compared to 

PSO and Camel algorithms Shows. This algorithm can 

further improve performance and convergence speed. While 

tracking MPP, traditional MPPT techniques such as 

perturbed and observed, incremental conductance, and hill-

climbing frequently fail; thus, they are tracked in place of 

MPP.  

To track the global MPP MPPT (i.e. P & O) in this case, 

a newly modified PSO algorithm-based MPPT is applied. 

Because of this, it is straightforward and provides more 

accurate MPP when compared to others for various partial 

shading conditions (PSCs), which are observed through 

simulation (MATLAB Simulink), both steady state and 

dynamic and which perform better when compared to the 

Camel approach. 
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