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Abstract - This paper shows a three-phase series resonant DC-DC boost converter simulation model with double LLC resonant 

tanks (SRC-W-DLLC-RTs) for a hybrid solar wind system (HSWS) with battery energy storage for a DC load. An intrinsic 

drawback of hybrid solar-wind technology is its intermittent and weather-dependent output voltage. An MPPT control 

algorithm-based DC-DC converter, which offers interfaces between a hybrid system and a DC load, can overcome this issue. 

Solar and wind power systems require separate converters. The lead-acid battery bank with a 3-phase interleaved bidirectional 

DC-DC buck-boost converter maintains a steady voltage at the DC link. The hybrid system is controlled by an adaptive neuro-

fuzzy inference system-based particle swarm optimization (ANFIS-PSO)-MPPT control technique to maximize output. A variable 

frequency modulation approach generates gating pulses for the converter's switches. An ANFIS-PSO MPPT control algorithm-

based resonant converter is simulated with MATLAB using SIMULINK for DC load, and its performance is analyzed for the 

suggested system for different load conditions. 

Keywords - Hybrid solar-wind system, Lead acid battery bank, 3-phase interleaved bidirectional DC-DC boost converter, SRC-

W-DLLC-RTs, Variable frequency modulation, ANFIS–PSO MPPT control algorithm, R-load (DC-load). 

1. Introduction 
Using clean and sustainable energy sources is essential 

because of the adverse environmental effects of burning 

petroleum-based materials and the depletion of their stocks. 

These green energies, which include solar energy (SE), wind 

energy (WE), and fuel cells, can be employed as generation 

systems [1, 2]. 

Renewable energy sources’ significant limitations are that 

they are erratic and that the weather influences the creation of 

electrical energy. Unreliable power output is produced by non-

traditional sources like SE and WE power systems [3, 4]. 

We should run these power plants together as a single unit 

for a continuous electricity supply to overcome this issue. The 

system becomes more effective due to this combined method 

of operation. Using batteries as a storage component, the 

combined electricity generation will provide a continuous 

power source for residential applications [5, 6]. 

The unreliability of the power outputs and fulfilling the 

load demand are also significant problems in renewable power 

generation systems[7]. To get around this, we need advanced 

power electronics DC-DC converters with high conversion 

efficiency to keep the voltage on the DC bus steady and meet 

the load demand [8, 9]. DC-DC converters are classified into 

soft-switching (or resonant) converters and hard-switching 

converters (HSC). Compared to HSC, resonant DC-DC 

converters have a higher conversion rate, smaller magnetic 

components like transformers and passive filters, the ability to 

function at high switching frequencies, and an efficient power 

density [10, 11]. 

Additionally, RPCs employ various techniques to fulfil 

soft-switching requirements rather than adding supplementary 

equipment to each switch. RPCs organize as a Resonant Tank 

Network (RTN) with the converter connected in cascade to 

two, three, or more reactive elements [12]. RTN types can also 

be divided into groups according to how their tank elements 

are connected to them and how many of them there are [13].  

The two most common designs of the two-element RTN 

type are parallel resonant converters (PRC) and series resonant 

converters (SRC). The LLC and LCC are three-element RTNs, 

but the series-parallel resonant converter (SPRC), like the 

LCLC, is a multi-element RTN [14, 15].
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Furthermore, the relation between the resonant frequency 

(Fr) and the switching frequency (Fs) is required for the power 

resonant converter's soft-switching approach. When Fs is less 

than Fr, the converter will perform zero current switching 

(ZCS) on all switches. When Fs is greater than Fr, zero voltage 

switching (ZVS) is achievable [16]. 

This research uses an ANFIS-PSO MPPT algorithm-

based SRC with DLLC-RTs for an HSWS with storage 

capacity as a simulation model [17]. The backup energy stored 

in the battery is utilized to meet the linked load requirement of 

this system when SE, and WE are not available. Gating pulses 

for the converter switches are produced using a variable 

frequency modulation approach.  

For the solar-wind system, the suggested converter's 

performance is examined, and FFT analysis is performed to 

examine the amount of THD transmitted to load from the 

converter. 

The remaining parts of the work are divided into sections: 

Section II details the hybrid system's circuit structure, which 

involves designing the suggested converter and MPPT 

method. Part III contains the simulation model. Section IV 

presents the simulation findings. Finally, in Section V, the 

study is summarized and concluded. 

2. Proposed System Layout 

The system shown in Figure 1 comprises solar panels and 

permanent magnet synchronous generator (PMSG)-based 

vertical axis wind turbine (VAWT) units connected to a DC 

link via a DC-to-DC converter. A battery bank is also 

connected through a three-phase buck-boost interleaved 

converter. An R-load is taken as a DC-Load [18, 19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Proposed hybrid solar-wind system model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 The proposed converter 
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Fig. 3 The AC circuit model for a single LLC RTs 

2.1. Design of Proposed Converter 

Figure 2 presents the DC/DC converter's circuit design, 

which consists of a 3-phase inverter with two LLC RTs, with 

each RT formed by the resonant inductance (Lr), resonant 

capacitance (Cr), and magnetizing inductance (Lm) of the high 

frequency (HF) transformer. Both transformers’ secondary 

windings are series-connected and are coupled to the single-

phase full-bridge diode rectifier [20]. 

2.1.1. Design of Resonant Tanks 

To provide an equal Fr for the converter for simple design 

consideration, the RT's variables, such as currents and 

voltages (ILr1, ILr2, VCr1, and VCr2), are balanced using the 

same tank parameters.  

As the corresponding circuit in Figure 3 shows, one of the 

LLC RTs receives the voltage VAB. The output voltage gain of 

RT is increased by dividing the voltage across the I/P and O/P 

impedances. The transformer winding ratio (n) transfers the 

effective resistance (Re) from the secondary side components 

to the primary and the following formulas may express the 

converter gain equation: 

Input Impedance (Zi) = XLr + XCr + (
XLmRe

Re+XLm
)  (1) 

Output impedance (Z0) =
XLmRe

Re+XLm
  (2) 

M=
Z0

Zi
=

jwsLm.Re
Re+jwsXLm

jwsLr−
j

wsCr
+

jwsLm.Re
Re+jwsXLm

  (3) 

Provided that the parameters of the second tank are the 

same as those of the first, obtaining the output AC voltage gain 

of the second tank is equivalently attainable. As a result, the 

parameters of both tanks can be calculated using the given 

formulas: 

Resonance Frequency (fr) =
1

2π√LrCr
  (4) 

Inductance Ratio (𝐴𝐿) =
𝐿𝑚

𝐿𝑟
  (5) 

Characteristic Impedance (ZC) = √
Lr

Cr
=2𝜋𝑓𝑟Lr =

1

2πfrCr
  (6) 

Load Quality Factor (Q) =
ZO

Re
=

wrLr

Re
=

1

wrCrRe
 (7) 

Effective ac resistance (Re) =
8n2

π2 RL  (8) 

Where the angular resonant frequency = Wr. The Values 

of Lr and Cr can be obtained by:  

Lr =
QRe

wr
 (9) 

Cr =
1

Lr×wr
2  (10) 

2.1.2. Modes of Operation 

Figure 4 depicts the proposed converter's operational 

modes. 

2.2. Hybrid ANFIS–PSO-Based MPPT Controller 

For designers today, learning and updating ANFIS 

requirements is a difficult task. The PSO delivers faster and 

easier updating convergence velocity than gradient 

approaches [21, 22]. Moreover, the PSO does not demand the 

determination of initial parameters or a learning rate. The  

ANFIS controller's design, which consists of five layers in 

total, with antecedents and conclusions serving as the main 

components, is shown in Figure 5. 

An ANFIS-PSO MPPT control's intricate flowchart 

arrangement is shown in Figure 6. Before the error is 

minimised to the minimum possible degree, an improved 

hybrid MPPT technique captures fuzzy data with learnt 

learning rules for correct membership value modification.  

The learnt system transforms into a hybrid MPPT 

controller as membership parameters are altered. The centroid 

technique is used to modify the converter duty ratio during 

defuzzification [23]. 
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Fig. 4 Operating modes of proposed resonant converter 

Fig. 5 Architecture of the ANFIS controller 

2.3. Variable Frequency Control (VFC) 

By adjusting the Fs value, the suggested converter 

employs VFC to control the voltage at its output. Figure 7 

depicts a VFC conceptual block diagram in which a PI 

controller handles the error control signal (Verror) between the 

output measured voltage (Vmeasured) and the output required 

voltage (Vreference). Hence, PWM applies the control signal Fs 

to produce regulated switch gating pulses based on the error 

sign [24]. 
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Fig. 6 An ANFIS–PSO hybrid MPPT control scheme flowchart  

Fig. 7 The VFC's schematic representation 

Modelling of PV/Wind System using MATLAB/SIMULINK 

 Collection of data from PV/Wind system 

Collection of Fuzzy data 

Application of Fuzzy Inference rule 

Implementation of Fuzzy Model 

Trained Model using PSO 

Check 
Error<=Max 

Error 

PSO-ANFIS Control 

New 

Membership 

Functions 

Check 

Error<=Max 

Error 

NO 

NO 

YES 

YES 

Circuit Driver Proposed DC-DC Converter 

PWM 

Dead Time 

VCO 

Fmax Fmin 

PI 

Solar/Wind System 

MPPT Controller 
 

Gating Pulses 

Vdc 

V
ref

 



Heena Parveen & A. Raghu Ram / IJEEE, 10(7), 199-210, 2023 

204 

3. Simulation Model 
      The proposed HSWS simulation model, as shown in 

Figure 8, is simulated with Matlab/Simulink software, and the 

parameters used for designing are presented in Table 1. The 

solar array and wind system outputs are connected to dc-dc 

converters 1 and 2.  

The control switch's duty cycle is controlled by the 

variable frequency controller based on the reference signal 

produced by the MPPT controller to change the output voltage 

of these two converters. A battery charging and discharging 

system with a bidirectional DC/DC converter keeps a 

consistent voltage at the DC bus. 

4. Simulation Results  

The preceding section's model is simulated, and the 

results are provided in the following section. Figure 11 shows 

the performance characteristics of solar system. Figure 11 

shows that under STC conditions, i.e., 1000 W/m2 solar 

irradiation and a 25C panel, maximum power generation will 

occur, and power generation will decrease with a decrease in 

solar irradiation and an increase in temperature. 

Table 1. Simulation model Specification 

Parameters Values Units 

Solar PV Array 

Rated power 1005 Watts 

Open circuit voltage 139.6 Volts 

Short circuit current 9.26 Amps 

Voltage at maximum power 113.1 Volts 

Current at maximum power 8.90 Amps 

Standard test condition Irradiance: 1000 W/m2, Temp: 25 ⁰C  

Wind Turbine 

Rated mechanical output power 500 Watts 

Rated wind speed 12 m/sec2 

Cut in wind speed 3 m/sec2 

Cut out wind speed 18 m/sec2 

DC/DC Resonant Converter 1 

Rated capacity 1000 Watts 

Resonance frequency 5000 Hz 

Switching frequency range 4.25-5k Hz 

Input voltage 120 Volts 

Output voltage 320 Volts 

Resonant inductor 150 µHenry 

Resonant capacitor 60 µFarad 

DC-DC Resonant Converter 2 

Rated capacity 1000 Watts 

Switching frequency range 4.25-5k Hz 

Input voltage 50 Volts 

Output voltage 320 Volts 

Resonant inductor 200 µHenry 

Resonant capacitor 70 µFarad 

Battery Bank 

Number of batteries connected in series 12 units 

Total battery bank voltage 144 Volts 

Nominal capacity@ 20hr rate 26 Ah 

Discharge current @ 20hr rate 1.3 Amps 

R-Load (DC-Load) 

Total capacity 1000 Watts 

The 3-Phase Interleaved Bidirectional DC-DC Converter 

Total capacity 1000 Watts 

Switching frequency 10k Hz 
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Fig. 8 Simulation model of the hybrid solar-wind system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 9 Simulation model of the proposed converter 
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Fig. 10 Battery bank with bidirectional converter 
 

(a) (b) 

Fig. 11 PV and VI curve of a solar array under different (a) solar irradiations (b) temperatures 

 

Figure 12 depicts a single turbine's power vs. wind speed 

curve. The turbine's cut-in speed is 7 m/sec, above which the 

turbine generates electricity. The turbine generates rated 

power, i.e., 143 Watts, at rated speed, i.e., 12 m/sec. The 

turbine's cut-out speed is 58 m/sec, above which the turbine 

generates no power.  

Figure 13 presents the load waveforms directly supplied by 

the hybrid system without a DC-DC resonant boost converter. 

The power supplied to the load is only 200 Watts, accounting 

for approximately 20% of the system's overall capacity. To 

match the generation with the load demand, two DC-DC 

converters are used, one for the solar system and one for the 

wind system. 

Figures 14 and 15 show the simulation results of the 

converter coupled to a solar array, while Figures 16 and 17 

show the output waveforms of a converter attached to wind 

turbines. The performance of both resonant converters is 

tested under different load situations when the load is ramped 

down from full load (3.11 amps) to half load (1.56 amps) at 

time 0.05s, as shown in Figures 20 and 21. This validates the 

proposed converters and their controller's ability to maintain  
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a consistent output voltage under dynamic load conditions. 
Note that 15 and 17 confirm that ZVS is possible for all 

switches, which is essential information. The gate and 

collector voltages confirm that the VCE fell to zero for each 

switch before the switches were turned on. For various load 

conditions, all switches were thus turned on at ZVS. Figure 18 

demonstrates that the dc link voltage is kept constant, i.e., 320 

volts, with the aid of the battery, and that the battery voltage 

is kept constant, i.e., 144 volts, as shown in Figure 19. 

Fig. 12 Power curve for different wind speed 

Fig. 13 Output parameters (V, I, and P) of load (without MPPT 

controller) 
 

 
Fig. 14 Simulation waveform of the DC-DC converter1 (a) output 

voltage1 (b) output current1 (c) resonant inductor current1 (d) 

magnetizing inductor current1 (e) output power1 

Fig. 15 Simulation output results for emitter-gate voltage (VGE
1) and 

emitter-collector voltage (VCE
1) for all switches of converter 1 

 

Fig. 16 Output waveform of DC-DC converter 2 (a) output voltage2 (b) 

output current2 (c) resonant inductor current2 (d) magnetizing inductor 

current2 (e) output power2 

 

Fig. 17 Gate-emitter voltage (VGE
2) and collector-emitter voltage (VCE

2) 

of all switches of converter 2 

 

(12m/sec, 143 Watts) 
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Fig. 18 DC link voltage 

 

 
Fig. 19 Simulation outputs waveforms of a battery bank with a 

bidirectional converter 

 
Fig. 20 Simulation response of converter 1 for load variation 

 

5. THD Analysis 
The quantity of THD produced by both DC-DC 

converters is determined via FFT analysis. Figure 22 displays 

the voltage, current, and power harmonics induced by 

converters 1 and 2. The THD results obtained are per the IEEE 

519 standard. 

Fig. 21 Simulation result of converter 2 for load change 

 

Fig. 22 THD Analysis (a) converter 1 (b) Converter 2 

 

6. Conclusion 

This research presents a three-phase resonant converter 

for a hybrid solar-wind system with two LLC RTs. All tanks 

are considered identical to assure a balanced RT variable by 

combining a 3-phase inverter with DLLC RTs and having both 

tanks share an uncontrolled full bridge rectifier. The suggested 

boost converter can decrease the number of switching devices, 

which would significantly influence the circuit's size and cost. 

The suggested converter's output voltage is three times greater 

than the input voltage for a solar array and six times for a wind 

system, indicating that it is suited for high-voltage 

applications. The proposed converters and their controllers 

can maintain a consistent and good output voltage quality 

under dynamic load conditions. For the proposed converter, 

VFC was used to maintain a significant load fluctuation. The 

ANFIS-PSO hybrid maximum power extraction approach 

employs a faster execution speed, high PV track efficiency, 

and low power loss ability, enabling rapid MPP region. A 
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battery bank with a bidirectional control can keep constant DC 

link voltage irrespective of load variation.  

Further work can be done on this by using an IOT-based 

MPPT control approach and comparing simulation results to 

experimental outcomes. 
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