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Abstract - This paper describes integrating Maximum Power Point Tracking (MPPT) algorithms and Artificial Neural 

Networks (ANNs) to optimize DC-DC and DC-AC transformation in photovoltaic applications. By continuously adjusting the 

operating point to the maximum power point of the PV module, MPPT techniques are frequently used to maximise the power 

output from PV systems. However, environmental changes and system configurations impact the extent to which conventional 

MPPT methods perform. An ANN-based MPPT approach is proposed to address this problem, and it uses ANNs' capacity for 

learning to track the maximum power point under various circumstances adaptively. The simulation results confirm that the 

integrated system outperforms traditional MPPT techniques regarding power extraction effectiveness. The proposed approach 

improves the stability and reliability of monitoring the maximum power point, enabling optimal energy collection from PV 

systems. The efficacy of the integrated system has been exhibited through extensive modelling, highlighting its potential for 

practical implementation in real-world PV applications. 

Keywords - Artificial Neural Networks, Boost converter, MPPT, Multilevel inverter, Photovoltaic system, Power efficiency. 

1. Introduction  
The use of solar power has received an abundance of 

attention recently due to its potential as a sustainable and 

renewable energy source. PV systems convert sunlight 

directly into electricity and are becoming increasingly 

common in various settings, from residential rooftops to 

massive solar power plants.  

However, the complicated and unpredictable 

characteristics of solar irradiation significantly impact the 

effectiveness of PV systems. For a PV system to operate 

more efficiently overall, its power output has to be 

maximised. Incremental conductance and other well-known 

standard methods for MPPT, like Perturb and Observe 

(P&O), have an established history of fulfilment. However, 

these methods frequently exhibit slow convergence and poor 

accuracy, significantly when irradiance changes quickly. 

Artificial Neural Networks (ANNs) have come to light 

as an intriguing approach to improving MPPT algorithm 

effectiveness in the past few years. ANNs are mathematical 

models which can acquire intricate patterns and make 

accurate forecasts. The neural networks have influenced 

them in the brain of an individual. ANNs can be effectively 

developed using historical PV system data to respond to 

changing atmospheric conditions while offering real-time 

MPPT control.  

Furthermore, the integration of MPPT algorithms with 

ANNs enables efficient DC-DC and DC-AC conversions of 

power in solar energy systems. The voltage levels between 

the PV array and the load are adjusted using DC-DC 

converters to guarantee optimal power transfer. The DC 

power generated by the PV array is converted into AC power 

by DC-AC inverters, which is appropriate for integrating into 

the grid or supplying AC appliances [1-4].  

2. Literature Review  
The use of MPPT techniques is crucial for increasing the 

effectiveness of PV systems. Variable weather, partial 
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shading, and rapidly changing irradiance levels make it 

difficult to track accurately and present integration 

challenges. The need for real-time algorithms, the 

complexity of the hardware, and financial considerations also 

bring implementation difficulties. Maintaining reliability and 

performance while ensuring seamless communication and 

compatibility between the MPPT controller and the PV 

modules is essential. To maximise the overall generation of 

the PV system and achieve optimal power in the extraction 

process, such issues must be resolved by the system's 

developers [5-9]. 

The use of photovoltaic energy systems as a renewable 

and sustainable energy source has increased. For PV systems 

to operate as efficiently as possible, the optimum power 

point of the solar panels is needed to be precisely observed. 

To extract the most power from the PV system, the operating 

point is dynamically altered using MPPT techniques. It also 

discusses current studies to enhance the P&O algorithm's 

performance and robustness. The INC is another popular 

MPPT method that uses the PV array's incremental 

conductance to calculate the MPP. Adaptive and fuzzy logic-

based INC algorithms are just two examples of recent 

developments in the INC technique [10-13]. 

ANNs can adapt to shifting environmental conditions 

and learn complex relationships between inputs and outputs. 

In addition to discussing the backpropagation algorithm used 

to train the network, the investigation looks at the input, 

hidden, and output layers of ANNs. ANNs can be integrated 

with MPPT algorithms due to their benefits, such as their 

capacity to handle non-linearities and uncertainties. The use 

of ANNs as an additional tool to improve the effectiveness, 

accuracy, and robustness of MPPT algorithms has been 

investigated in several studies. The survey emphasises the 

advantages of ANN-based MPPT, including decreased 

reliance on precise system models, improved tracking under 

partial shading conditions, and faster response times [14-18]. 

The accessibility and calibre of data are the main 

obstacles to ANN implementation for inverter-fed PV 

systems. For ANNs to be trained effectively, accurate and 

representative data are necessary. Due to factors like limited 

access to comprehensive datasets, the variability of weather, 

and the requirement for long-term measurements, obtaining 

such data can be complex. Making accurate predictions also 

requires ensuring data quality, which includes removing 

outliers and accounting for missing data. Several variables, 

such as inverter-fed PV systems, influence complex 

nonlinear systems, such as temperature, shading, and ageing.  

Creating ANNs that can accurately capture these 

complexities and generalise well to unexplored data is 

challenging. Predictions may be inaccurate due to overly 

simplistic ANN models failing to capture the complex 

dynamics of the system. A critical aspect that must be 

carefully focused on is balancing the complexity of the ANN 

model with its generalisation capability. ANNs are frequently 

regarded as black-box models, making them difficult to 

interpret. Although they can make precise predictions, it 

becomes difficult to comprehend the logic behind it. 

Interpretability is crucial for monitoring, diagnostics, and 

control in inverter-fed PV systems. When dealing with large-

scale inverter-fed PV systems, the computational complexity 

and training time of ANNs can be a constraint.  

Large amounts of training data and computational 

resources are needed for complex ANN architectures. 

Efficient algorithms and parallel computing methods are 

being investigated to lessen this difficulty.  Furthermore, the 

growing interest in acceleration devices and specialised 

neural network architectures can aid in improving training 

efficiency [19-21]. 

DC-DC boost converters are critical components of PV 

systems because they convert the low voltage from PV 

panels to the required voltage for battery charging or grid 

connection. Researchers have suggested several techniques 

to increase the effectiveness of DC-DC boost converters. 

Utilising MPPT algorithms is one strategy because it allows 

PV panels to produce the most power possible by 

dynamically adjusting the operating point [22-23].  

Zero-Voltage Switching (ZVS) and Zero-Current 

Switching (ZCS), two soft-switching techniques, reduce 

switching losses and raise the converter's overall efficiency. 

Several soft-switching topologies for PV applications have 

been proposed and examined, including resonant and soft-

switching boost converters. DC-DC boost converters and 

DC-AC inverters are crucial parts of PV systems because 

they transform DC energy from the panels or batteries into 

AC power compatible with the grid or power for AC loads.  

Researchers have tried to improve the efficiency and 

performance of DC-AC inverters using various methods. 

One approach is to use cutting-edge modulation techniques, 

like Pulse Width Modulation (PWM) and Space Vector 

Modulation (SVM), to regulate the switching of power 

devices in the inverter. These methods reduce switching 

losses, minimise harmonics, and raise the inverter's 

efficiency [24-28]. 

Due to their capacity to enhance overall system 

efficiency, reduce harmonic distortion, and improve power 

quality, efficient five-level multilevel inverters have attracted 

much attention in Photovoltaic (PV) applications. Due to its 

ability to effectively integrate renewable energy sources into 

the grid, multilevel inverters are used more frequently in PV 

systems. The five-level configuration has emerged as a 

promising option among the various multilevel inverter 

topologies because of its delicate balance between 

complexity and performance.  
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Efficiency optimisation is another critical component of 

five-level multilevel inverters in PV systems. Researchers 

have put forth several methods to increase overall efficiency, 

including creating sophisticated control algorithms, enhanced 

methods for heat dissipation, and the best possible selection 

of inductor and capacitor values. When used with an inverter, 

Battery Energy Storage Systems (BESS) or supercapacitors 

can reduce output variations from solar panels, enhance 

voltage stability, and offer backup power during grid 

outages. Numerous studies have examined the best control 

methods and energy storage system sizes for multilevel 

inverter performance in PV applications [29-36]. 

In order to combine PV with the MPPT-fed ANN 

approach, this investigation entails designing and analysing a 

five-level multilevel inverter. The proposed system has to 

implement into account the forthcoming crucial factors for 

applications involving renewable energy: 

• Examine the performance assessment of conventional 

DC-DC converters in solar-power systems. 

• Investigate the efficacy of MPPT computations in 

enhancing energy extraction from PV panels. 

• Assess artificial neural networks' positive and negative 

aspects when modelling and improving the MPPT 

method. 

• Develop a novel integrated system that combines MPPT 

algorithms with ANNs for efficient DC-DC conversion 

in photovoltaic applications. 

• Evaluate the integrated system's overall performance 

concerning energy conservation and power output. 

• Determine the DC to AC converter's efficacy and the 

effects of various modulation methods, such as pulse 

width modulation, on the system's overall efficiency. 

• Examine the interactions of the MPPT algorithm with 

the DC-DC and DC-AC converters, and evaluate the 

overall system effectiveness and power quality. 

3. Proposed PV Integrated Grid System 
In order to successfully integrate PV power into the 

electrical grid, a comprehensive solution called the PV 

Integrated Grid System has been proposed. It seeks to 

optimise PV panel power generation, control DC voltage, 

transform it into usable AC power, and ensure seamless grid 

integration. The first component of the system is PV panels, 

which convert sunlight into direct current power.  

The power output is optimised using an MPPT algorithm 

based on the P&O technique. A DC regulator is employed to 

maintain a constant DC voltage level coming from the PV 

panels. It ensures that the power delivered to the inverter is 

consistent and within the specified range. The system's main 

component is the modular five-level inverter, which 

transforms DC power into high-quality AC power. This 

specific type of inverter offers greater efficiency and less 

harmonic distortion than conventional inverters. This lets it 

precisely control the output voltage and frequency, ensuring 

grid compatibility.  

The ANN optimises the inverter's control parameters by 

learning from the system's historical data. This adaptive 

control strategy improves the system's effectiveness and 

capability to react to changing grid conditions. A filter 

reduces harmonics and noise in the output power, ensuring 

the grid receives a clean and dependable power supply.  

The electrical grid is then connected to the system, 

enabling the distributed injection and distribution of the 

generated power throughout the grid infrastructure. 

Combining these elements yields the PV Integrated Grid 

System, which contributes to a more environmentally 

friendly and sustainable power generation system by offering 

an effective and dependable solution for integrating 

renewable solar energy into the current electrical grid. The 

PV-integrated grid system is shown in Figure 1. 

The input-output pairs that comprise the training data are 

vectors of attributes as the inputs and corresponding target 

values as the outputs. The network is taught to map inputs to 

outputs using these pairs. The gradient descent algorithm 

optimises the weights of the Radial Basis Function Network 

(RBFN). With random initial weights, it iteratively updates 

them by computing the gradient of the error function 

concerning the weights and moving in the opposite direction 

of the gradient to minimise the error.  

The weights are updated by deducting the learning rate 

multiplied by the gradient of the error function concerning 

each weight. This update govern assists the network in 

determining a set of weights that minimises error. One kind 

of activation function used in RBFNs is the radial basis 

function. Calculating the Euclidean distance between an 

input vector and a prototype vector determines how similar 

the two are.  

These similarity values are weighted together and output 

by the RBFN. The error is calculated by comparing the 

RBFN's predicted outputs with the training data's target 

outputs. The mean squared error, which measures the typical 

squared difference between predicted and target outputs, is a 

standard error metric. The ANN approach with supervised 

learning of RBFN is shown in Figure 2. 

In order to maximise power production, photovoltaic 

systems use the Perturb and Observe and maximum power 

point tracking algorithms in combination with an artificial 

neural network. Multiple solar panels connected in series or 

parallel form the PV array, transforming solar energy into 

electrical energy. PV voltage denotes the electrical potential 

difference across the solar panels, whereas PV current refers 

to the current flow generated by the panels. 
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Fig. 1 PV integrated grid connected system 

                       
Fig. 2 ANN approach with supervised learning of RBFN 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Validating MSE and epochs using RBFN 
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Fig. 4 P&O MPPT with ANN of boost regulator 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5 Proposed modular five-level multilevel inverter 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6 Proposed modular MLI output voltage of +2Vdc 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 Proposed modular MLI output voltage of +Vdc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Proposed modular MLI output voltage of 0Vdc 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 9 Proposed modular MLI output voltage of -Vdc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Proposed modular MLI output voltage of -2Vdc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 Pulse width modulation signal to inverter switches  
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By slightly altering the operating voltage or current, it 

disturbs the system and tracks any resulting change in power 

output. The ANN predicts the subsequent perturbation 

necessary to approach the PV array's maximum power point 

in light of this recent finding. The P&O MPPT algorithm 

enables the PV system to successfully track the MPP, 

ensuring that the solar panels can produce their maximum 

power. It accomplishes this by repeatedly modifying the 

operating parameters per the predictions made by the ANN.  

The system's performance and overall energy conversion 

efficiency are improved by this optimisation process, 

allowing more power generation from the PV array. Figure 4 

depicts the boost regulator with MPPT and ANN controller 

based on temperature and irradiance. The RBFN metric 

Mean Squared Error (MSE) assesses the model's accuracy 

throughout learning. The number of times the model iterates 

using the initial data set is expressed in epochs.  

An amount of 12 epochs indicates that the model was 

trained using all of the data points 12 times. The training, 

validation, and test values display the degree to which the 

model performed on the training, validation, and test 

datasets. Figure 3 displays the top confirmation performance 

information at 12. 

4. Modular Multilevel Inverter 
A modular five-level multilevel inverter is a modern 

power electronic device which transforms to AC with 

multiple voltage levels. It uses a modular design made up of 

capacitors and power semiconductor switches. The inverter 

can generate five distinct voltage levels, zero, positive, and 

negative, by combining these parts in a specific 

configuration. The proposed five-level MLI with five 

switches is shown in Figure 5. Switching operation, MLI is 

shown in Figures 6 - 10 with output voltages of +2Vdc, 

+Vdc, 0Vdc,-Vdc and -2Vdc, respectively. 

Pulse width modulation is an approach to regulate the 

switches in a five-level inverter. Changing the pulse width in 

the control signal achieves this technique's intended voltage 

output levels. The switches are turned on and off at specified 

times by adjusting the pulse width, producing various voltage 

waveforms.  

The switches in a five-level inverter are controlled to 

allow the output voltage to have five discrete levels, allowing 

for a higher resolution and smoother output waveform. 

Figure 11 displays the pulse width modulation signal for 

five-level inverter switches. 

5. Results and Discussion 

The proposed MLI is implemented using 

MATLAB/simulink software. The modified multilevel 

inverter used to create the output voltage of a five-level 

inverter for a three-phase system with an RMS voltage of 

220V is shown in Figure 12. A multilevel inverter is a power 

electronic device that combines different voltage levels to 

produce the desired output voltage waveform. An inverter 

with five levels can produce five different voltage levels.  

This suggests a three-phase system's phases can have 

five different voltage levels. The multilevel inverter closely 

modulates the voltage levels to generate an output voltage of 

220V and a current of 5A. It produces the required waveform 

by altering the operating assets of its power electronic 

switches.  

Figure 13 shows a three-phase system with a resistive 

load's five-level output voltage and current. Figure 14 

displays the five-level variation of the output current under 

resistive load, ranging from 2A to 4.5A. Figure 15 displays 

the five-level output voltage with an output current change 

from RL to R load of 2A to 3A. As a result of the load 

change, Figure 16 displays the five-level output current with 

RL load.  

Figure 17 shows the load current's THD value for 

various modulation index values. According to the 

observation, the first indicated topology's modulation index 

value results in a THD value of 7.12%. Figure 18 shows the 

relationship between output power and efficiency for various 

multilevel inverters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12 Five-level output voltage with a three-phase system 
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Fig. 13 Five-level output voltage and current of the three-phase system during resistive load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14 Five-level change in output current during resistive load 
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Fig. 15 Five-level output voltage with change in output current from RL to R load 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16 Five-level change in output current with RL load 

 
Fig. 17 Five-level output voltage with change in output current during RL load 
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Fig. 18 Output power Vs Efficiency 

6. Conclusion 
The combination of maximum power point tracking 

algorithms and artificial neural networks has proven to be a 

promising approach for increasing the efficiency of DC-DC 

and DC-AC conversion in photovoltaic applications. 

Through simulation investigations, it has been shown that 

using MPPT techniques and ANNs together can significantly 

enhance the overall performance of PV systems by precisely 

tracking the solar panel's maximum power point and 

effectively converting the DC power harvested into AC 

power for grid integration. The application and verification 

of the proposed integrated system in actual PV systems are 

the future emphasise of the present investigation. Additional 

information on the practical performance of the MPPT-ANN 

system under various operating conditions and system 

configurations can be gleaned from experimental studies. To 

improve the system's capacity for learning and adaption, 

optimisation of ANN architectures and training algorithms 

can also be investigated. In order to create comprehensive 

and effective solutions for PV applications, it is also possible 

to investigate the integration of other innovative control 

techniques and energy storage systems. 
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