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Abstract - In recent years, technological developments have peaked; more and more technologies are being introduced 

frequently and implemented into various sectors through applications not previously imagined. The Internet of Things (IoT) 

and Artificial Intelligence (AI) are two technologies that have significantly impacted several industries such as Healthcare, 

Military, Transport, Construction, etc. As we know, on the one hand, construction sites are one of the most happening 

industries in this era due to significant developments like intelligent infrastructure, smart cities, etc. in the other hand, the 

construction industry is known for its complex and hazardous work environments which as a result are prone to numerous 

safety hazards and risk factors that can result in accidents, injuries, or even fatalities. Traditional monitoring and risk 

assessment approaches often fall short of providing real-time insights. However, by implementing cutting-edge technology 

stacks like IoT and AI, real-time site monitoring and risk assessment have become achievable, allowing construction 

companies to address potential dangers and improve safety measures proactively. By leveraging technologies, construction 

sites can collect real-time data, tracking equipment performance, site conditions, and worker safety. Along with this, the 

integration of AI enables advanced risk assessment methodologies, predicting potential hazards and identifying risks that may 

otherwise go unnoticed. This article will discuss a comprehensive approach to real-time site monitoring and risk assessment in 

construction settings using the Internet of Things (IoT) and Artificial Intelligence (AI). Our objective will be to design and 

develop a robust architecture of IoT nodes/devices that will communicate and extract real-time data of several parameters. 

Those data will then be analyzed using an artificial intelligence model to gain meaningful insight into the present condition 

and for risk assessment to prevent any danger to any human or asset and improve the efficiency of the work environment in 

specific noticeable metrics. 

Keywords - Internet of things, Artificial intelligence, Construction site, Safety, Risk assessment.   

1. Introduction  
Construction sites are hazardous places where several 

risks and hazards may endanger the safety of workers and 

passers-by. Using large machinery and equipment carries 

significant risks, such as crush injuries, electrocutions, and 

entanglements. Due to the usage of welding and cutting 

equipment and the presence of flammable materials, building 

sites are also prone to fires and explosions. To reduce these 

risks and guarantee the safety of everyone participating in the 

construction process, it is essential that construction 

businesses adopt thorough safety regulations, offer suitable 

Personal Protective Equipment (PPE), and hold regular 

training sessions [1, 2]. Technology has made fantastic 

progress in lowering risks on construction sites, 

revolutionizing safety management, and improving employee 

well-being. Construction sites may be strategically monitored 

in real-time using IoT sensors and smart cameras, which 

provide continuous data collection on worker activity, 

equipment status, and ambient conditions. Real-time 

information on the health and operation of the equipment is 

provided through predictive maintenance, which is made 

possible by IoT sensors installed into construction 

equipment.  

To prevent accidents brought on by equipment 

malfunctions, AI systems can identify possible equipment 

failures, enabling early intervention and safer machine 

operation. Wearable equipment with IoT capabilities, such as 
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smart helmets and vests, monitors the health and activity of 

workers.  

Additionally, Virtual Reality (VR) and Augmented 

Reality (AR) technologies have transformed safety training 

by enabling employees to experience accurate digital 

simulations of risky situations, improving situational 

awareness and safety procedures [3-5].  

These days, IoT and AI technologies have significantly 

contributed to reducing dangers on building sites and 

enhancing overall safety. Real-time analytics driven by AI 

analyze this data, enabling managers to identify potential 

risks and take preventative measures quickly. AI-driven risk 

assessment models evaluate the overall safety of the building 

site by considering several factors, including the surrounding 

environment and worker conduct.  

Construction managers can allocate resources effectively 

and take pre-emptive action in high-risk regions thanks to 

this data-driven strategy [6, 7].  IoT devices continuously 

gather and transmit data about various characteristics, such 

as the state of the equipment, the environment, and worker 

activity. This real-time information is crucial for risk analysis 

and accident avoidance. 

Additionally, real-time monitoring of construction 

activities is made possible by IoT-enabled cameras and 

drones, adding another level of security. Safety infractions, 

unauthorized individuals, and potentially dangerous 

circumstances can all be found using AI-powered picture 

recognition algorithms [8]. Through the processing and 

analysis of the enormous amounts of data gathered by IoT 

devices, AI has wholly changed the safety of construction 

sites. AI algorithms can interpret complex datasets and spot 

trends and potentially dangerous situations that a human 

observer might miss.  

AI-driven risk assessment models analyze the overall 

safety of the building site by considering many factors, 

including environmental factors, equipment status, and 

worker behaviour. AI and IoT integration make construction 

sites smarter and safer, lowering accidents, enhancing worker 

well-being, and ultimately ensuring project timely and 

successful completion [9, 10].  

In the proposed system of a comprehensive approach to 

real-time site monitoring and risk assessment in construction 

settings using IoT and AI, we will be using a curated merger 

of hardware and software technologies in the overall system 

architecture to extract meaningful metrics from the 

construction sites to aid in the real-time monitoring of both 

the workers and the site along with having a risk assessment 

methodology to help the authorities maintain a safe 

workplace and improve their labour efficiency to a plausible 

extent. 

2. Review of Literature 
This literature review briefs how buildings and 

infrastructure are designed, planned, and built is changing 

significantly due to innovation in the construction industry. 

Building Information Modeling (BIM), which offers a digital 

representation of projects that combines data and improves 

visualization, revolutionises collaboration and decision-

making processes. Thanks to automation, robots, and 

artificial intelligence, construction job optimization, resource 

allocation, and safety improvements are being made.  

Real-time building performance monitoring and data 

analytics are made possible by smart technologies and the 

IoT, which improves resource management and enables 

predictive maintenance. As a result of embracing these 

technologies, the construction industry is transitioning to 

more effective, sustainable, and intelligent practices, 

influencing [11, 12].  

This literature study investigates the idea of smart 

infrastructure, which entails incorporating digital technology 

into actual urban systems to enhance resident’s quality of life 

and optimize operations. The article emphasizes the necessity 

for a standard language to define words and procedures for 

smart infrastructure.  

The authors suggest an LVP framework to create this 

language, which classifies innovative infrastructure projects 

according to levels (changing technological complexity), 

values (overarching objectives including safety and 

sustainability), and principles (guidelines for development). 

Ultimately, the paper highlights how smart infrastructure 

may drastically improve how effective, liveable, and resilient 

cities are for their citizens [13, 14].  

The paper describes the usage of the IoT and Master 

Data Management (MDM) in the context of smart city and 

intelligent infrastructure programs and is explored in this 

literature review. The evaluation emphasizes the potential of 

IoT in infrastructure systems, enabling the collecting and 

analysis of sizable volumes of data about the state and 

operation of infrastructure as well as public activities through 

cloud-based asset management systems, mobile apps, and 

Big Data analytics.  

The potential of IoT and MDM to considerably advance 

the development of smart cities and intelligent infrastructure 

projects is highlighted in this literature review’s conclusion. 

Cities may improve the management of their public 

infrastructure, increase the quality of life for their citizens, 

and promote effective and resilient community development 

by utilizing IoT technology and MDM efficiently [15, 16]. 

The executive summary for managers highlights the severe 

shortcomings of the conventional constant per capita 

consumption model. It discourages using it in crucial 
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decision-making procedures like planning, zoning, and 

permits. Instead, it advises using the bottom-up, more 

theoretically solid and empirically accurate strategy to make 

knowledgeable choices on the collective demand for building 

[17]. In this literature review, the researchers use a Decision-

Making Trial and Evaluation Laboratory (DEMATEL) 

strategy, enabling them to investigate one variable’s effects 

on the others to determine the causal links among these 

elements. The study produces a quantitative framework for 

measuring labor productivity, which offers insightful 

information on the variables influencing labor productivity in 

the Indian construction sector.  

The results, in particular, emphasize the importance of 

safety at construction sites as a significant factor affecting 

labour-related parameters. Overall, this research helps 

address the critical issue of labor productivity in the 

construction sector and helps to increase performance and 

efficiency in building projects, eventually benefiting the 

entire industry [18]. 

The study covers how the construction industry’s health 

and safety training is conducted using conventional and 

computer-aided methods. The systematic study assessed both 

conventional training methods and technologies assisted by 

computers for their efficacy. Briefly expressed, the paper 

compares and contrasts conventional methods with 

computer-assisted technology for health and safety training 

in the construction sector. In addition to acknowledging the 

potential advantages of computer-aided technology, it also 

urges more studies to reinforce the statistical data supporting 

traditional instrument’s usefulness [19, 20].  

This literature states that the improved era of proactive 

risk management and accident prevention has arrived thanks 

to integrating IoT and AI technology in building site safety. 

IoT sensors are installed strategically around construction 

sites to capture real-time data on various aspects, such as the 

environment, equipment condition, and worker activity. 

Following AI algorithm’s processing of this data, potential 

safety issues that could go unreported through manual 

observation are analyzed and identified.  

Wearable technology with IoT capabilities keeps track 

of employee health and well-being and looks for symptoms 

of weariness or exposure to risky situations. The predictive 

maintenance made possible by IoT sensors[21] ensures the 

safe operation of equipment, lowering the possibility of 

accidents brought on by defective equipment. Aerial 

surveillance is provided by drones with cameras, enabling 

real-time site monitoring and rapid detection of safety issues. 

Construction businesses can make data-driven decisions 

prioritising worker safety by merging IoT data with AI-

driven analytics, creating a safer and more productive 

construction environment. The convergence of IoT and AI 

technology is revolutionizing safety on construction sites by 

enabling businesses to take preventative action and reduce 

accidents, eventually increasing worker well-being and 

project outcomes [11, 22, 23]. This paper describes that real-

time site monitoring has made great strides with the adoption 

of IoT and AI technologies in the construction sector. 

Construction businesses are now better equipped to monitor 

job sites proactively, foresee potential safety hazards, and 

take prompt preventive action, resulting in a safer working 

environment for construction workers thanks to the seamless 

integration of IoT and AI technology.  

Real-time site monitoring also improves project 

management, allowing building teams to act quickly on 

information, allocate resources efficiently, and deal with 

unforeseen issues. Real-time site monitoring will further 

revolutionize construction safety procedures as IoT and AI 

develop, making the construction sector safer, more 

effective, and more productive [24-26]. 

Construction professionals must comprehend and 

analyze the outputs of the AI model to take the proper action; 

hence collaboration between construction experts and AI 

specialists is crucial for successful implementation. AI-

driven risk assessment models can raise the bar for 

construction site safety, lower incident rates, and create a 

safer working environment for all parties involved by 

carefully evaluating data quality and cooperative efforts [27, 

28].  

This literature describes the latest safety management 

techniques, wearable IoT devices have become a cutting-

edge option for boosting worker safety on construction sites. 

Smart wristbands, vests, and helmets are products with 

various sensors built in to continuously track vital signs, 

movement patterns, and ambient variables. Wearable IoT 

devices can identify symptoms of exhaustion, heat stress, or 

exposure to dangerous situations by gathering real-time data 

on worker health and wellbeing. 

Additionally, trained individuals and data analytics 

capabilities are needed to interpret and analyse the enormous 

amounts of data generated by these devices. By overcoming 

these obstacles and maximizing the capabilities of wearable 

IoT devices, building sites will become safer, and worker 

well-being will improve. Construction site safety 

management will undoubtedly continue to be driven by the 

development and integration of wearable IoT devices, 

resulting in a safer working environment for construction 

employees worldwide [29, 30]. 

This literature describes how drones with cameras have 

revolutionized construction site surveillance and current 

research trends are exploring how they may be used to 

improve real-time safety monitoring. Construction managers 

can track the progress of projects, spot potential safety 

issues, and evaluate site conditions from a different angle 
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thanks to drone’s bird’s-eye perspective. Current research 

focuses heavily on AI-powered image recognition 

algorithms, which enable drones to detect safety hazards, 

unauthorized access, and possible risks[31, 32].  

Construction organizations may quickly address new 

safety problems by analyzing data collected by drones in 

real-time, enabling proactive decision-making and risk 

mitigation. Researchers are also looking into how drones and 

IoT sensors might work together to gather more information 

on worker activities, equipment status, and environmental 

conditions.  

The data-driven approach to construction site safety is 

improved by this integration, which also supports effective 

project management and fosters employee well-being. The 

construction sector may anticipate even more significant 

developments that will strengthen safety procedures, lower 

accidents, and maximize overall construction site efficiency 

as research trends in drones and real-time site surveillance 

continue to evolve [33, 34].  

 

3. System Architecture  
As shown in the Figure 1, the overall system architecture 

consists of several hardware nodes, each responsible for 

extracting physical world data of specific metrics, which will 

be used at certain levels during further analysis. Individual 

briefings about the data sources are attached in the following 

sub-sections.  

Once the system is settled and powered, each data 

source or end node will communicate and share extracted 

information with an assigned coordinator using their inbuilt 

RF module following a hybrid topology.  

On receipt of data from the end nodes, the coordinator 

nodes will be responsible for verifying the data origin points. 

If verified, they will share the same with the gateway using 

an integrated LoRa module following a hybrid topology. The 

gateway will be the point of contact for data accumulation 

from all the end nodes or data sources, and using an internet 

module will be responsible for logging all the data into an 

IoT cloud server for further data analysis and acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 System architecture 

3.1. Entrance Node 

As depicted in Figure 2, the Entrance node will 

primarily consist of a central computing unit for processing 

and extracting the data from the attached peripherals, 

including the passive infrared sensor, which will provide the 

node with information regarding any human presence in the 

vicinity of a particular space, RFID scanner for 

authenticating the RFID card being held by the personnel, an 

RF module to be used for sending the extracted information 

wirelessly to the coordinator, a display unit to locally display 
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important information and a power supply to power up the 

system.The entrance node will be responsible for 

authenticating the worker’s and personnel’s entry into the 

construction site. It will provide us with their profile details, 

time of entry, etc. 

3.2. Shoe Detection Node 

As depicted in Figure 3, the shoe detection node is part 

of the protective apparel detail node, ensuring that the worker 

always wears the specific construction shoes inside the site. 

It uses a pressure sensor and a dedicated inbuilt algorithm in 

the central computing unit to classify accurately if the worker 

is wearing the shoe. The same information is then relayed to 

the coordinator along with encapsulated worker ID detail at 

regular intervals using the integrated RF module. 

3.3. Worker Health Monitoring Node 

As depicted in Figure 4, the worker health monitoring 

node is responsible for keeping track of the worker’s health 

inside the construction site. It is a wearable device integrated 

with a body temperature and pulse rate sensor to estimate the 

worker’s health. The raw data is relayed to the coordinator 

using the integrated RF module in regular intervals using the 

integrated RF module. 

 

 

 

 

 

 

 

 

 
 

 
 

 
Fig. 2 Entrance node 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Shoe detection node 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
Fig. 4 Worker health monitoring node 

3.4. Helmet/Goggle Detection Node 

As depicted in the Figure 5, the shoe detection node is 

part of the protective apparel detail node, ensuring that the 

worker always wears the specific Helmet/Goggles inside the 

construction site. It uses an eye blink sensor and a dedicated 

inbuilt algorithm in the central computing unit to accurately 

extract the eye blinks from the eye blink sensor in the goggle 

to classify if the worker is wearing a helmet and goggles. The 
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same information is then relayed to the coordinator along 

with encapsulated worker ID detail at regular intervals using 

the integrated RF module. 

3.5. Site Health Monitoring Node 

As depicted in Figure 6, the site health monitoring node 

will consist of various environmental parameter sensing 

sensors, including an Ambient temperature sensor to provide 

the present environmental temperature value, an ambient 

humidity sensor to provide the present environmental 

humidity value, a vibration level sensor to provide the 

present vibration level of the construction site, ambient gas 

sensor to measure harmful gas levels in the environment, 

smoke sensor to detect the amount of smoke present in the 

vicinity and fire sensor to detect any fire eruption in the 

construction site. All these sensors feed their values into the 

central computing unit, which then uses its integrated RF 

module to share the same with the coordinator.  

The site health monitoring node is primarily responsible 

for providing crucial information about various metrics of the 

construction site that will prove to be a key factor while the 

risk assessment of the construction site, along with providing 

other valuable insights during the analysis. 

 
 

 

 

 

 

 

 

 
 

 
Fig. 5 Helmet/Goggle detection node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 
Fig. 6 Site health monitoring node 
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3.6. Glove Detection Node 

As depicted in Figure 7, the glove detection node is part 

of the protective apparel detail node, ensuring that the worker 

always wears specific construction gloves inside the 

construction site. It uses a touch sensor and a dedicated 

inbuilt algorithm in the central computing unit to accurately 

classify whether the worker is wearing both gloves. The 

same information is then relayed to the coordinator along 

with encapsulated worker ID detail at regular intervals using 

the integrated RF module. 

 

 

 

 

 

 

 

 

 
Fig. 7 Glove detection node 

4. Hardware Implementation  
For the implementation of the proposed network 

architecture, customized hardware was designed and 

fabricated wherein all the peripherals, including the sensors, 

power supply arrangement, microcontrollers, wireless 

modules, and antenna, were integrated into the custom-made 

PCB to eliminate any possibility of any power loss or data 

corruption due to leaks or unexpected interferences.  

For the sensors, the preferred communication protocols 

were used, e.g., SPI, I2C, etc., and for the data 

communication using the wireless modules UART through 

the software serial methods are used instead of hardware 

serial pins to eliminate any interference during the debugging 

and programming of the microcontrollers. The end nodes and 

the coordinators are connected wirelessly using the 2.4 GHz 

RF transceivers. The coordinator and the gateway node are 

connected wirelessly using the 433 MHz LoRa module 

(Specific to India). The following sub-sections are the 

hardware implementation of the said nodes and components.  

4.1. Entrance Node 

As the entrance node uses a passive infrared sensor for 

identifying the presence of a human prior to initiating the 

RFID scanner, and the Passive Infrared (PIR) sensor is 

known to be quite sensitive, the firmware is designed to 

calibrate and filter the ideal state values of the PIR sensor 

which is also depicted in the LCD, wherein the sensor takes 

the ideal state readings multiple times and considers the same 

as the base threshold of noise acceptance. The system enters 

an ideal state and waits for the PIR to trigger any human 

presence, as shown in Figure 8 (a). 

 

 
Fig. 8 (a)  PIR calibration 
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Once PIR is triggered, the system asks the user to scan 

their RFID tag and displays the ID number if the worker’s 

RFID is validated, as shown in Figure 8 (b). Once the card is 

scanned, the system uses its inbuilt RF module to send the ID 

profile to the coordinator in a secured packet. 

 

 
Fig. 8 (b) ID verification 

4.2. Site Health Monitoring Node 

Similarly, the site health monitoring node was designed 

and fabricated with all the sensors integrated into a single 

PCB. These sensors feed the extracted data into the central 

computing unit (atmega328 has been used). The central 

computing unit, in regular intervals, sends encrypted packets 

containing all this information to the coordinator using an 

integrated RF 2.4 GHz module. Additionally, it displays the 

present value in the LCD, as depicted in Figure 9.  

 
Fig. 9 Site health monitoring node 

4.3. Coordinator 

As shown in Figure 10, the coordinator consists of an RF 

2.4 GHz module that collects the data from allocated end 

nodes. The data received is primarily processed using the 

central computing unit (atmega328 SMD). Then it uses the 

integrated LoRa module to relay the data to the gateway as 

an encrypted packet with the source and coordinator ID 

information. 

 
Fig. 10 Coordinator 

4.4. Gateway 

Depicted in Figure 11 is the designed gateway for the 

system, which consists of two computing units, i.e., an 

atmega328 SMD as the central computing unit which is 

responsible for collecting the data sent by all the coordinators 

using its integrated LoRa module, processes it, and logs the 

same into an IoT cloud server using the integrated esp8266 

WIFI module. It also displays various status and essential 

information on the LCD.  

 
Fig. 11 Gateway 
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4.5. Complete System Implementation 

Depicted in the Figure. 12 is the image of all the 

system’s components, including the glove detection and shoe 

detection nodes.  

 
Fig. 12 Complete system implementation 

5. Artificial Intelligence Implementation  
With IoT-based end nodes for data collection, 

segregation and acquisition. We now have the dataset ready 

for us to perform further analysis and train an AI model for 

performing the desired tasks. The flow/process of the same is 

as follows. 

5.1. Dataset Collection 

The gateway logs the values received from the end 

nodes into an IoT cloud server and a database. We now have 

a complete dataset containing the values generated at each 

data source in a .csv file. 

Along with the raw data, two more columns named 

previous_hazard and hazarad_severity were added, which 

will pose as the human input to the condition of the 

construction site wherein previous_hazard depicts if, during 

the row of data log, any hazard has occurred (e.g., worker 

falling sick, fire, smoke, etc.).  

It is depicted by a binary value 0/1. Similarly, the 

column hazard_severity refers to the severity of the hazard, 

which is depicted by a positive integer value.  

5.2. Dataset Cleaning and Pre-processing 

Before going further into the analysis step, we want our 

dataset to be clean and have no unexpected abnormality. To 

do that, we will first clean and pre-process our dataset to 

ensure our dataset does not have any empty cells, 

abnormal/corrupted values, etc. Also, we want our dataset to 

drop the columns we do not think are necessary at this step, 

e.g., timestamp. For all these cleaning and pre-processing 

tasks, we will use functions of popular libraries like Numpy 

and Pandas to ease our task. 

5.3. Data Visualization and Analysis 

5.3.1. Correlation Matrix 

To start with the data visualization and analysis, we will 

first plot a correlation matrix to observe the correlation 

between the dataset variables, allowing us to learn more 

about the dataset and see a clear picture of all the millions of 

rows of data. As depicted in Figure 13, the following 

variables have plausible correlations. 

Entrance PIR vs RFID Authentication 

The correlation matrix shows a high positive correlation 

between entrance PIR and RFID authentication value, which 

is expected because both variables are unlikely to be opposite 

in most scenarios. 

Helmet Worn vs Goggles 

The correlation matrix shows a high positive correlation 

between helmet worn and goggles worn value, which can be 

stated as usual. In our implementation, we considered the 

helmet worn value depending upon the integrated eye blink 

sensor’s output in the goggle. 

Site Temperature vs Body Temperature 

The correlation matrix shows a high positive correlation 

between site temperature and body temperature value, which 

is expected because both values are proportional to each 

other in an outdoor environment. 

Smoke, Fire and Hazards 

The correlation matrix shows positive correlations 

between smoke, fire and hazard metrics. This correlation also 

appears normal due to the interdependency of the variables in 

real life. 

5.3.2. Hazard Severity Distribution 

Figure 14 shows the distribution of the hazard severity in 

correspondence with the count throughout the dataset. As 

observed, the hazard severity of less than 1.5 contributes to 

the highest value of around 17500 counts, followed by 

hazard severity of 5.0 to 6.5.  

This shows that in most hazard scenarios, the hazard 

severity was minute, for instance, restlessness in workers, 

fever, drowsiness, etc. 
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5.3.3. Body Temperature by Hazard Severity Distribution 

Figure 15 presents a box plot of the body temperature by 

hazard severity distribution, indicating the range of body 

temperature values in the corresponding hazard severity 

values. Similarly to the previous distribution, the minor 

hazard severity value has the maximum spread of the body 

temperature value. However, it is contained within a specific 

normal body temperature range, indicating that worker’s 

average body temperature has contributed the least to any 

hazard on the construction site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Correlation matrix 

 

 

 

 

 

 

 

 

Fig. 14 Hazard severity distribution 
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Fig. 15 Body temperature by hazard severity distribution 

5.4. AI Model Training and Testing 

Following the visualization and analysis of the dataset, 

we will move forward to the AI model training part. We have 

the following two expectations from our AI model to set the 

stage. 

• To learn from the past data and predict the possibility of a 

hazard depending on the present sensor values. 

• To learn from past data and predict the hazard severity in 

case of a hazard. 

To attain our first goal of classifying the possibility of a 

hazard depending on the present sensor values, we used the 

random forest classifier algorithm for the following reasons. 

1) It is well known for handling large datasets. 

2) It can automatically reduce overfitting by averaging 

multiple decision trees. 

3) It is well known for its accuracy. 

We trained the classifier on our dataset with an 80-20 

split for training testing datasets. Figure 16 depicts the 

confusion matrix, which shows the true negative, false 

negative, true positive and false positive, respectively.   

Figure 17 depicts the classifier’s training accuracy plot, 

resulting in an accuracy of around 92.75 % when trained for 

20 epochs. To predict the impact of hazard when and if a 

hazard occurs depending on the present sensor values, we 

used an ensemble method for the following reasons. 

• We had both linear and non-linear type data. 

• Individual regressor results were inconsistent. 

• Ensemble methods provide higher predictive accuracy than 

the individual. 

We used Scikit’s ensemble and stacking regressor 

methods to stack the base regressor consisting of a random 

forest regressor, a gradient boosting regressor and a lasso 

regression analyzer and the final estimator as Ridge, where 

both stacks had a learning rate value of 0.1 and random state 

value of 42. Figure 18 shows the MSE and MAE error values 

obtained during the training of the regressor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16 Confusion matrix 
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Fig. 17 Training accuracy graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
Fig. 18 Training error 

6. Results  
The implementation of IoT-based edge hardware 

solutions integrated with various sensors proves to be quite 

efficient and effective. Moreover, an RF-based network 

architecture also eliminated any severe dependencies on the 

internet. In addition, using security and redundancy measures 

like encryption and hybrid topologies aid in making the 

system more reliable and dependent, allowing it to be 

immune to any unwanted breaches or downtime. Figures 19 

(a) and 19 (b) show some serial communication of the 

packets between nodes, coordinator and gateway. After 

training our AI model, we saved the classifier and the 

regressor in the joblib format. Following that, we loaded the 

trained model into google colab and provided a set of 

dummy inputs as follows: 

new_data = pd.DataFrame({ 

    'worker_id': [23], 

    'entrance_pir': [1], 

    'rfid_authentication': [1], 

    'helmet_worn': [0], 

    'eye_blink': [0], 

    'goggles_worn': [0], 

    'gloves_touch': [0], 

    'shoes_pressure': [0], 

    'temperature': [30.2], 

    'pulse_rate': [80], 

    'site_temperature': [25.8], 

    'site_humidity': [63], 

    'vibration': [1], 

    'smoke': [1], 

    'fire': [1] }) 
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Fig. 19 (a) Site health monitoring node serial data 

 
Fig. 19 (b) Coordinator serial data 
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In the form of sensor values, both models were then fed 

these values. We were able to get the output of the trained 

model regarding both the hazard possibility classification and 

the hazard severity prediction, as depicted in Figure 20, 

which shows the hazard likelihood to be a positive possibility 

along with its confidence score of 1 and the impact of the 

hazard is predicted to be 10.81521996. 

 
Fig. 20 AI model output 

 

7. Conclusion 
The comprehensive approach to real-time site 

monitoring and risk assessment using IoT and AI offers 

numerous benefits to the construction industry. Firstly, it 

enhances safety by providing real-time alerts and 

notifications regarding potential hazards. This minimizes the 

risk of accidents and injuries, safeguarding the well-being of 

workers and stakeholders. Moreover, the same can be further 

extended for integrating IoT and AI to improve operational 

efficiency by enabling effective resource management. Real-

time monitoring of equipment utilization, energy 

consumption, and waste generation allows for optimized 

resource allocation, reducing costs and enhancing 

productivity.  

The comprehensive approach can also facilitate effective 

project management by providing accurate data on progress 

and potential risks. This enables stakeholders to make 

informed decisions promptly, ensuring the timely completion 

of projects and minimizing delays. 
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