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Abstract - Today, Switched Reluctance Motors (SRM) are widely used in research and daily life due to their ability to provide 

large starting torque and low manufacturing costs. In terms of kinematics and control, the SRM drive system displays high 

nonlinearity due to the motor structure and the nonlinearity of the inverter, which switches between phases to operate the 

motor. Most current research focuses on controlling the SRM without considering the nonlinearity caused by the inverter. A 

few studies have dealt with controlling combined systems consisting of SRM and the inverter by linearizing the SRM model. 

Although this method is simple, the control quality is not high as it fails to account for the nonlinearity of the model. This 

paper presents a nonlinear control algorithm for the combined model of the switched reluctance motor and the Inverter, 

specifically the backstepping sliding mode control algorithm, which ensures the asymptotic stability of the system according to 
the Lyapunov standard. The simulation results demonstrate that the controller synthesized from the combined nonlinear 

model provides good control quality compared to the previously published H infinity nonlinear feedback controller, 

particularly when it comes to responding to changes in the speed setpoint and effectively handling load disturbances. 

Keywords - Asymptotic stability, Backstepping sliding mode control, Speed control, SRM, Switched reluctance motor.   

1. Introduction 
The Switched Reluctance Motors (SRM) have many 

advantages, such as a large starting torque, simple structure, 
low manufacturing cost, and high stable working ability [1-

4]. Due to these benefits, switched reluctance motors have 

gradually been applied more widely recently, especially in 

the field of electric vehicles for tourism. However, this type 

of motor also exhibits certain disadvantages, such as 

significant pulsating torque, challenging control 

requirements, and high nonlinear characteristics. The strong 

nonlinearity in the SRM is primarily due to its inherent 

structure, further amplified by the presence of a phase-

switching inverter, which contributes to increased resonance 

nonlinearity.  

Consequently, it is crucial not to overlook the impact of 

the nonlinearity in the SRM’s kinematics caused by the 

simultaneous excitation of the stator phases. Addressing this 

nonlinearity becomes a significant challenge that must be 

tackled [5-9]. Although some studies have provided a 

mathematical model of SRM [10-19], most of them have 

stopped at the motor’s own mathematical model, ignoring the 

nonlinearity produced by the inverter. The author group 

Rigatos initially published a mathematical model of the SRM 

[20], which encompasses both the motor and the switch 

(Inverter). However, they modeled the SRM as a linear 

model to design an H-infinity nonlinear feedback controller, 

resulting in an incomplete consideration of the nonlinearity. 

Moreover, the control quality, such as large overshoot 

and long settling, must be improved. Inheriting research [20], 

the authors of this paper maintain the combined nonlinear 

model of the switched reluctance motor and then apply a 
nonlinear control algorithm to improve the quality of the 

drive system’s switched reluctance mechanism. 

Some published works, such as [21-27], have used the 

Backstepping nonlinear algorithm for the nonlinear model 

incorporating SRM. However, it has been found that the 

remaining disadvantage of the Backstepping control 

algorithm is the slow response speed, especially when the 

system is affected by noise, such as load disturbance. 

Therefore, in this paper, the authors use the backstepping 

sliding mode control algorithm to improve this problem. 

After the general introduction, the paper presents the 

mathematical model of SRM, which is a combination of both 
the motor and the Inverter in Part 2. Part 3 presents the 

backstepping sliding mode control algorithm for SRM. Part 4 

presents the simulation results compared with the speed 

response using the backstepping algorithm. Finally, the paper 

concludes.
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2. Combined Model of the Switched Reluctance 

Motor 
The mathematical model of a 4-phase switched 

reluctance motor (Figure 1), according to the document [20], 

includes the following equations. 
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within j = 1, 2, 3, 4 (consider with 4 phases switched 

reluctance motor). In Equation (1), uj, R and ij are 

respectively the voltage, resistance and current of jth phase, θ 

is the rotor angular and ѱj is the flux of phase j, Tj is the 

torque of phase j, the load torque Tl, the moment of inertia J 

and the single-phase torque in the SRM. 

 

 
Fig. 1 SRM 8/6 and its control circuit (inverter) 

According to [20], the magnetic flux characteristic of a 

4-phase switched reluctance motor can be expressed as 

follows, 
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Where j = 1, 2, 3, 4, ѱs is the saturation flux, Nr is the 

number of rotor poles, and the function fj(θ) in Equation (3) 
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Where n is the number phase, a and b are coefficients 

found by transforming the series of Fourier [28]. 

 

The moment of phase j is expressed as follows, 
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Then, with the set of state vectors 
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the motor 

equation of state takes the form. 
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In equation (6), the load torque is determined, including 

the component Bx2 which is the damping coefficient against 

the motor shaft rotation, and the component mglsin(x1) is the 

mechanical load torque. For example, in the case of a motor 

shaft attached to a rod of length l, an object of mass m is 

attached to the other and of the rod [20]. 
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Where, j = 1, 2, 3, 4. 

Equations (6) and (7) can be expressed as, 
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For an SRM 8/6 with phase number 4, we obtain the 

following expression for each phase j (where j can take 

values 1, 2, 3, or 4) 

j ju k u     (14) 

 

Where jk  is the phase transition key that can only take 

on the values of 0 or 1. Then, equation (13) becomes 
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We obtain another form of equation (15) as follows 
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In order to apply backstepping control to the SRM, 

Equation (18) must be rewritten in a strict feedback form. By 

defining new state variables 
2 1x z , the SRM can be 

expressed in a different form, which is given 
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In the next section, we will design a backstepping slide 

mode controller for SRM based on (19). 

3. Backstepping Sliding Mode Controller 
In part 2, the nonlinear kinematics model of the SRM is 

presented in the form of a second-order back-propagation 

nonlinear model (19). According to the backstepping and 

sliding technique, the controller is designed in the following 

manner: 
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1 1 1de z z                                      (20) 

Where 
1dz  is the setpoint of speed.      

 

Taking the derivative of the equation 
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Taking the derivative of the equation 
1V  with respect to 

time, we have 
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Definition of sliding surface is as follows 
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To ensure a stable closed system and tracking error of 

zero, we determine the sliding control signal ( )u t  by using a 

positive-definite Lyapunov function (28)  
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By taking the time derivative, we get: 
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Then 
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Therefore, we can guarantee the asymptotical stability of 

SRM by choosing the control signal as shown in equation 

(31)   
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The structure of the SRM with a backstepping sliding 
mode control algorithm is shown in Figure 2. 
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Fig. 2 System control backstepping sliding for SRM 

4. The Simulation Results 
The performance of a control system using a 

backstepping sliding mode controller (smc-btp) (as in Figure 

2) was compared with that of a backstepping controller (btp) 

only under various scenarios.  

 

Figure 4 shows the speed response of the two controllers 

at different speed ranges when the needle pulse control signal 

noise (as in Figure 3) affects the starting process at time 1s. 

The speed responses in low, medium and high-speed 

setpoints are shown in Figures 4a, 4b, and 4c. The quality of 

control during the start-up phase is presented in Table 1. The 

results indicate that the speed responses of the system with 
the proposed controller are more rapid and exhibit smaller 

overshoot. Particularly at a speed setpoint of 75 rad/s, the 

overshoot of the system with the backstepping controller is 

73%, which is significantly larger than that of the system 

with the backstepping sliding mode controller.  

 

 
Fig. 3 Control signal noise 

 

     
(a)                                                                                    (b) 

 
(c) 

Fig. 4 Speed response of the two systems at different speed ranges 
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Table 1. Control the quality of the two systems at different setpoints 

Setpoint of speed 6 rad/s 15 rad/s 75 rad/s 

Controller smc-btp btp smc-btp btp smc-btp btp 

Overshoot 0% 13% 0% 20% 0% 73% 

Settling time 0.2s 0.37s 0.25s 0.42s 0.53s 0.8s 

Steady-state error 0 0 0 0 0 0 

 
To assess the robustness and performance of the control 

systems under different operating conditions, we evaluated 

their speed response when subjected to signal noise and 

changes in the setpoint. Specifically, we examined the speed 

response of the two systems when the setpoint changed from 

30 rad/s to 45 rad/s and when it changed from 90 rad/s down 

to 60 rad/s at time 1s. The speed response of the systems is 

presented in Figure 5, while Table 2 summarizes the control 

quality results for the different setpoints and scenarios.  

The results provide insights into the effectiveness of the 

backstepping sliding mode controller (smc-btp) compared to 

the backstepping controller only (btp) in handling 

disturbances and changes in the setpoint. Notably, these 

results outperform the findings from [20], where the 

utilization of a nonlinear H-infinity controller led to an 

overshoot of roughly 20% and a settling time of 

approximately 2 seconds. 

 

         
(a)                                                                                                  (b) 

Fig. 5 Speed response of the system when the setpoint changes 

Table 2. Control the quality of the two systems when the setpoint changes 

Setpoint changes From 30 rad/s to 45 rad/s From 90 rad/s down 60 rad/s 

Controller smc-btp btp smc-btp btp 

Overshoot 0% 4% 0% 0% 

Settling time 0.36s 0.3s 0.6s 0.27s 

Steady-state error 0 0 0 0 

 

     
(a)                                                                                         (b) 

Fig. 6 Speed response of the system under boost load conditions 
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(a)                                                                                     (b) 

Fig. 7 Speed response of the system under offload conditions 

Table 3. Control quality of the two systems under load changes 

Load 

Changes 

Speed of 12 Rad/s 

and Load 

Increase at 1s 

Speed of 22 

Rad/s and Load 

Decrease at 1s 

Controller smc-btp btp smc-btp btp 

Overshoot 25% 67% 11% 41% 

Settling 

Time 
0.35s 0.6s 0.33s 0.55s 

Steady-State 

Error 
0 0 0 0 

 

We further evaluated the performance of the control 

systems under load changes and signal noise during the start-

up phase. Specifically, we analyzed the speed response of the 

two systems when subjected to boost load and offload 

conditions at time 1s. The speed responses of the systems are 
presented in Figures 6 and 7.  

 

Figure 6 shows the speed response under boost load 

conditions, with Figures 6a and 6b representing speed levels 

of 12 rad/s and 65 rad/s, respectively. Figure 7 shows the 

speed response under offload conditions, with Figures 7a and 

7b representing speed levels of 22 rad/s and 82 rad/s, 

respectively.  

The control quality results for the different load 

conditions and scenarios are summarized in Table 3. These 

results provide insights into the ability of the backstepping 

sliding mode controller (smc-btp) and the backstepping 

controller only (btp) to handle load changes and signal noise 

during the start-up phase, which are critical for achieving 

stable and reliable system operation. 

 

The results show that when the system is affected by 

load noise, the proposed controller quickly re-stabilizes the 
system with a shorter transient time and smaller overshoot 

compared to the backstepping algorithm. 

 

5. Conclusion 
 In conclusion, this article proposes a backstepping 

sliding mode control algorithm for a combined nonlinear 

SRM that considers the nonlinear factors of both the motor 
and the inverter. The results demonstrate the feasibility of 

controlling the stability and tracking speed of the SRM drive 

system, as evidenced by the successful response to changes 

in speed setpoint and load disturbance. Furthermore, 

the backstepping sliding mode control algorithm achieves 

better control quality compared to both the backstepping 

control algorithm and the work presented in [20], with 

reduced overshoot and setting time. In the future, we will 

continue to research additional algorithms to further enhance 

the control quality of SRM drive systems under the influence 

of uncertain disturbances. 
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Appendix 1. SRM and Simulation Parameters 
Number of rotor poles 6 

Number of stator poles 8 

Number of phases 4 

Power 5.5 HP 

Peak current 9A 

Stator winding resistance 0.72 Ω 

Aligned phase inductance 130 mH 

Unaligned phase inductance 12 mH 

J=6.8x103 kg/m2 

a=1.5x103 H 

b=1.364x103 H 

B=0.2 

l=2 m 

c1=2 

c2=0.1 

T=0.025 
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