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Abstract - In modern power systems, ensuring stability and reliability is paramount. This study proposes a novel approach to 

the predictive modelling of power system contingencies using Support Vector Machines (SVMs) in conjunction with Flexible 

A.C. Transmission System (FACTS) devices. The integration of SVMs aids in accurately forecasting potential contingencies by 

analyzing historical data and identifying patterns. Additionally, FACTS devices can dynamically control power flow and 

enhance system stability. The proposed methodology involves two main phases: training the SVM model using historical data 

and simulating the impact of various contingencies with and without FACTS intervention. Comparative analysis demonstrates 

the effectiveness of the SVM-based predictive model in identifying critical contingencies. Moreover, incorporating FACTS 

devices showcases their potential to mitigate stability issues through real-time control actions. This combined approach offers 

an advanced tool for power system operators to anticipate and minimize contingencies effectively, ultimately leading to an 

enhanced and resilient power grid. 

Keywords - Enhanced stability, Grid resilience, Machine learning, Predictive modeling, Support Vector Machine.

1. Introduction  
In modern society, power systems’ reliable and efficient 

operation is paramount. The growing demand for electricity 

and the integration of renewable energy sources underscores 

the need for robust and stable power systems. However, 

these systems’ inherent complexity and interconnected nature 

expose them to various contingencies, such as line failures, 

generator outages, and sudden load changes, leading to 

instability and even blackouts.  

To address these challenges, advanced predictive 

modelling techniques have emerged as crucial tools for 

enhancing the stability and reliability of power systems. 

Support Vector Machines (SVMs), a class of machine 

learning algorithms, have gained prominence due to their 

ability to handle complex and nonlinear relationships within 

power system data effectively. By learning from historical 

data, SVMs can predict system behaviour under different 

contingencies, aiding operators in making informed decisions 

to mitigate potential issues. Moreover, FACTS devices have 

proven indispensable in maintaining power system stability. 

These devices, which include controllable elements like 

phase shifters and voltage regulators, offer real-time 

adjustments to power flow and voltage levels. Incorporating 

FACTS devices into predictive models can significantly 

enhance the accuracy of contingency predictions, as they 

provide additional degrees of control to counteract 

disruptions [1-4].   

Predictive modelling of power system contingencies has 

emerged as a critical area of research and application within 

the field of electrical engineering. This practice involves 

using advanced algorithms and techniques to forecast 

potential disturbances and failures in power systems, 

allowing operators to take preemptive actions to maintain 

grid stability and prevent cascading failures. This 

investigation explores the key concepts, methodologies, and 

advancements in the predictive modelling of power system 

contingencies [5-9]. 

The evolution of predictive modelling has also seen a 

shift towards more advanced techniques, such as deep 

learning and hybrid models. Deep neural networks, 

especially convolution and recurrent architectures, have 
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demonstrated promising results in capturing complex spatial 

and temporal relationships within power systems. Hybrid 

models that combine multiple machine learning approaches 

offer the advantage of exploiting the strengths of different 

methods, yielding more robust and accurate predictions [10 - 

14]. 

The power systems are subject to various sources of 

uncertainty, such as fluctuations in renewable energy 

generation and sudden changes in load. Probabilistic 

forecasting, a technique that provides a range of potential 

outcomes along with associated probabilities, has gained 

traction as a way to account for uncertainty. This approach 

equips system operators with valuable information about the 

likelihood of different contingency scenarios, aiding 

decision-making processes [15-19]. 

The practical implementation of predictive modelling in 

power systems requires seamless integration with operational 

processes and decision support systems. Several studies have 

highlighted the importance of real-time data processing, 

model updating, and effective communication between 

predictive tools and control centres. Using predictive insights 

can enhance the overall resilience of power systems, 

enabling more efficient utilization of resources and reducing 

the likelihood of widespread outages [20-26]. 

 SVM is a powerful machine learning technique that has 

gained prominence in various fields due to its ability to 

classify and predict complex data effectively. In power 

systems, SVMs have found utility in conjunction with 

FACTS devices, which are advanced technologies used to 

enhance the controllability and efficiency of power 

transmission. One primary application of SVMs in FACTS 

device power systems is fault detection and classification. 

Power system faults can lead to disruptions and even 

blackouts, and swift and accurate fault detection is crucial.  

SVMs can analyze data from FACTS devices such as 

Phasor Measurement Units (PMUs) to quickly identify the 

location and type of fault. This aids in promptly 

implementing corrective measures, thereby enhancing power 

system reliability. Another significant application is in load 

forecasting with FACTS devices. SVMs can utilize historical 

load data and input from FACTS devices to build accurate 

load forecasting models.  

This assists power utilities in optimizing generation and 

scheduling, leading to economic benefits and reduced 

environmental impact. SVMs have also demonstrated 

prowess in the optimal placement and sizing of FACTS 

devices. Determining these devices’ best locations and 

capacities traditionally involves complex optimization 

problems. SVMs can aid in streamlining this process by 

learning from historical data and suggesting optimal 

configurations that enhance power system efficiency and 

stability [27-31]. The synergy between SVMs and FACTS 

devices presents a promising power system stability 

enhancement solution. SVMs can assist in predicting 

potential contingencies, while FACTS devices can respond 

rapidly to mitigate voltage and transient instability when 

these contingencies occur. This combined approach enables 

proactive and reactive stability control.  

Numerous case studies have validated the effectiveness 

of integrating SVMs and FACTS devices for enhanced 

stability. These studies often simulate various contingencies 

and evaluate the system’s response with and without SVM-

guided FACTS control. The results consistently show 

improved stability margins and reduced voltage deviations. 

Despite the promise of this approach, challenges such as 

accurate data availability, model generalization, and real-

time implementation need to be addressed. Future research 

could focus on refining SVM algorithms for more precise 

contingency prediction and optimizing FACTS control 

strategies for rapid response [32-35]. 

Analyzing potential outcomes is very beneficial for 

giving the power system static security. The machine 

learning algorithm k nearest Neighbor is introduced to 

classify the failure patterns. In this case, the KNN strategy is 

used with the pattern recognition technique. The K Nearest 

Neighbor (KNN) modelling algorithm has been discussed. 

Fuzzy logic was also suggested in the classification of line 

outages in addition to KNN. Finally, the outcomes of these 

two applications were compared. IEEE 118 bus systems have 

adopted the Support Vector Machine Based Pattern 

Classification (SVMBPC) method. Concepts like feature 

extraction and feature selection were introduced to help 

reduce the amount of input data needed to get results faster. 

Here, the pattern classification of SVM is introduced to 

give the power system online security. The classifier 

received the input data generated offline using the A.C. load 

flow technique. The SVM is a good choice for an online 

security monitoring system since there is less 

misclassification. Higher expectations for dependability and 

a rise in degrees of freedom for functional improvement of 

integrated energy systems are brought about by the ongoing 

growth of energy systems.  

Modern energy system improvement can be seen from 

fresh angles thanks to mathematical modelling. Data-driven 

models based on machine learning have a remarkable 

potential to play a significant role in boosting the overall 

utilization rate of various forms of energy, including 

renewable sources. Accurate P.V. and wind power forecasts 

are also crucial for competitive strategic bidding in the 

renewable energy markets. The prediction accuracy of time 

series energy data is predicted to increase with the use of 

deep learning techniques such as Recurrent Neural Networks 

(RNN), Long Short-Term Memory (LSTM), and 
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Convolution Neural Networks (CNN) [36] and [37]. This 

paper aims to enhance the stability of power systems by 

combining SVMs with FACTS devices to mitigate 

contingencies effectively. The study aims to develop a 

predictive SVM-based framework for identifying potential 

system vulnerabilities and determining optimal FACTS 

device settings.  

By integrating advanced machine learning techniques 

and FACTS devices, the research seeks to improve power 

system resilience against contingencies, reduce the risk of 

instability, and enhance overall grid performance. Through 

this approach, the study aims to contribute to developing 

more reliable and secure power systems in the face of 

operational challenges. 

2. Contingency Analysis 
2.1. Contingency Ranking 

A crucial stage in contingency analysis is contingency 

rating, which ranks each scenario according to how it could 

affect the stability and security of the power system. Each 

contingency scenario’s severity and chance of occurrence are 

evaluated as part of the ranking process. The ranking 

procedure often considers several factors, including the 

severity of the effect on the power system, the importance of 

the affected equipment, and the availability of resources for 

contingency planning. Following the ranking of the 

scenarios, mitigation measures may be created and put into 

action, with an emphasis on initially addressing the most 

severe and likely situations. Power system operators may 

allocate resources more effectively and prioritize their efforts 

to maintain the stability and security of the power system in 

challenging circumstances by ranking the scenarios. Active 

Power Performance Index (APPI) and Line Voltage Stability 

Index (LVSI) are considered for contingency ranking; this 

can be illustrated in equation (1), 

z

l

l

N

i

MW
P

P

z

W
PI

L
2

max
1

2 






















 (1) 

Where, lP   : Power flow through line 

max
lP  : Maximum capacity of power flow 

through the line l 

L
N   : Number of transmission lines 

W  : Real non negative weighting factor  

z   : Exponent of penalty function  

max
lP  : 

X

VV ji 
  

iV  : Voltage at bus i 

jV  : Voltage at bus j 

X  : Reactance 

2.2. Line Voltage Stability Index 

The relationship between the line active power and the 

line of the bus voltage is the subject of the line voltage 

stability index. The index will fail if the transmission line’s 

resistance in the power system equals 0. LVSI of bus voltage 

can be expressed in the following equation (2), 

  
0.1

2cos
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LVSI  (2)      

Where, RP  : Receiving end power 

r  : Resistance 

S
V  : Voltage at the sending end 

  : Line impedance angle  

  : The angle difference between the supply 

voltage and the receiving voltage. Its range is from 0 to 1, 

where 0 indicates a stable system and 1 indicates an unstable 

system. 

2.3. Stability Improvement 
The FACTS is categorized based on its connection with 

the electricity system. They are listed as series-connected 

controllers, shunt-connected controllers, combined series–

series controllers and combined shunt–series controllers. 

 

 

 

 
Fig. 1 Series connected controller 
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Fig. 2 Shunt-connected controller 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 3 Combined series-series controller 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 
Fig. 4 Combined shunt-series controller 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 
 

 

Fig. 5 Thyristor controlled series capacitor 
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2.3.1. Series Connected Controller 

This device is inserted in series with the transmission 

line, allowing control over the line’s impedance. Adjusting 

the controller’s parameters can enhance voltage stability by 

regulating the line’s reactance, thereby minimizing voltage 

deviations during transient events. Figure 1 illustrates the 

series-connected controller. 

2.3.2. Shunt Connected Controller 

Installed parallel with the transmission line, it can 

regulate voltage levels by controlling reactive power flow. 

This aids in voltage stability during normal and fault 

conditions by maintaining acceptable voltage profiles. Figure 

2 illustrates the shunt-connected controller. 

2.3.3. Combined Series-Series Controller 

Figure 3 illustrates the integrated series-series controller. 

This configuration involves series controllers placed at 

multiple points along the transmission line. These controllers 

work collaboratively to fine-tune the line’s impedance and 

enhance transient stability by mitigating voltage fluctuations. 

2.3.4. Combined Shunt-Series Controller 

This arrangement combines the benefits of shunt and 

series controllers. The shunt controller maintains voltage 

levels, while the series controller manages line impedance, 

jointly bolstering transient stability. Figure 4 illustrates the 

combined shunt-series controller. 

2.3.5. Thyristor Controlled Series Capacitor (TCSC)  

TCSC is a device that employs thyristors to control the 

capacitive reactance in series with the transmission line. By 

adjusting the thyristor firing angle, TCSC can swiftly modify 

the line’s impedance, aiding in power flow control and 

transient stability enhancement. Figure 5 illustrates the 

thyristor-controlled series capacitor. 

3. Proposed algorithm  
3.1. Contingency Ranking Using APPI 

Contingency ranking is crucial in power system analysis 

to identify vulnerable components that might lead to system 

instability or disruptions. The APPI is a technique used for 

this purpose. Figure 6 illustrates the flowchart of contingency 

ranking using APPI. 

Step 1 : The process starts with gathering essential data 

about the power system. This includes bus and line 

information. Additionally, system parameters like 

angles, loads (both M.W. and MVAR), and 

generator details (M.W., MVAR, Qmin, Qmax) are 

assumed to remain constant throughout the analysis. 

Step 2 : An initial load flow analysis is conducted without 

considering line outage contingencies. The results 

of this analysis serve as the base case for 

comparison in subsequent steps. 

Step 3 : To evaluate the impact of line outages, N-1line 

contingency scenarios are simulated. For each 

scenario, one line is intentionally disconnected at a 

time while keeping the rest of the system intact. 

Step 4 : APPI calculation is performed for each N-1 

contingency scenario. APPI measures the angular 

displacement at critical buses due to the line outage. 

It’s defined as the product of the change in system 

voltage magnitude and the angular removal of the 

voltage vectors. APPI quantifies the shift in power 

transfer and system stability due to the contingency. 

Step 5 : After calculating APPI values for each contingency 

scenario, lines are ranked based on their sensitivity 

to the system’s stability. Lines with higher APPI 

values are more critical, indicating that their outage 

significantly impacts the system’s strength and 

power flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.  6 Flowchart of contingency ranking using APPI 

Step 1: Read bus and line data of the system and assume system angle, load (MW and MVAR) and 

generator (MW and MVAR, Qmin and Qmax) data are constant. 

Step 2: Run the load flow without line outage contingency and use the results as base case. 

Step 3: Connect N-1 line outage contingency among any two buses. 

Step 4: Calculate APPI for each line outage condition. 

Step 5: Rank the more sensitive line under each line outage condition. 
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3.2. Contingency Ranking Using LVSI 

The process involves evaluating the impact of potential 

line outages on system stability. The method detailed below 

utilizes the Line Voltage Stability Index (LVSI) to determine 

the critical lines.  

Figure 7 illustrates the flowchart of contingency ranking 

using LVSI. 

Step 1 involves gathering essential data, including bus 

and line information, generator characteristics, and system 

loads. This analysis assumes constant values for system 

angle, loads (M.W. and MVAR), and generator parameters 

(M.W., MVAR, Qmin, and Qmax). 

Step 2’s load flow analysis is executed under normal 

conditions without line outage. This initial state serves as the 

base case for subsequent comparisons. 

Proceeding to Step 3, N-1 line outage contingencies are 

introduced. This means temporarily disconnecting one line at 

a time while keeping the rest of the system operational. Each 

line outage is simulated separately. 

Step 4 involves calculating the LVSI for each line 

outage condition. LVSI is a quantitative measure to assess 

voltage stability and potential collapse scenarios in a power 

system. It typically involves evaluating parameters like bus 

voltages, reactive power flows, and line impedances. 

In Step 5, the calculated LVSI values are examined to 

identify the lines that display greater sensitivity to outages. A 

higher LVSI indicates reduced voltage stability and, thus, 

higher susceptibility to instability when the line is 

compromised. These more sensitive lines are ranked based 

on their LVSI values, allowing for a prioritized list of critical 

lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 7 Flowchart of contingency ranking using LVSI 

4. Results and Discussion 
The tables below represent the bus and line data of the 

UPSEB-75 bus system. The data provided in Table 1 is the 

bus data of 20 buses out of 75 buses, and Table 2 consists of 

20-line data out of 97 transmission lines. 

The voltage magnitude of 75 buses is provided in Figure 

8 to Figure 10. Similarly, the voltage angle for 75-buses is 

provided in Figure 11 to Figure 13. The three cases are when 

Active Power (Pd) and Reactive Power (Qd) system loading 

are done under 50%, 100% and 150% loading without single 

line transmission contingency. The following graphs show 

that the voltage angle is decreasing when both Pd and Qd 

loading increase. Figure 14 and Figure 15 show the voltage 

magnitude and the angles for the buses up to 45. With TCSC 

in the system, the voltage magnitude has increased compared 

to without TCSC. The APPI values for 86 transmission lines 

are given in Table 3. 

 

 

 

Step 1: Read bus and line data of the system and assume system angle, load (MW and MVAR) and 

generator (MW and MVAR, Qmin and Qmax) data are constant. 

 

Step 2: Run the load flow without line outage contingency and use the results as base case. 

 

 

Step 3: Connect N-1 line outage contingency among any two buses. 

 

Step 4: Calculate LVSI for each line outage condition. 

 

Step 5: Rank the more sensitive line under each line outage condition. 
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Table 1. Bus data of Indian utility 50-bus system (UPSEB-data) 

Bus 

No. 

Bus 

Code 

Voltage Load Generator 

Qmin Qmax 
Injected Bus 

(Mvar) Magnitude Angle 
Pd 

(MW) 

Qd 

(Mvar) 

Pd 

(MW) 

Qd 

(Mvar) 

1 1 1.03 0 1300 160 725 0 2500 -10 0 

2 2 1.03 0 500 50 260 0 1500 -100 0 

3 2 1.05 0 0 500 180 0 1500 -100 0 

4 2 1.03 0 400 400 200 0 1500 -100 0 

5 2 1.05 0 50 100 500 0 1500 -100 0 

6 2 1.05 0 0 0 400 0 1900 -10 0 

7 2 1.05 0 0 500 212 0 1900 -10 0 

8 2 1.05 0 0 60 80 0 1500 -100 0 

9 2 1.05 0 0 0 550 0 1800 -10 0 

10 2 1.02 0 0 700 80 0 1900 -10 0 

11 2 1.02 0 0 0 109 0 1900 -10 0 

12 2 1.05 0 0 87 500 0 1944 -10 0 

13 2 1.05 0 0 0 900 0 1580 -10 0 

14 2 1.03 0 0 50 150 0 1800 -10 0 

15 2 1.01 0 0 55 454 0 500 -30 0 

16 0 1.00 0 25 75 0 0 0 0 0 

17 0 1.00 0 0 0 0 0 0 0 0.907 

18 0 1.00 0 0 0 0 0 0 0 0 

19 0 1.00 0 0 50 0 0 0 0 0.453 

20 0 1.00 0 75 33 0 0 0 0 0 

Table 2. Line data of Indian utility 75-bus system (UPSEB-data) 

Line No. Bus Nr. Bus Nr. 
Line Impedance 

1/2 B (p.u) 
Tap Changing 

Transformer (B=1) R (p.u) X (p.u) 

1 19 20 0.00065 0.00260 0 1.00 

2 17 16 999990 0.00260 0 1.00 

3 22 25 0.00065 0.00260 0 0.98 

4 23 24 0.00065 0.00260 0 0.95 

5 26 27 0.00065 0.00260 0 0.89 

6 29 30 0.00043 0.00174 0 1.00 

7 36 37 0.00065 0.00604 0 0.97 

8 38 39 0.00130 0.00521 0 0.98 

9 45 44 0.00130 0.00222 0 0.87 

10 16 2 0.00123 0.00247 0 0.89 

11 18 3 0.00001 0.00292 0 0.98 

12 17 1 0.00073 0.00146 0 0.85 

13 28 4 0.00306 0.00614 0 0.89 

14 31 5 0.00235 0.00471 0 0.88 

15 32 6 0.00514 0.00285 0 0.98 

16 33 7 0.00549 0.01098 0 0.88 

17 34 8 0.00001 0.00486 0 0.89 

18 35 9 0.00049 0.00194 0 0.95 

19 24 10 0.00243 0.00486 0 0.94 

20 40 11 0.00770 0.00272 0 0.99 
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Fig. 8 Voltage magnitude of buses from 1-25 under Pd & Qd system loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Voltage magnitude of buses from 26-50 under Pd & Qd system loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 10 Voltage magnitude of buses from 51-75 under Pd & Qd system loading 
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Fig. 11 Voltage angle of buses from 1-25 under Pd & Qd system loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 12 Voltage angle of buses from 26-50 under Pd & Qd system loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Voltage angle of buses from 51-75 under Pd & Qd system loading 
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Fig. 14 Voltage magnitude of buses from 1-45 under Pd & Qd system loading 

 

 

 

 

 

 

 

 

 

 
Fig. 15 Voltage angle of buses from 1-45 under Pd & Qd system loading 

Table 3. Contingency ranking based on APPI under 150% of both Pd and Qd loading with and without TCSC 

Line 

No. 
Without TCSC 

With 

TCSC 

Line 

No. 

Without 

TCSC 

With 

TCSC 

Line 

No. 

Without 

TCSC 

With 

TCSC 

1 5.0205535 5.021 34 0.7593 0.761 67 5.0000 5.000 

2 0.0162493 0.016 35 0.8373 0.837 68 8.1626 8.164 
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5. Conclusion 
The application of SVMs in the predictive modelling of 

power system contingencies, coupled with FACTS devices, 

has shown promising results in enhancing power system 

stability. The SVM-based approach has demonstrated its 

effectiveness in accurately predicting contingencies and 

identifying critical system vulnerabilities.  

FACTS devices have been instrumental in mitigating the 

impact of contingencies and improving overall system 

stability. For future scope, further research can focus on 

optimizing the integration of FACTS devices into power 

systems to enhance their response during contingencies, such 

as developing advanced control strategies. Exploring more 

advanced machine learning techniques, such as deep learning 

and reinforcement learning, could provide even more 

accurate predictive models for power system stability. 

Moreover, extending the research to address real-time control 

and coordination of FACTS devices to respond dynamically 

to changing system conditions and contingencies is a 

promising avenue for improving power grid resilience and 

reliability in the face of evolving challenges. 
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