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Abstract - Electroencephalogram (EEG) based emotional evaluation has achieved excellent outcomes in medicine, security, 

and interaction between humans and computers. Especially compared with traditional signal processing and Machine 

Learning (ML) based applications, Deep Learning (DL) based techniques have recently dramatically increased the 

classification precision. Due to its sufficient spatial accuracy and enhanced temporal resolution, EEG signals typically 

represent emotional states. It is essential to consider that identifying emotions based on EEG signals relies on the efficacy of 

three processes: extracting features, selecting features, and classifying the feelings. Therefore, this work proposes a 

computerized approach for recognizing emotions from EEG signals. High Pass Infinite Impulse Response with Zero-Filtering 

(HPIIRZ) approach is used to reduce artifacts in EEG signals. Following this, the frequency and spectral features are 

extracted using Power Spectral Density (PSD), from which the optimal features are selected by a hybrid Improved Artificial 

Bee Colony algorithm-Particle Swarm Optimization (IABC-PSO). Deep Convolutional Neural Networks (DCNNs) are then 

used for classifying emotional states at the classification stage. An evaluation model is developed using the Python platform to 

evaluate the performance of the proposed model, including accuracy, specificity, and sensitivity. The outcomes demonstrate 

that the proposed method is more efficient; the DCNN-based method achieves a higher accuracy of 95.80%. 

Keywords - EEG, HPIIRZ Filtering technique, Power Spectral Density, Hybrid IABC-PSO, DCNN. 

1. Introduction 
The Brain-Computer Interface (BCI) is an increasingly 

common research area in health information technology. Its 

applications include analyzing Electroencephalography 

(EEG) impulses from the brain. Popular BCI uses include 

monitoring brain health and aberrant brain activity, such as 

psychological seizures and emotion detection [1, 2]. Emotion 

detection techniques aid in detecting the behaviour of 

mentally challenged individuals who cannot express their 

emotions. Emotions are an extensive collection of rules 

representing changes in the human body [3, 4].  

Anger, depression, despair, hope, hate, fear, sadness, 

surprise, happiness, and other emotions have been found and 

are being utilized to create an emotion recognition system. In 

the past few years, work that uses emotion identification 

from EEG has captured the attention of many disciplinary 

domains ranging from psychology to engineering, including 

basic investigations on emotion concepts and their 

applications to BCI. BCI technology, which allows 

communication between the brain and the computer, is an 

essential area of Human-Computer Interaction (HCI) [5]. It is 

also regarded as one of the most critical current fields in 

machine and deep learning and automation. BCI technology 

operates in a series of processes to recognize human brain 

impulses and transform them into actions [6, 7].  

After the signals are gathered, they are processed by 

frequency and temporal features are extracted before being 

categorized. Depending on the application, the results are 

transformed into orders for the various devices [8]. As a 

result, EEG data, which indicate electrical information from 

the brain, have gained popularity in the past few decades. As 

demonstrated in Figure 1, the dimensional method portrays 

emotional states as continuous values that vary in various 

dimensions, including Valence-Arousal (VA) space [9].  

Many research endeavours have been undertaken in 

emotion recognition to optimize computing based on 

multiple inputs; some research is described below. The use 

of spatial and frequency characteristics in a DL framework 

with adaptive regularization for EEG-based emotion 

identification is put forward in [10]. Due to its 

parallelizability, the suggested approach is highly efficient. 

However, it is necessary to evaluate the model’s adaptability 

using independent dataset verification. In [11], it has been 

proposed to employ EEG signals for Multiple Feature Fusion 

for Computerized Emotion Recognition.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Valence-arousal space in two dimensions 

The outcomes demonstrate the utility of the 

proposed framework for categorizing emotions. However, by 

analyzing the data obtained from other people’s EEG signals, 

it might be challenging to forecast the emotional state of an 

unidentified person. Employing flexible GCNN, EEG 

emotion detection is reported in [12].  

The proposed DGCNN produces more reliable outcomes 

than SVM. Although still uncertain, The EEG data deployed 

in the trials would not be sufficient to develop more robust 

deep neural network models.  

In [13], a newly developed convolutional layer termed 

the scaling layer is presented for obtaining valuable data-

driven spectrogram-like characteristics from unprocessed 

EEG signals.  It overcomes numerous issues with earlier 

techniques that relied on manually extracted features and 

robust assumptions. Nevertheless, not all activities and 

scaling levels require attention to the identical brain regions. 

A physiological signal information set demonstrates using 

DCNN to recognize emotions [14].  

This model improves the ability to forecast human 

emotions. However, it has been seen that the videos tend to 

have a neutral level of arousal, which means that the 

emotion’s strength is not as strong. A dynamic windowing of 

informational EEG using mutual data for emotion 

identification has been suggested in [15].  

The proposed reduction of the information method may 

still be a quicker means for developing the EEG emotion 

classifier, depending on the feature extraction technique 

utilized. However, using most noise elimination approaches, 

it is difficult to tell which portion of the signal is connected 
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to emotions. Deep learning network-based emotion 

identification using EEG feature maps was proposed in [16].  

The findings collected demonstrate that the suggested 

strategies increase the rate of emotion recognition on datasets 

of various sizes. 

Nevertheless, real-time emotion recognition is not 

possible with the proposed methodology. [17, 18] introduces 

a deep learning architecture called (TSception) for detecting 

emotions through EEG. Additionally made open access is the 

TSception code. But it’s also essential to investigate the 

possibility of TSception. 

Henceforth, this work explores the emotions of humans 

based on EEG signals by adopting the DL method to identify 

and categorize human mental states. In the beginning stage, 

the HPIIRZ filter technique removes the artefacts in the EGG 

signals. The optimal features are extracted and selected using 

PSD and Hybrid IABC-PSO. Finally, the emotions are 

classified efficiently using Deep CNN with improved 

accuracy. 

2. Proposed System Description 
This work uses Electroencephalography (EEG) signals 

to develop an emotion identification system based on the 

valence/arousal framework. Figure 2 indicates the EEG-

based emotion detection using hybrid optimized feature 

selection with Deep CNN.  

The raw EEG signal is always corrupted by various 

artefacts, including muscle movements (electromyographic 

artefacts), eye blinking (electrooculographic artefacts), and 

power line disruptions. For proper data analysis, all artefacts 

need to be eliminated. However, different noise reduction 

approaches substantially impact the final structure of the 

EEG signal, as well as its characteristic values, latency, and 

amplitude. As a result, the HPIIRZ filter is used in this work 

to reduce noise, beginning with the processing of EEG data.  

The HPIIRZ filtering technique separates EEG signals 

into alpha, gamma, beta, and theta frequency bands. The 

most discriminating features of the signals have been 

discovered utilizing the PSD technique feature extraction. 

After that, the most desirable traits from the frequency 

domain are selected through the hybrid PSO-ABC algorithm.  

Finally, based on the emotion model, the Deep CNN 

classifier recognizes emotions. The primary objective of this 

DCNN is to evaluate the data and detect a psychological 

pattern precisely. Each component of the proposed system is 

described in depth below. 

2.1. EEG Signal Preprocessing Using HPIIRZ Filter 

Eliminating mobility artifacts in ECG signal 

preprocessing is difficult, considering the broad range of 

motion aberration frequently coincides with the highly 

significant spectral elements of the ECG signal. Hence, 

HPIIRZ filter is used in the present research to decrease 

motion artefacts in EEG signals. 

The periodic difference equation that describes IIR 

filtering is as follows: 

𝑦(𝑛) = ∑ 𝑏𝑚𝑥(𝑛 − 𝑚) − ∑ 𝑎𝑚𝑦(𝑛 − 𝑚)  𝑁
𝑚=1

𝑀
𝑚=0   (1) 

Where 𝑦(𝑛) is the filtered signal, 𝑥(𝑛)is the input 

signal, 𝑁 is the filter order, and 𝑏𝑚, 𝑎𝑚 denotes the filter 

coefficients. IIR filters have a substantially lower minimum 

filter order than FIR filters, allowing them to achieve the 

necessary stop-band retardation.  

The delay period of the various spectral elements in the 

input ECG signal will differ after filtration because IIR filters 

possess non-linear phase responses, leading to 

misinterpretation of the ECG waveform. To solve this issue, 

the IIR filter must be implemented with the zero-phase 

filtering approach. The zero-phase filtering method reduces 

distortions by analyzing the input signal forward and 

backward. In the advancing step, the input signal is 

processed with the developed filter and in the backwards 

phase, the outcome achieved is flicked in time before the 

sifting with the identical filter.  

Emotion-relevant EEG characteristics have been 

identified and associated with psychological conditions after 

signal preprocessing. These features are extracted from the 

frequency domain utilizing PSD, which is described in the 

following section. 

2.2. EEG Signal Feature Extraction Using PSD Method 

Throughout frequency-domain research, power features 

related to distinct frequency bands employed for EEG 

rhythms are discovered in the frequency phase. The 

coefficients of the integrated three power attributes for 

specific frequency bands are calculated as follows. 

2.2.1. Features of Power Spectral Density (PSD) 

PSD is an effective response sequence for the frequency 

characteristics index and is employed to clarify the pattern of 

signal shifts in frequency when unanticipated vibrations 

generate power. The auto-correlation function 𝑡(𝑘) of the 

randomized signal 𝑥(𝑡)is defined by equation (2) as follows: 

𝛾𝑋(𝑘) =
1

2𝜋
∫ 𝑆𝑡(𝑤)𝑒𝑗𝑤𝑘+∞

−∞
𝑑𝑤  (2) 

Where E is the expected value and 𝑥(𝑡 +  𝑘) denotes the 

conjugated function of 𝑥(𝑡 +  𝑘). Equations (3) and (4) are 

used for expressing the appropriate inverse transform and 

Fourier transform of the function of auto-correlation𝑡(𝑘), 

respectively, when it satisfies the requirement.   
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Fig. 2 Deep CNN for emotion recognition using EEG signal
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𝐹𝑉𝑝𝑠𝑑 = 𝑆𝑡(𝑤) = 𝐹[𝛾𝑋(𝑘)] = ∫ 𝛾𝑡(𝑘)𝑒−𝑗𝑤𝑘𝑑𝑘
+∞

−∞
 (3) 

𝛾𝑡(𝑘) =
1

2𝜋
∫ 𝑆𝑡(𝑤)𝑒𝑗𝑤𝑘+∞

−∞
𝑑𝑤  (4) 

When 𝑘 =  0, the autocorrelation function 𝑡(𝑘)displays 

the signal’s amplitude. The Fourier transform𝑆𝑡(w), at the 

unit frequency, represents the PSD of the signal. The four 

bands powers theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 

Hz), and gamma (30–50 Hz) are believed to be featured in 

the present study. A hybrid PSO-ABC strategy is used in this 

study to select the ideal characteristic combination from a 

range of dimensions. The following provides a full 

explanation of the proposed feature selection method. 

2.3. EEG Signal Feature Selection Using Hybrid IABC-

PSO 

The present research integrates the ABC phases with 

PSO and mutation operations. In Figure 3, this combination 

is referred to as ABC-PSO mutate. The ABC exhibits a bad 

balance between exploitation and exploration, which is the 

reason for it.  

To offer superior solutions, mutations have been created 

in both Onlookers and Scout Bees, and PSO particles are 

contrasted with employed bees to take benefit of them. 

Additional benefits of the ABC algorithm include excellent 

reliability, quick convergence, and significant flexibility. 

Premature convergence in the subsequent search phase is a 

drawback, though. Sometimes, the precision of the ideal 

value falls short of the standards. To overcome this issue, 

Improved ABC optimization is provided here. This IABC-

PSO method aims to enhance the search capabilities of Bees 

when their behaviour does not supply good source foods. 

Initially, PSO velocity is used to improve ABC 

employed Bees, and the fitness of employed bees solutions 

and Particle solutions are compared. The very best value is 

preserved, and in addition, in the observer phase, GA 

mutation is utilized. After enough iterations, if the likelihood 

of the food source (i) is not increased, the solution is 

modified, and its fitness is compared to the previous value; if 

the new solution is superior, the old food source is swapped 

out for the new one.  

Scout bees look for fresh approaches when put to work, 

and observers become trapped. Therefore, the proposed 

algorithm suggests that ‘the worst solution’ and two ‘random 

good options’ be changed to change how scouts behave. The 

most excellent food source is the new one. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.  3 Feature selection using hybrid IABC-PSO 
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HYBRID ABC-PSO ALGORITHM 

Input    : Data.class, NB features, PSO parameters 

Output : Finalsubset, accuracy; 

1. Initialize the population of solutions Xi ,∀i,i=1,….,NB. 

2. Evaluate the population Xi ,∀i,i=1,….,NB. 

3. Copy the population Xi and its fitness in PSO initialization population. 

4. for cycle=1 to Maximum Cycle Number do 

5. Improved Employed Bees(); 

For each Employed Bees i 

Produce new solutions Vi using Equation (1) and evaluate it. 

                V(i,j)=X(i,j)+phi(i,j)*(X(i,j)-X(k,j))                                                 

       J is a feature index 1…D. 

Calculate new velocity Vel (i+1) PSO and new position X (i+1)  

Compare fitness X(i+1) and new source food V(i).keep the best (Vi,Xi+1). 

Update pbest and gbest and apply the greedy selection process. 

If fitness(V(I,:)>Fitness(X(I,:)) then X(I,:)=V(I,:) 

End for 

6. Onlooker Bee phase; 

7. Scout Bees phase 

8. Memorize the best solution achieved; cycle=cycle+1 

    End for 

 

This IABC-PSO supports competitive behaviour among 

onlooker bees and PSO particles to create an improved 

balance between exploration and exploitation. First, 

concerning fitness, all initially employed bees are replicated 

into swarm PSO particles. Additionally, employed bees and 

particles work together to estimate the location and velocity 

of the particles, and the employed bees also determine the 

new food sources. Each option is assessed and contrasted, 

then the optimal solution is determined. The DCNN classifier 

is utilized in this system to perform classification, which is 

explained below. 

2.4. EEG Signal Classification Using Deep CNN 

The deep convolutional neural network’s framework for 

identifying sequences of proteins is shown in Figure  4. It 

consists of 14 layers, including an input layer, a flattening 

layer, a fully connected layer, a convolutional layer, and an 

output layer. The output layer now uses the softmax function 

to calculate the possibility of the 1195 data. The initial layer 

has input numbers that indicate the location data of a 

parameter length of the sequence of proteins.  

In the convolution layer, the filter is employed to input 

layer to produce hidden features by batch normalization, 

convolution and non-linear change of its components with an 

activation function. Two window sizes close to the median 

lengths of a protein’s beta-sheet and alpha-helix have been 

chosen after various window sizes in the one-dimensional 

convolution layer have been investigated. 

The second convolution layer is similarly converted 

utilizing the hidden features produced by the ten filters using 

two different-sized windows in the initial layer. Level 10 of 

the convolution layer is selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.  4 Prediction model architecture of DCNN 

Input Conv Layer 1 Conv Layer 2 Conv Layer 10 Pooling Layer Flatten Layer Dense Layer Output 
L x 45 10 x (L x 2) 10 x (L x 2) . . . . 10 x (L x 2) 10 x (30 x 2) 10 x (30 x 2) 10 x 500 10 x 1195 

Convolutions 
10 Filters 

2 Filter Sizes 

Convolutions 
10 Filters 

2 Filter Sizes 

Convolutions 
10 Filters 

2 Filter Sizes 

30-Max 
Pooling Flatten  Fully-Connected  

Dropout Softmax 

0  0.2  0.4  0.6  0.8  1 
b.40 

b.15 
b.43 
b.7 
b.6 



T. Manoj Prasath & R. Vasuki / IJEEE, 10(9), 124-136, 2023 
 

130 

The max pooling layer was added based on design to 

convert the variable number of hidden features in the 

convolution final layer to a fixed number of elements; in this 

case, K is set to thirty. For each feature map formed by a 

window size with a filter, the 30 highest values are obtained 

and concatenated. A brief explanation of the various output 

stages is provided in the following section. 

3. Results and Discussion 
The present research analyses human emotions using 

EEG signals and the DL method to recognize and categorize 

different emotional states. The HPIIRZ filter technique is 

used in the initial stage of eliminating the artefacts in the 

EGG signals. Employing PSD and hybrid IABC-PSO, the 

best features are retrieved and chosen accordingly. 

Subsequently, Deep CNN is successfully used to classify the 

emotions accurately. The proposed system was implemented 

using the Python platform to verify its performance, and the 

obtained results are explained in the below section.  

The input EEG signal waveform is illustrated in Figure 

5. Similarly, the waveform for a sampling frequency signal is 

seen in Figure 6. The arousal level displays the degree of 

excitation and relaxation. At the same time, the valence 

indicates the degree of pleasurable and uncomfortable (i.e., 

positive and negative) emotions. 

The proposed system’s preprocessed signal description 

is shown in Figure 7. EEG signal waveforms that have been 

smoothed were demonstrated in the outcome. Artefacts are 

eliminated from the EEG signals using preprocessing, which 

involves filtering, epoch selection, and signal averaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Input EEG signal  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 EEG signal with a sampled frequency 
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 Fig. 7 Preprocessed by using HPIIRZ filter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Artifact detection from brainwaves, including beta, theta, gamma, and alpha 

Signals captured by EEG that aren’t produced by the 

brain are called artefacts. Some artefacts may resemble 

seizures or actual epileptiform aberrations. It’s critical to 

differentiate between artefacts and brain waves by looking at 

the logical topography field of distribution for actual EEG 

abnormality. The movement artefact is subsequently 

extracted using the HPIIRZ filter, and it can be eliminated 

from the ECG signal by subtracting the extracted one, as 

illustrated in Figure 8. Figure  9 illustrates the theta, alpha, 

beta and delta waveforms. Here, Alpha brainwaves are 

related to imagination and meditation, Beta brainwaves are 

generated during intense thought, Theta brainwaves are 

present during deep sleep, and Gamma brainwaves are 

related to solving issues, joy, and compassion. 
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Fig.  9 Representation of a sample dataset shows several brainwaves 

According to Figure 9, the human brain’s electrical 

wave is made up of the following five primary frequency 

bands: delta (1-3Hz), alpha (8-13Hz), beta (14-30Hz), theta 

(4-7Hz) and gamma (31-50Hz). Each band’s properties can 

be used to infer a subject’s cognitive and emotional states. 

The efficacy of the classification is improved by using The 

Power Spectral Density (PSD) feature extraction approach to 

derive the features based on several frequency 

transformations. Figure 10 illustrates how a signal’s PSD 

examines the power distribution throughout the frequency 

range. The accuracy and loss of the DCNN classifier’s 

testing and training periods are shown in Figure 11. The 

proposed DCNN classifier has enhanced performance with 

minimal testing and training loss, as shown by the graph. 

Consequently, the proposed approach distinguishes different 

emotional states from the EEG signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  10 Feature extraction using PSD 
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Fig.  11 Outcome of accuracy and loss of Deep CNN 

3.1. Comparison Analysis 

Here, the proposed methods with various existing 

approaches are carried out in this section. From the analysis, 

it is clear that the proposed system has high accuracy in 

identifying the different mental states of humans. Figure  12 

shows how the proposed filter processing affects the ECG 

signal appearance.  

Figure 11 illustrates that IIR filtering deforms the ECG 

waveform somewhat, whereas zero-phase IIR filtering 

preserves its original structure. Consequently, the zero-phase 

method is essential for HPIIRZ filtering to eliminate motion 

artefacts and maintain the system of the ECG signal. 

Table 1 shows a comparative investigation of proposed 

Deep CNNs with various classifiers, including KNN [19], 

DBN [20], and MLP [21, 22], and Figure 13 shows the 

corresponding graph. The findings show that the proposed 

classifier has an outstanding accuracy for predicting human 

emotions, which is 95.80%.  

Three examples of data splitting used to train and test 

classifiers are shown in Tables 2 and 3. Every splitting 

outcome is shown in the results. According to the table 

findings, the suggested DCNN outperforms existing 

algorithms regarding accuracy, specificity, sensitivity, FI, 

and precision. 

Table 1. Accuracy comparison of classifier 

Classifier Accuracy 

KNN [19] 86.75 % 

DBN [20] 87.62 % 

MLP [21] 78.11% 

Proposed Deep CNN 95.80 % 
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Fig.  12 Comparison of filtering methods 

 
Fig.  13 Accuracy comparison 

Table 2. Classification outcomes of testing and training of EEG signals (arousal and valance) 

 Valance Arousal 

Classifier F1 Recall Precision F1 Recall Precision 

DCNN 94.56 94.7 95.3 94.44 94.97 95.67 

KNN [24] 93.32 93.18 93.09 93.35 93.95 93.60 

DT [24] 92.06 91.23 92.65 91.28 91.56 91.22 

NB [24] 91.72 92.51 91.93 92.80 92.62 92.32 
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Table 3. Classification outcomes of testing and training of EEG signals 

(accuracy (ACC), sensitivity (SN), specificity (SP), and positive 

predictive (PPV)) 

Classifier SN SP PPV ACC 

DCNN 95.23 94.76 94.34 95.80 

KNN [24] 94.03 94.03 94.03 94.03 

DT [24] 88.50 88.50 88.50 88.50 

NB [24] 92.27 92.27 92.26 92.27 

 

4. Conclusion 
Over the past ten years, EEG-based emotion 

identification has expanded in popularity as a BCI 

technology. Feature extraction and selection, preprocessing, 

and classification are all steps in an emotion identification 

system. Currently, deep learning is successfully applied to 

categorize emotions in BCI systems, and the outcomes have 

been enhanced concerning conventional classification 

methods. Hence, this research presents a computerized 

method for deriving feelings from EEG information. HPIIRZ 

filtering approach is initially implemented to reduce artifacts 

in EEG signals. Then, employing a hybrid IABC-PSO, the 

frequency and spectrum features are retrieved using the PSD 

method, from which the best parts are picked. At the 

classification stage, DCNNs are subsequently employed to 

categorize emotional states. To assess the efficacy of the 

proposed model, including accuracy, specificity, and 

sensitivity, a model of evaluation is established using the 

Python platform. According to the results, the proposed 

technique is effective, while the DCNN-based method has a 

greater accuracy of 95.80%. 

 

References 
[1] Eman A. Abdel-Ghaffar, Yujin Wu, and Mohamed Daoudi, “Subject-Dependent Emotion Recognition System Based on 

Multidimensional Electroencephalographic Signals: A Riemannian Geometry Approach,” IEEE Access, vol. 10, pp. 14993–15006, 

2022. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Tengfei Song et al., “MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition,” IEEE Access, vol. 7, 

pp. 12177–12191, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Smith K. Khare, and Varun Bajaj, “Time–Frequency Representation and Convolutional Neural Network-Based Emotion Recognition,” 

IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 7, pp. 2901–2909, 2020. [CrossRef] [Google Scholar] 

[Publisher Link] 

[4] Xiaobing Du et al., “An Efficient LSTM Network for Emotion Recognition from Multichannel EEG Signals,” IEEE Transactions on 

Affective Computing, vol. 13, no. 3, pp. 1528–1540, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Haiyun Huang et al., “An EEG-Based Brain-Computer Interface for Emotion Recognition and Its Application in Patients with Disorder 

of Consciousness,” IEEE Transactions on Affective Computing, vol. 12, no. 4, pp. 832–842, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[6] Chang Li et al., “EEG-Based Emotion Recognition via Transformer Neural Architecture Search,” IEEE Transactions on Industrial 

Informatics, vol. 19, no. 4, pp. 6016–6025, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Zhi Zhang, Yan Liu, and Sheng-hua Zhong, “GANSER: A Self-Supervised Data Augmentation Framework for EEG-Based Emotion 

Recognition,” IEEE Transactions on Affective Computing, vol. 14, no. 3, pp. 2048-2063, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[8] Yang Li et al., “GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition,” IEEE Transactions on 

Affective Computing, vol. 14, no. 3, pp. 2512-2525, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Wei Tao et al., “EEG-Based Emotion Recognition via Channel-Wise Attention and Self-Attention,” IEEE Transactions on Affective 

Computing, vol. 14, no. 1, pp. 382-393, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Alireza Samavat et al., “Deep Learning Model with Adaptive Regularization for EEG-Based Emotion Recognition Using Temporal 

and Frequency Features,” IEEE Access, vol. 10, pp. 24520–24527, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Ningjie Liu et al., “Multiple Feature Fusion for Automatic Emotion Recognition Using EEG Signals,” 2018 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 896-900, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Tengfei Song et al., “EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks,” IEEE Transactions on 

Affective Computing, vol. 11, no. 3, pp. 532–541, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Jingzhao Hu et al., “ScalingNet: Extracting Features from Raw EEG Data for Emotion Recognition,” Neurocomputing, vol. 463, pp. 

177–184, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Luz Santamaria-Granados et al., “Using the Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals 

Dataset (AMIGOS),” IEEE Access, vol. 7, pp. 57–67, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Laura Piho, and Tardi Tjahjadi, “A Mutual Information Based Adaptive Windowing of Informative EEG for Emotion Recognition,” 

IEEE Transactions on Affective Computing, vol. 11, no. 4, pp. 722–735, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1109/ACCESS.2022.3147461
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Subject-dependent+emotion+recognition+system+based+on+multidimensional+electroencephalographic+signals%3A+a+riemannian+geometry+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9704864
https://doi.org/10.1109/ACCESS.2019.2891579
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MPED%3A+A+multi-modal+physiological+emotion+database+for+discrete+emotion+recognition&btnG=
https://ieeexplore.ieee.org/abstract/document/8606087
https://doi.org/10.1109/TNNLS.2020.3008938
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Time%E2%80%93frequency+representation+and+convolutional+neural+network-based+emotion+recognition%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/9153955
https://doi.org/10.1109/TAFFC.2020.3013711
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+LSTM+network+for+emotion+recognition+from+multichannel+EEG+signals%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/9154557
https://doi.org/10.1109/TAFFC.2019.2901456
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+EEG-based+brain-computer+interface+for+emotion+recognition+and+its+application+in+patients+with+disorder+of+consciousness%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8651389
https://doi.org/10.1109/TII.2022.3170422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EEG-based+emotion+recognition+via+transformer+neural+architecture+search%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9763316
https://doi.org/10.1109/TAFFC.2022.3170369
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GANSER%3A+A+self-supervised+data+augmentation+framework+for+EEG-based+emotion+recognition&btnG=
https://ieeexplore.ieee.org/abstract/document/9763358
https://ieeexplore.ieee.org/abstract/document/9763358
https://doi.org/10.1109/TAFFC.2022.3170428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GMSS%3A+Graph-based+multi-task+self-supervised+learning+for+EEG+emotion+recognition%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9765326
https://doi.org/10.1109/TAFFC.2020.3025777
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EEG-based+emotion+recognition+via+channel-wise+attention+and+self-attention%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9204431
https://doi.org/10.1109/ACCESS.2022.3155647
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+model+with+adaptive+regularization+for+EEG-based+emotion+recognition+using+temporal+and+frequency+features&btnG=
https://ieeexplore.ieee.org/abstract/document/9723066
https://doi.org/10.1109/ICASSP.2018.8462518
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+feature+fusion+for+automatic+emotion+recognition+using+EEG+signals%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/8462518
https://doi.org/10.1109/TAFFC.2018.2817622
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EEG+emotion+recognition+using+dynamical+graph+convolutional+neural+networks%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/8320798
https://doi.org/10.1016/j.neucom.2021.08.018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ScalingNet%3A+extracting+features+from+raw+EEG+data+for+emotion+recognition%2C%22+&btnG=
https://www.sciencedirect.com/science/article/pii/S0925231221012029
https://doi.org/10.1109/ACCESS.2018.2883213
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+the+deep+convolutional+neural+network+for+emotion+detection+on+a+physiological+signals+dataset+%28AMIGOS%29%2C%22+&btnG=
https://ieeexplore.ieee.org/abstract/document/8543567
https://doi.org/10.1109/TAFFC.2018.2840973
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22A+mutual+information+based+adaptive+windowing+of+informative+EEG+for+emotion+recognition%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8367876


T. Manoj Prasath & R. Vasuki / IJEEE, 10(9), 124-136, 2023 
 

136 

[16] Ante Topic, and Mladen Russo, “Emotion Recognition Based on EEG Feature Maps through Deep Learning Network,” Engineering 

Science and Technology, an International Journal, vol. 24, no. 6, pp. 1442–1454, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Yi Ding et al., “TSception: A Deep Learning Framework for Emotion Detection Using EEG,” 2020 International Joint Conference on 

Neural Networks (IJCNN), pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Shailaja Kotte, and J.R.K. Kumar Dabbakuti, “EEG Signal in Emotion Detection Feature Extraction and Classification using Fuzzy 

Based Feature Search Algorithm and Deep Q Neural Network in Deep Learning Architectures,” SSRG International Journal of 

Electronics and Communication Engineering, vol. 10, no. 5, pp. 85-95, 2023. [CrossRef] [Publisher Link] 

[19] Shengfu Lu et al., “Emotion Recognition from Multichannel EEG Signals Using K-Nearest Neighbor Classification,” Technology and 

Health Care, vol. 26, no. S1, pp. 509–519, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Wei-Long Zheng et al., “EEG-Based Emotion Classification Using Deep Belief Networks,” 2014 IEEE International Conference on 

Multimedia and Expo (ICME), pp. 1-6, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Nikhil Kumar Singh, and Gokul Rajan V., “Facial Emotion Recognition in Python,” SSRG International Journal of Computer Science 

and Engineering, vol. 7, no. 6, pp. 20-23, 2020. [CrossRef] [Publisher Link] 

[22] Adnan Mehmood Bhatti et al., “Human Emotion Recognition and Analysis in Response to Audio Music Using Brain Signals,” 

Computers in Human Behavior, vol. 65, pp. 267–275, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Pooja G. Nair, and Sneha R. “A Review: Facial Recognition Using Machine Learning,” International Journal of Recent Engineering 

Science, vol. 7, no. 3, pp. 85-89, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Rania Alhalaseh, and Suzan Alasasfeh, “Machine-Learning-Based Emotion Recognition System Using EEG signals,” Computers, vol. 

9, no. 4, pp. 1-15, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.1016/j.jestch.2021.03.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emotion+recognition+based+on+EEG+feature+maps+through+deep+learning+network%2C%22+Engineering+Science+and+Technology%2C+&btnG=
https://www.sciencedirect.com/science/article/pii/S2215098621000768
https://doi.org/10.1109/IJCNN48605.2020.9206750
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tsception%3A+a+deep+learning+framework+for+emotion+detection+using+EEG%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9206750
https://doi.org/10.14445/23488549/IJECE-V10I5P108
https://www.internationaljournalssrg.org/IJECE/paper-details?Id=444
https://doi.org/10.3233/THC-174836
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emotion+recognition+from+multichannel+EEG+signals+using+K-nearest+neighbour+classification%2C%22&btnG=
https://content.iospress.com/articles/technology-and-health-care/thc174836
https://doi.org/10.1109/ICME.2014.6890166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EEG-based+emotion+classification+using+deep+belief+networks%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/6890166
https://doi.org/10.14445/23488387/IJCSE-V7I6P106
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=403
https://doi.org/10.1016/j.chb.2016.08.029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Human+Emotion+Recognition+and+Analysis+in+Response+to+Audio+Music+Using+Brain+Signals%2C%22&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0747563216305945
https://doi.org/10.14445/23497157/IJRES-V7I3P115
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review%3A+Facial+Recognition+Using+Machine+Learning&btnG=
https://ijresonline.com/archives/ijres-v7i3p115
https://doi.org/10.3390/computers9040095
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine-learning-based+emotion+recognition+system+using+EEG+signals%2C&btnG=
https://www.mdpi.com/2073-431X/9/4/95

