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Abstract - Efficient energy demand forecasting is pivotal for the reliable operation of modern IoT based smart grids, ensuring 

optimal resource allocation and grid stability. This study introduces a novel approach that combines Convolutional Neural 

Networks (CNN) and Long Short Term Memory (LSTM) networks within a hybrid framework for accurate energy demand 

prediction. An innovative modification of the Sea Lion Algorithm (SLA) is proposed to enhance the model's performance for 

optimal hyperparameter tuning. The hybrid CNN-LSTM architecture leverages the strengths of CNNs in feature extraction from 

sequential data and LSTM's proficiency in capturing temporal dependencies. By synergizing these capabilities, the model offers 

improved accuracy in predicting energy demand patterns, which is critical for effective energy management and distribution. 

The Modified Sea Lion Algorithm (MSLA) is employed to fine-tune the hybrid CNN-LSTM model's hyperparameters effectively. 

Inspired by the behaviour of sea lions in balancing exploration and exploitation during foraging, MSLA ensures an optimal 

configuration of model parameters, leading to enhanced forecasting accuracy. Extensive experiments use real-world energy 

consumption datasets to assess the proposed methodology's efficacy. Comparative analyses are conducted against conventional 

CNN-LSTM models with default settings, highlighting the superiority of the hybrid approach. The results demonstrate that 

integrating CNNs and LSTMs yields more accurate predictions, while the modified Sea Lion Algorithm provides optimal 

parameter values, further enhancing prediction accuracy. 

Keywords - IoT, Hybrid CNN-LSTM, Modified Sea Lion Algorithm, Energy demand prediction, Smart grid. 

1. Introduction 
The Internet of Things (IoT) has rendered it possible to 

observe and operate cyber-physical structures such as smart 

transportation, cities and grids. Many countries' governments 

are developing smart city programmes to improve the use of 

natural resources such as energy and water [1, 2]. The 

expanding population necessitates an increase in energy 

consumption. New energy sources are being merged with 

traditional ones to satisfy the worldwide need for energy.  

 

The impact of warming temperatures has necessitated a 

move from fossil fuels to sustainable energy [3]. The carbon 

footprint of electricity produced by coal-fired power plants 

rises. Energy generated from solar and wind is introduced to 

the current electrical grid to fulfil demand. This has assisted 

in reducing the carbon impact; thus, renewable energy 

gathering should be expanded [4]. 

 

The expense of the energy produced is significant; 

therefore, it has to be used properly. The tracking of energy 

use is improved by implementing smart metering technology. 

Smart meters can help utilities comprehend how every user 

uses electricity and consumers [5]. Real-time monitoring of 

the power grid is made possible by advances in computer 

technology like cloud computing, fog computing, and 

communications technologies like 4G and 5G. The limits of 

the currently conceivable are being challenged by these 

technologies, which are constantly developing [6, 7]. An 

approach known as edge computing brings analytics nearer to 

the system, lowering computational latency. These distributed 

computing approaches boost the effectiveness of monitoring 

and controlling globally dispersed systems [8]. Smart houses 

can track and manage appliances by putting in sensors and 

devices. Smart houses are built to use energy efficiently, 

lowering consumption costs. Most homes are transitioning to 

being consumers of power; automated metering infrastructure 
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helps to acquire detailed information so that Time of Use  

(ToU) based dynamic pricing of consumers is achievable [9]. 

 

Excellent work has been done regarding security for the 

IoT-enabled smart grid. There are a few issues with the 

existing literature, still that have not been tackled. Local area 

network setup employing the smart grid as the network's 

communication foundation is described in [10]. For use in 

field area networks, the developed system can be expanded to 

include more than one sensor node for improved accuracy and 

in the event of node breakdown. However, using several 

sensor nodes to collect data causes prediction oversights. The 

reliability of a smart grid can be predicted using a 

multidirectional LSTM model, as mentioned in [11, 12].  

The results of experiments demonstrate that the MLSTM 

technique works better than the other ML strategies. However, 

the context-aware model must be adopted to make smart grids 

more dependable. The deep convolutional neural networks for 

electricity theft identification for securing smart grids are 

described in [13]. Numerous investigations on actual datasets 

demonstrate that the Wide & Deep CNN model superiors 

other accessible approaches. 

 

However, picking a greater epoch value may result in 

overfitting. Hybrid DNN is proposed in [14, 15] to identify 

non-technical losses in electricity smart meters.  The proposed 

hybrid neural network architecture can surpass the accuracy 

of highly potent classifiers. However, the issue of accurate 

detection has not yet been adequately solved. An ensemble 

approach For PV generation power day-ahead forecasting in 

smart grids is given in [16]. This structure is employed to 

improve the efficiency of facilities' demand-side control and 

power comfort systems. However, the training data standard 

may affect the forecast outcome due to unusual weather 

conditions. In [17], an encrypted federated deep learning 

solution is given for detecting malicious information injection 

threats in smart grids. Compared to centralized detection 

approaches, it features privacy protection for data and lower 

connection latency. However, the capabilities of this system 

are only adequate for handling the detection of several cyber-

attacks. 

 

Consequently, the security issues raised by deep learning 

are examined in this paper on the IoT-integrated smart grid. 

This paper proposes a reliable and strong hybrid CNN-LSTM 

system based on IoT to handle the smart grid security 

challenge. The modified sea lion algorithm has been presented 

here to improve outcomes from the hybrid CNN-LSTM. This 

method fine-tunes the CNN-LSTM approach's 

hyperparameters for enhanced prediction of energy demand 

patterns, which is essential for efficient energy management 

and distribution.  

 

The remainder of the paper is structured as follows.  The 

proposed system is described and modelled in Section II. 

Section III discusses the proposed system's outcomes. Section 

IV offers the conclusion of the article. 

2. Proposed System Description 

Figure 1 depicts an Internet of Things-based structural 

design for a power distribution management system in which 

smart meters communicate with the router. Smart appliances 

are monitored and controlled in the event of energy metering. 

 
Fig. 1 Proposed system architecture 

The receiver system gathers the data, which is 

subsequently authorized to protect the data from attackers. 

Making smart grid choices based on user consumption and 

preferences requires analysis of the encrypted information. 

The data's computing findings are sent back through the home 

area network for efficient utilization. A demand-side 

management security intrusion solution based on CNN and 

LSTM is applied in an IoT-based smart grid. Finally, it 

efficiently classifies the secured, secured and average secured 

data from the IoT database with the assistance of MSLO. 

2.1. IoT Based Smart Grid 

In power systems, the widespread use of clean energy 

sources is becoming an increasingly significant source of 

uncertainty. As demand response resources, loads are 

becoming more involved, strongly correlated with the 

fluctuating regular electricity costs. The price of electricity is 

also associated with several factors, including the organization 

of the power market and current fuel price. Demand side 

medium, or Virtual Power Plants Sources (VPPs), is expected 

to be widely used shortly. In microgrids, the operator must 

cope with a high level of fluctuation and uncertainty as well 

as the grid's current limits, which in some situations may force 

load shedding or restriction. IoT technology can make it easier 
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to address the problems and difficulties needed to avoid such 

activities and maintain the ecological power system's stability, 

security reliability and sustainability. Smart grids supported 

by IoT enable operators to have more thorough grid 

supervision by automatically and precisely tracking all 

variations and developments on both the supply and demand 

sides.  

 

 
Fig. 2 IoT based smart grid 

 

The combination of several energy resources, including 

coal, oil, gas, nuclear, and hydropower, as well as alternative 

forms of energy, including wind and solar, is covered by IoT 

technologies at the production level in a way to enhance the 

operation of the electricity sector as well as preserve the static 

and dynamic stability of the power system. Figure 2 represents 

the concept of IoT for the smart grid. 

 

2.2. Hybrid CNN-LSTM Based Intrusion System 

This research offers a hybrid CNN and LSTM network 

architecture to estimate energy demand. The hybrid CNN-

LSTM architecture uses both the capabilities of CNNs and 

LSTM to capture time-dependent relationships and extract 

features from sequential input. These characteristics work 

together to increase the model's ability to predict energy 

demand trends, which is essential for adequate energy 

utilization and distribution. The proposed CNN-LSTM 

intrusion system efficiently prevents the data from security 

cyber-attacks. A detailed explanation of the proposed CNN-

LSTM is given in the below section.  

 

2.2.1. Hybrid CNN-LSTM Approach 

The CNN model can process one piece of data at a time, 

turning the input pixels into a matrix within the network's 

frame. This process uses a variety of data sets to allow an 

LSTM to establish a fundamental nature and alter weights 

using the (Backpropagation training technique) BPTT during 

multiple iterations of the virtual vector representations of 

input data. If a classifier is trained from frames, the CNN can 

be standardized. If the CNN is untrained, retrain it using back 

propagation faults from LSTM over various input data to 

design the CNN.  
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Fig. 3 Proposed hybrid CNN-LSTM architecture

Figure 3 depicts the CNN-LSTM model's structure of the 

proposed system. In the convolution layer, an enhanced 

attribute description is achieved. As seen in Eq. 1, the 

convolution process is outlined. The convolution layer as 

variable 𝑖 map is represented by the 𝑋𝑖
 𝑎 that is being displayed 

below.  

 

The function of activation is represented by the 𝑏𝑗
𝑎 . The 

input layer of the attribute set (𝑎 − 1) is called. 𝑘𝑖. The 𝑖 of the 

attribute convolution layer 𝑎 and 𝑗 of the attribute layer (𝑎 −
1) are connected by the connection weight. 𝑤𝑗𝑖

𝑎. The 

divergence in the relevant layer is called. 𝑏𝑗
𝑎. 

𝑋𝑖
 𝑎 = ∅[∑ 𝑥𝑗

𝑎−1 ∗ 𝑤𝑗𝑖
𝑎

𝑖𝜖𝑘𝑖
+ 𝑏𝑗

𝑎]       (1) 

The pooling layer follows the convolution layer. This 

layer aims to minimize the attribute map size. Through this 

process, essential characteristics are identified, data 

complexity is decreased, and the network's resistance to 

environmental changes is increased. As seen in Equation 2, 

the pooling layer is given by. 

𝑥𝑖
𝑎 = ∅[𝛽𝑖

𝑎(𝑥𝑖
𝑎−1 + 𝑏𝑖

𝑎)]             (2) 

The sub-sampling function is represented by 𝑐 in this 

example, while the weighting matrix is defined by 𝛽. After the 

convolution and pooling layers, the fully connected layer 

performs the classification function. The resultant process of 

the ultimately linked layer is shown in Equation 3. 

𝑦𝑚 = ∅[𝑤𝑚𝑥𝑚−1 + 𝑏𝑚]                       (3) 

Here, the symbol 𝑚 stands for the layer index, whereas 

the symbols 𝑦𝑚 and 𝑥𝑚−1 represent the input and output of a 

fully connected layer, variance and weighting factor, 

respectively. The recurrent networks' hidden units are 

replaced by LSTM cells, which also feature recurrent 

interconnections. In the LSTM block, the variables 𝑥𝑡 and 

ℎ𝑡−1 stand for the vector input time step 𝑡, time step hidden 

state (𝑡 − 1) and time step memory cell state (𝑡 − 1), 

respectively. These make up the block's inputs. Gates for 

input, forget, and output are included in the LSTM. 

 

The mathematical formulas below outline the 

computations for the LSTM's cell state, input, forget and 

output gates. As a result, an activation function of sigmoid (𝜎) 

in Equation 4 selects which data is possible to obtain via or 

not based on the forget gate 𝑓𝑖
(𝑡)

 for cell 𝑖 at time step 𝑡. For 

the forget gates 𝑏𝑓, 𝑍𝑓 and 𝐷𝑓 Stands for deviation, input 

weight, and recurring weights correspondingly. 

𝑓𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑓

+ ∑ 𝑗𝑧𝑖,𝑗
𝑓

𝑥𝑗
(𝑡)

+ ∑𝑗𝐷𝑖,𝑗
𝑓

ℎ𝑗
(𝑡−1)

)        (4) 

While 𝑏, 𝑍, and 𝐷 stand for deviation, input weight, and 

recurrent weights reaching the LSTM cell, correspondingly, 

Equation 5 shows the modification in the cell state. 𝑛𝑖
(𝑡)

. The 

computation of the cell input gate 𝑝𝑖
(𝑡)

is shown in Equation 6, 

and this analysis is carried out similarly to how the forget gate 

is calculated. 

𝑛𝑖
(𝑡)

= 𝑓𝑖
(𝑡)

𝑛𝑖
(𝑡−1)

+ 𝑝𝑖
(𝑡)

𝜎(𝑏𝑖 + ∑𝑗𝑧𝑖,𝑗𝑥𝑗
(𝑡)

+ ∑𝑗𝐷𝑖,𝑗ℎ𝑡
(𝑡−1)

(5) 

𝑝𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑝

+ ∑𝑗𝑧𝑖,𝑗
𝑝

𝑥𝑗
(𝑡)

+ ∑𝑗𝐷𝑖,𝑗ℎ𝑗
(𝑡−1)

)       (6) 

ℎ𝑖
𝑡 = tanh (𝑛𝑖

(𝑡)
)𝑠𝑖

(𝑡)
         (7) 

𝑠𝑖
(𝑡)

= 𝜎(𝑏𝑖
0 + ∑𝑗𝑧𝑖,𝑗

0 𝑥𝑗
(𝑡)

+ ∑𝑗𝐷𝑖,𝑗
0 ℎ𝑗

𝑡−1)        (8) 
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Algorithm 1: Hybrid CNN-LSTM 

1: 𝐼𝑛𝑝𝑢𝑡: 𝑇𝑟𝑎𝑖𝑛_𝑋, 𝑇𝑟𝑎𝑖𝑛_𝑌 
2: 𝐻𝑦𝑝𝑒𝑟 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝑟𝑎𝑡𝑒, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑙𝑎𝑦𝑒𝑟𝑠, 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 
3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() 
4: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑖𝑛_𝑋, 𝑇𝑟𝑎𝑖𝑛_𝑌) 
5: 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1 =  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 ((𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 2𝐷(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝑑𝑟𝑜 
𝑝𝑜𝑢𝑡, 𝑛𝑎𝑚𝑒 = ”𝐶𝑜𝑛𝑣2𝐷_1”), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒), 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝑟𝑎𝑡𝑒)) 
6. 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑇𝑟𝑎𝑖𝑛_𝑋, 𝑇𝑟𝑎𝑖𝑛_𝑌, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒) 
7. 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1. 𝑓𝑖𝑡(𝑇𝑟𝑎𝑖𝑛_𝑋, 𝑇𝑟𝑎𝑖𝑛_𝑌, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒) 
8. 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  𝑀𝑜𝑑𝑒𝑙(𝑖𝑛𝑝𝑢𝑡𝑠, 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1(”𝐶𝑜𝑛 𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛2𝐷: ). 𝑜𝑢𝑡𝑝𝑢𝑡) 
9. 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1_𝑓𝑒𝑎𝑡𝑢𝑟𝑒. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑇𝑟𝑎𝑖 𝑛_𝑋) 
10. 𝐿𝑠𝑡𝑚𝑚𝑜𝑑𝑒𝑙 
=  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙(𝐿𝑠𝑡𝑚 (𝑢𝑛𝑖𝑡𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛), 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 (𝑢𝑛𝑖𝑡𝑠, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) 
11. 𝐿𝑠𝑡𝑚𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)) 
12. 𝐿𝑠𝑡𝑚𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛_1_𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝑇𝑟𝑎𝑖𝑛_𝑌, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑒𝑝𝑜𝑐ℎ𝑠)) 

In Equation 7, ℎ𝑖
𝑡 stands for the hidden state and 𝑠𝑖

(𝑡)
 for 

the output gate. Eq. 8 illustrates the result of the gate equation, 

where 𝑏0, 𝑍0 and 𝐷0 stand for input weight, deviation and 

recurrent weights, correspondingly. Algorithm 1 comprises 

the CNN + LSTM models' pseudocode. 

 

Hyperparameters are particular weights or variables that 

regulate an algorithm's learning process. Generally, CNN 

provides an extensive range of hyperparameters. Modifying 

CNN's hyperparameters makes obtaining the best value out of 

its functionality achievable. There are going to be numerous 

significant hyperparameters and additional choices for design. 

These established variables are manually added to the 

algorithm throughout the training process. The Modified Sea 

Lion Optimisation Algorithm (MSLO) has been employed in 

the present research to tune the hyperparameters. The optimal 

parameters are more accurately selected with the help of this 

MSLO, which is explained in the following portion. 

 

2.3. Modified Sea Lion Optimization Algorithm (MSLO) 

SLO has been created to address large-scale optimization. 

It imitates sea lions' hunting techniques, such as circling and 

grabbing prey or employing their tail and whiskers. SLO can 

produce outcomes comparable with other recognized particle 

swarm optimization algorithms when applied to various 

benchmark functions. First, utilizing an identical random 

distribution in searching space, SLO creates N (the 

population's size) D-dimensional solutions Equation 9 as 

follows. Prey is regarded as the best existing solution or the 

one that comes near the ideal solution. These actions are 

shown in Equation 10. 

𝑋𝑖,𝑗
𝑖𝑛𝑖𝑡 = 𝑋𝑖,𝑗

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑖,𝑗(𝑋𝑖,𝑗
𝑚𝑎𝑥 − 𝑋𝑖,𝑗

𝑚𝑖𝑛)    (9) 

where 𝑖 = 1, 2, 𝑁, and j=1, 2, D, 𝑋𝑖,𝑗
𝑖𝑛𝑖𝑡  is the beginning 

location vector of the 𝑖𝑡h solution; 𝑋𝑖,𝑗
𝑚𝑖𝑛 and 𝑋𝑖,𝑗

𝑚𝑎𝑥 are the 

minimum and maximum values, respectively, for the 

𝑗𝑡ℎ dimension of the 𝑖𝑡ℎ solution, and 𝑟𝑎𝑛𝑑 is a uniform 

random number in the range [0, 1]. 

The objective function is used to assess the fitness of 

solutions. 

𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 − 𝐶|2𝑟𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔|    (10) 
 

𝐶 = 2(1 −
𝑔

𝑔𝑚𝑎𝑥
)      (11) 

Where, 𝑋𝑏𝑒𝑠𝑡
𝑔

 is the optimal solution's location vector; 𝑋𝑔 

is the SLA in iteration 𝑔, 𝑔 is the present generation, and 

𝑔𝑚𝑎𝑥 is the maximum amount of generations which may 

occur. 𝑟 is a random number between [0, 1], which is divided 

by 2 to widen the scope of the searching operation; 𝑋𝑔+1 

represents the updated search agent's updated position; During 

the iteration, the variable 𝐶′s values declined linearly from 2 

to 0, representing the sea lions' encircling behaviour as they 

approached and surrounded their prey. 

 

The sea lion is the group's leader, whose actions will 

direct the group's movements and determine its behaviour. 

These behaviour are represented mathematically in Equations 

12, 13 and 14. 

𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟 = |(𝑉1(1 + 𝑉2)/𝑉2|                (12) 

𝑉1 = sin (𝜃)  (13) 

𝑉2 = sin (∅)     (14) 

Where 𝜃 is a reflection of voice angle in the water; ∅ is 

refraction voice of angle in the water; 𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟  is illustrating 

the choice of leader followed by other sea lions in the group; 

 

In Equation 15, where m is a random value between [-1, 

1], sea lions hunt the bait ball of fish and begin their hunt at 

the edges. 

𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 + cos(2𝜋𝑚) |𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔|          (15) 

Equation 16 illustrates the procedure for choosing an 

unknown agent and the circumstance that permits the 

exploitation phase to occur when the value of 𝐶 exceeds 1. 
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𝑋𝑔+1 = 𝑋𝑟𝑎𝑛𝑑
𝑔

− 𝐶|2𝑟𝑋𝑟𝑎𝑛𝑑
𝑔

− 𝑋𝑔|    (16) 

Where the sea lion chosen at random from the present 

population is 𝑋𝑟𝑎𝑛𝑑
𝑔

. The value of 𝑟 is chosen randomly from 

[0, 1]. However, conventional SLO has noticeable issues with 

nature-inspired algorithms, such as delayed convergence and 

being stuck in local optima. In contrast to the original SLO, 

the exploitation and exploration phases for ISLO are 

modified in this research. 

𝑑𝑖𝑓1 = (2𝑟1𝑋𝑏𝑒𝑠𝑡
𝑔

− 𝑋𝑔)          (17) 

 

𝑑𝑖𝑓2 = (2𝑟1𝑋𝑙𝑜𝑐𝑎𝑙
𝑔

− 𝑋𝑔)     (18) 

 

𝑋𝑔+1 = 𝑋𝑔 + 𝐶. 𝑑𝑖𝑓1 + 𝐶. 𝑑𝑖𝑓2        (19)  

Where,  𝑋𝑙𝑜𝑐𝑎𝑙
𝑔

 local represents the user's optimal location 

up to iteration 𝑔; 𝑟1, 𝑟2 represent random values between 0 

and 1; 

This case limits the algorithm's ability to exploit 

multidimensional space, where the actual global best solution 

can be hidden in the opposite direction of the present global 

best answer. Eq. 10 is modified to solve this issue by removing 

the minus sign and absolute function. The local best represents 

the 𝑋𝑏𝑒𝑠𝑡  point so far discovered, while the red star is the 

global optimum point, according to Eq. 20. This enhances 

exploitation at first. 

𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 + 𝐶 𝑁(0,1)(2𝑟3𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔)      (20) 

Construct an opposite solution by using 𝑥𝑏𝑒𝑠𝑡 to 

determine 𝑋𝑔+1 oppositional position, you may 

calculate 𝑋𝑜𝑝𝑝𝑜
𝑔+1

. 

 

𝑋𝑜𝑝𝑝𝑜
𝑔+1

= 𝐿𝐵 + 𝑈𝐵 − 𝑥𝑏𝑒𝑠𝑡 + 𝑟4(𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑔+1)  (21)

 

 Algorithm 2 Modified Sea Lion Optimization (MSLO) 

Input: Population size N, the maximum number of generations 𝑔𝑚𝑎𝑥 

Output: The best solution 𝑋𝑏𝑒𝑠𝑡  

1: Initialize the Sea Lion population 𝑋𝑖(𝑖 = 1,2, … . , 𝑛) randomly 

2: Sort the population by its fitness value and find the global solution 𝑋𝑏𝑒𝑠𝑡  

3: 𝑔 = 1 

4: while 𝑔 < 𝑔𝑚𝑎𝑥  𝑑𝑜 

5:    Calculate the value of 𝐶 by Eq.11 

6:    Calculate 𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟  using Eq.10 

7:     for i<𝑁 do 

8:           if 𝑆𝑃𝑙𝑒𝑎𝑑𝑒𝑟 < 1.0  then 

9:               if |𝐶|>1 then 

10:                   Calculate 𝑑𝑖𝑓1 and 𝑑𝑖𝑓2 using Eq.17 and Eq.18 

11:                    Update the location of the current search agent using Eq: 19 

12:                 else 

13:                   Create a new solution using Eq.20 

14:                   Create its opposite solution 𝑋𝑜𝑝𝑝𝑜
𝑔+1

 using Eq.21. 

15:                   Calculate fitness of both solution 

16:                   Compare and keep the location of the better one as the new position for current individual. 

 17:           end if 

18:    else 

19:       if 𝑟𝑎𝑛𝑑() < 0.5 then 

20:          Update the location of the current search agent by Eq: 23 

21:      else 

22:         Update the location of the current search agent 

              by Levy-flight Eq.23 

23:       end if 

24:    end if 

25:    Check the bound and calculate the fitness of the new solution. 

26:    Replace the old solution by the new one if it has a better fitness value 

27:  end for 

28:  Sort the population by its fitness values and 

        Update the global best solution 𝑋𝑏𝑒𝑠𝑡  

29: g = g + 1 

30: end while 

31: Return: 𝑋𝑏𝑒𝑠𝑡  
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By that justification, an extra operation employing the 

Levy-Flight Trajectory (LFT) is suggested for MSL during the 

sea lions' circling phase. It contributes to the population's 

increased diversity and capacity for local exploitation. The 

Levy step size is typically represented as: 

𝐿𝑒𝑣𝑦(𝑠)~|𝑠|−1−𝛽       𝑤𝑖𝑡ℎ     0 < 𝛽 ≤ 2   (22) 

The goal of employing the Levy-flight method for SLO is 

to improve local exploitation variety and the ability to locate 

global optima by its intricate trajectory. As a result, the 

following is the preferred Levy-flight updated equation. 
 

𝑋𝑔+1 = 𝑋𝑏𝑒𝑠𝑡 + 𝑠𝑠 𝐿𝑒𝑣𝑦(𝑠) ⊗ (𝑋𝑏𝑒𝑒𝑠𝑡 − 𝑋𝑔)     (23) 

 

The hybrid CNN-LSTM model's hyperparameters are 

effectively tuned using MSLO. By ensuring that model 

parameters are configured optimally, MSLA improves the 

precision of forecasting. 

 

3. Results and Discussion 
This research offers a dependable and robust hybrid 

CNN-LSTM system based on IoT to tackle the smart grid 

security dilemma. The MSLO algorithm is proposed here to 

enhance the hybrid CNN-LSTM performance. This approach 

optimizes the CNN-LSTM approach's hyperparameters for 

improved estimation of energy demand patterns, which is 

critical for successful energy administration and distribution. 

The obtained results are presented in the below section. 

 

  

 
Fig. 4 Energy consumption comparison
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Figure 4 depicts the proposed approach, as well as 

existing methods such as ANN (Artificial Neural Network), 

CNN, and ADNN (Adaptive Deep Neural Network), used to 

analyze the energy usage of IoT based devices, televisions, 

lights, air conditioners, refrigerator, fan and water heater. The 

essential factors for consideration are the consumer's desires 

and needs. The proposed system turns electronic devices on 

and off based on consumer needs and demand, reducing 

energy waste.   

 

 
Fig. 5 Total energy consumption comparison 

 
Fig. 6 Energy demand at nodes 

The overall energy usage of all home appliances with 

ADNN, CNN, and ANN is depicted in Figure 5. Compared to 

other approaches; the proposed MSLA-optimized CNN-

LSTM attains less energy consumption in smart home 

appliances. The proposed system minimizes energy usage 

because the Automated Connection structure maintains 

effective energy utilization. Furthermore, Figure 6 displays 

the energy requirement of various nodes at different periods. 

Experiments have been conducted in this part to examine 

4 typical performance metrics for time series forecasting, 

namely MSE, RMSE, MAE, and MAPE, in addition to the 

processing time of the experimental approaches. The initially 

chosen metric is MSE, which calculates the mean of the error 

squares. In simple terms, it is the average squared variance 

among expected and observed values. The MSE equation is as 

follows. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦 − 𝑦̂)2𝑛

1  (24) 

Furthermore, the standard deviation of errors in 

forecasting is denoted by RMSE. First, consider residuals that 

indicate the distance the data points are from the regression 

line. As an outcome, RMSE is a measurement of the way 

dispersed these residuals appear.  

 

This metric is frequently employed in environmental 

science, forecasting, and regression analysis to validate 

experimental models and is calculated as follows. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 − 𝑦̂)2𝑛

1   (25) 

Meanwhile, MAE computes the average size of the 

prediction errors while ignoring their directions. It is the mean 

of the absolute differences between the actual and predicted 

outcomes for every scenario in the testing set. It must be noted 

that this evaluation gives equal weight to all individual 

variances. The following equation is used to calculate MAE. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦̂|𝑛

1  (26) 

The final metric, MAPE, measures the precision of a 

predicting approach, including time-series forecasting. The 

subsequent equation represents precision in percentage for this 

metric: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |𝑦 −

𝑦̂

𝑦
|𝑛

1  (27) 

To demonstrate the efficacy of the proposed 

CNN+LSTM+MSLA approach, this part analyses the 

RMSE, MSE, MAE, and MAPE calculated using Equations 

(24)-(24) of LSTM [18], Linear Regression [18]  and CNN-

LSTM [18] and the proposed model for minutely, hourly, 

daily, and weekly observations.

  
Table 1. Experimental approach effectiveness for minute datasets 

No Model MSE RMSE MAE MAPE 
Predicting 

Time (s) 

Training 

Time (s) 

1 CNN+LSTM+MSLA 0.034 0.200 0.084 12.67 40.85 3867 

2 CNN-LSTM [18] 0.374 0.611 0.349 34.84 62.99 2070 

3 LSTM [18] 0.748 0.865 0.628 51.45 114.26 6880 

4 Linear Regression [18] 0.405 0.636 0.418 74.52 37.48 1028 
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Table 2. Experimental technique effectiveness for hourly dataset 

No Model MSE RMSE MAE MAPE 
Predicting 

Time (s) 

Training 

Time (s) 

1 CNN+LSTM+MSLA 0.198 0.438 0.289 28.05 1.50 1345.33 

2 CNN-LSTM [18] 0.355 0.596 0.349 32.83 2.31 820.70 

3 LSTM [18] 0.515 0.717 0.526 44.37 5.95 2281.50 

4 Linear Regression [18] 0.425 0.652 0.502 83.74 2.88 692.12 

 Table 3. Experimental technique effectiveness for daily dataset 

No Model MSE RMSE MAE MAPE 
Predicting 

Time (s) 

Training 

Time (s) 

1 CNN+LSTM+MSLA 0.050 0.167 0.146 20.15 0.54 55.16 

2 CNN-LSTM [18] 0.104 0.322 0.257 31.83 1.91 42.35 

3 LSTM [18] 0.241 0.491 0.413 38.72 2.97 106.06 

4 Linear Regression [18] 0.253 0.503 0.392 52.69 1.32 27.83 

 
Table 4. Experimental technique effectiveness for weekly dataset 

No Model MSE RMSE MAE MAPE 
Predicting 

Time (s) 

Training 

Time (s) 

1 CNN+LSTM+MSLA 0.035 0.203 0.105 27.28 0.7 19.7 

2 CNN-LSTM [18] 0.095 0.309 0.238 31.83 2.06 14.12 

3 LSTM [18] 0.105 0.324 0.244 35.78 3.66 24.42 

4 Linear Regression [18] 0.148 0.385 0.320 41.33 1.48 11.23 

Table 1 shows the outcomes of experimental procedures 

for a minute dataset. The proposed framework achieves the 

highest possible MSE, RMSE, MAE, and MAPE values of 

0.034, 0.200, 0.084, and 12.67. Furthermore, other 

methodologies failed to produce acceptable outcomes for the 

data set. The differences in predicting performance between 

this method and others are rather considerable. As a result, the 

proposed approach outperformed other methods, such as 

Linear Regression, LSTM, and CNN-LSTM for minute 

datasets. 

 

Table 2 shows the achievement findings for the hourly 

dataset. According to the table results, the proposed strategy 

CNN+LSTM+MLSA is the most favourable regarding MSE 

and RMSE, whereas CNN-LSTM retained the highest scores 

in terms of MAE and MAPE for the hourly dataset. 

Concerning processing time, when contrasted to the CNN-

LSTM model, the proposed strategy boosts training time and 

decreases prediction time for hourly datasets. 

 

Table 3 shows that the proposed strategy produces the 

best results for daily datasets. As a result, the proposed model 

is the most effective strategy for predicting electricity 

consumption over intermediate periods. Furthermore, the 

proposed model takes 55.36 seconds to train on a daily dataset, 

whereas CNN-LSTM takes 42.35 seconds. Comparable to the 

preceding dataset, the proposed method takes just 0.54 s for 

predicting time, which is 37% less than the CNN-LSTM 

model's forecasting time. 

 

Finally, Table 4 displays the experimental techniques' 

performance on a weekly dataset. As a result, the proposed 

CNN+LSTM+MSLA technique is the most appropriate 

method for predicting electric energy usage over long periods. 

The proposed method and CNN-LSTM have training times of 

19.7 and 14.12 seconds, correspondingly. 

 

To summarize, Figure 7 depicts approximate percentages 

of experimental procedures across four datasets. In terms of 

four popular performance measures, including RMSE, MSE, 

MAE and MAPE, the proposed methodology, namely 

modified sea lion optimized CNN-LSTM, is the most effective 

method for a majority of the datasets mentioned above, 

comprising minutely, daily, hourly and weekly datasets. 
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Fig. 7 Percentages of tests performed across four datasets. 

4. Conclusion 
This paper presents a unique approach for predicting 

energy demand that integrates CNN and LSTM networks in a 

hybrid architecture. A novel adaptation of the SLA for 

excellent hyperparameter adjustment is provided to improve 

the model's efficiency substantially. The hybrid CNN-LSTM 

architecture takes advantage of CNNs' strengths in feature 

extraction from sequential data and LSTM's expertise in 

preserving temporal dependencies. The MSLA is used to 

optimize the hybrid CNN-LSTM model's hyperparameters 

successfully. MSLA provides an appropriate construction of 

the model's variables, resulting in improved reliability of 

forecasts, and is motivated by the behaviour of sea lions in 

balancing exploration and exploitation during the hunt for 

food. Numerous evaluations are carried out utilizing real-

world energy usage datasets to evaluate the effectiveness of 

the proposed approach. The findings show that combining 

CNNs with LSTMs produces better predictions and that the 

improved Sea Lion Algorithm delivers optimal parameter 

values, further improving prediction accuracy.
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