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Abstract - Full-Reference (FR) video quality evaluation approach that combines frame-based Visual Quality Assessment (VQA) 

with analysis of space-time slices to provide an efficient video quality predictor is proposed. The sample and test video clips are 

first put into a temporal space slice form by the proposed method. Each reference-test video pair is subjected to the computation 

of several distortion-aware maps to define space-time distortions more thoroughly. Then, a standard visual quality model, such 

as Peak Signal to Noise Ratio (PSNR) or Structural Similarity Index (SSIM), is used to process these reference-distorted maps. 

A final video quality score is created by combining several VQA outputs using a straightforward, learnt pooling method. The 

method thoroughly evaluated the Temporal Space Slicing (TSS) algorithm using three publicly accessible video quality 
assessments and discovered that TSS-PSNR performed noticeably better than leading-edge video quality models. 

Keywords - HEVC, Packet loss, Video streaming, Video compression, Video Quality Metrics. 

1. Introduction 
In recent years, video-based applications such as digital 

television, camera surveillance, and video teleconference have 

become increasingly popular in all spheres of society. 
Particularly with the advancement of wireless and video 

technology, individuals can capture recordings of their daily 

lives at any time they choose, using portable mobile devices 

and through social networks. Without a doubt, video traffic 

has increased most of the bandwidth requirements on the 

Internet. Videos, however, expire ahead of time and finally 

reach the processing phases, end users usually, and finally, 

human consumers. The majority of these phases attempt to 

increase the apparent video quality, while others attempt to 

decrease it. In order to provide a positive end-user experience, 

Video Quality Assessment (VQA) is a crucial step in many 

video-based applications [1].  

Many practical uses for VQA exist, such as optimizing 

video systems perceptually and evaluating how well they 

work in terms of visual capture, shrinking, transmission, 

augmentation, and display. Video assessment can be 

accomplished through the use of either subjective or objective 

VQA. The most accurate technique for estimating perceived 

video quality is subjective VQA, which rates recipients’ 

estimated video quality and uses arbitrary scores to get the 

overall video quality score. However, because subjective tests 

are cumbersome, expensive, and time-consuming, it is 

challenging to conduct the subjective study in real-time video-

based systems.  

Even though subjective VQA has so many flaws, it is 

nevertheless vital. The results of the objective VQA 

methodologies need to be compared to the “ground truth” 

provided by subjective VQA. Many researchers devote their 

time and effort to building subjective benchmarking databases 
[2].  

The approach for fast subjective VQA based on hybrid 

data along with active learning built on the idea of interactive 

instruction for data inscription, HA-SVQA, is proposed [3] 

with iterative evaluations of the most beneficial or instructive 

movies, which are chosen using data from both the subject’s 

prior choices and the objective quality forecasts. HA-SVQA 

can expedite the subjective VQA process by removing the 

unnecessary (or less important) films to be evaluated by 

creating a repository of video clips that may portray the range 

of videos studied subjectively, allowing the database to serve 
as a benchmark for video quality. For MPEG video, a multi-

metric model that combines a blockiness detector and a 

perceptual model is suggested [4].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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Because choices must be made locally, creating a statistic 

that can also be included in a video codec’s rate-distortion 

optimization process can be more difficult. An approach that 

employs a fusion of local content elements to determine the 

optimal use of a number of state-of-the-art objective Video 

Quality Metrics at the coding block level [5] was developed.  

A refined non-linear model that mimics the perception 

process of the Human Visual System (HVS) was suggested. It 

combined noticeable distortion and blurred vision aberrations 

adaptively. Noticeable distortion is determined by crossing 

absolute variances using the spatial and temporal tolerance 

maps that describe texture masking effects when the distorted 

video quality is similar to the original footage. This definition 

is essential for assessing quality. It has been discovered that 

metric performance can be further enhanced by characterizing 

blurring artefacts, which are estimated by computing high-

frequency energy changes and weighted with motion speed 

[6]. 

The High-Efficiency Video Coding (HEVC) standard is 

the most recent joint video initiative of the ISO/IEC Moving 

Picture Experts Group (MPEG) and the ITU-T Video Coding 

Experts Group (VCEG) standardization organizations, 

working together as the Joint Collective Team on Video 

Coding (JCT-VC) [7-8]. The first release of the HEVC 

standard is expected to be finished in January 2013, at which 

point ISO/IEC and ITU-T will publish an aligned document. 

Additional work is planned to enhance the standard to cover 

other application scenarios, including extended-range usage 

with optimum resolution and colour format support, scalable 
video coding, and 3-D/stereo/multiview video coding. The 

ISO/IEC 23008-2 MPEG-H Part 2 and the ITU-T MPEG-H 

standard will replace the HEVC standard [9]. 

Multiple versions of video coding standards are evaluated 

for their compression powers using the Peak Signal to Noise 

Ratio (PSNR) and qualitative testing results. The designs that 

are examined utilizing a consistent methodology include 

H.262/MPEG-2 Video, H.263, MPEG-4 Visual, 

H.264/MPEG-4 Advanced Video Coding (AVC), and High-

Efficiency Video Coding (HEVC). Subjective experiments on 

WVGA and HD sequences demonstrate that HEVC encoders 

can attain the same perceptual replication quality as encoders 
compliant with H.264/MPEG-4 AVC, provided they are 

utilized at an average bit rate that is approximately 50% lower. 

It has been shown that the HEVC design offers significant 

advantages for low bit rates, precise video files, and short-

delay communication applications. The measured subjective 

improvement is marginally more significant than the PSNR 

meter’s measurement of improvement [10].  

The most popular options for vehicle networks supporting 

different kinds of applications are in  5G mobile 

communication technology. In order to achieve more 

excellent video streaming quality, the double-buffer technique 

[11] is introduced to lessen the delay impact produced by a 

vehicle’s frequent exchanges between 5G small cells and the 

irregular link effect caused by millimetre-wave propagation 

features. To evaluate the perceived quality of videos with 

packet loss, there are two types of measurement errors for full-

reference saliency-based quality metrics [12].  

The spatial variation in saliency values between the initial 

and deformed videos is measured, as well as a calculated 

average of pixel imperfections among the genuine and 

deformed films. The outcome of both measurements 

additionally makes use of the temporal fluctuation of the 

saliency map of the warped video. There must be an extensive, 

unbiased, publicly available database of distorted movies and 

subjective ratings [13]. A pertinent topic for the resilient 

design and adaption of multimedia infrastructures, services, 

and applications is the analysis of the effects of video content 

and transmission impairments on Quality of Experience (QoE) 

[14].  

Large data sizes are produced when uncompressed video 

signals are transmitted. Higher fidelity, clarity, and resolution 

are also necessary when watching the video material. Utilizing 

videos exclusively for purposes like wearable cameras, remote 

home surveillance, and video chats at high resolutions like 

HD, UHD, and 4K increases video traffic and strains 

telecommunication networks and data preservation.  

To address the expectations for such applications, 5G 

technology with low latency and high speed (100 times 

quicker than 4G) makes 5G more appealing. Packet loss via 

the internet is one of the many types of losses that frequently 
plague video transmission. It is possible to estimate the 

predicted average squared distortion resulting from 

compressed video packet loss by taking into account the 

significance of the dropped packet pattern, particularly the 

spike duration [15].  

Vehicle communications are so important that they must 

be thoroughly tested and assessed. If analytical models can 

accurately simulate all the underlying factors that affect 

vehicular communications performance, they may offer a 

desirable and affordable method for this kind of assessment. 

So far, several analytical models relying on the IEEE 802.11p 

(or DSRC) standard have been presented to analyse vehicle 
communications. Nonetheless, current models typically 

simulate the Medium Access Control (MAC) in detail while 

oversimplifying the consequences of propagation and 

interference.  

As a result, their usefulness as a substitute for measuring 

vehicular communications performance is diminished. To 

close this gap, the IEEE 802.11p standard-based novel 

analytical models that accurately represent the efficacy of 

vehicle-to-vehicle communications are presented in this study 

[16]. 
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2. Space-Time Slice Mappings  
Space-time slice mappings are a technique used in video 

quality assessment to analyze and evaluate the quality of a 

video sequence. This approach combines spatial and temporal 

information to assess the perceptual quality of a video. Here is 

an overview of how it works: 

1. Space-time slices: in video quality assessment, a video 

sequence is divided into a series of space-time slices. 

These slices can be thought of as small chunks of video 

data where both spatial and temporal information is 

considered. 

2. Spatial information: for each space-time slice, the spatial 

information is analyzed. This involves examining the 
quality of the individual frames or frames within a small 

time interval. Spatial information often includes the 

sharpness, contrast, colour accuracy, and other visual 

attributes of the frames. 

3. Temporal information: the temporal aspect considers the 

change in video content over time. It evaluates how 

smoothly the video plays and how well it maintains a 

consistent frame rate. Temporal information may also 

include the presence of artefacts like frame drops, 

stuttering, or motion blur. 

4. Feature extraction: various characteristics are retrieved 
from the spatial and temporal information of each space-

time slice. These features can be both objective 

(quantitative) and subjective (perceptual). Objective 

features might include measures like Mean Squared Error 

(MSE), Peak Signal to Noise Ratio (PSNR), or Structural 

Similarity Index (SSIM). Subjective features could 

involve human assessments or models based on human 

perception. 

5. Quality prediction: after extracting features from the 

space-time slices, a model or algorithm is used to assess 

the overall video quality. Machine learning techniques, 

like support vector machines or deep learning models, can 
be employed to make these predictions based on the 

extracted features. 

6. Quality score: the output of the model is typically a 

quality score that reflects how good the video is thought 

to be. Higher scores indicate better video quality, while 

lower scores indicate poorer quality. 

Space-time slice mappings provide a more 

comprehensive approach to video quality assessment by 

considering both spatial and temporal aspects of the video. 

This is important because video quality issues can arise from 

various sources, such as compression artefacts, temporal 
inconsistencies, or spatial distortions, and this method helps in 

capturing these issues accurately. 

3. Quality Metrics  
The most recent video encoding method, known as High-

Efficiency Video Coding (HEVC), delivers far higher 

compression efficiency than previous coding guidelines. 

Because satellite broadcasts are lengthy in duration for each 

trip (RTT), using packet acknowledgements is challenging. 

Strict latency limits in satellite networks prevent such packet 

confirmations for applications that stream media in true time. 

Using UDP at the transport layer, combining the usage of 
Network Coding (NC) and Turbo Coding (TC) approaches to 

improve video quality across the noisy satellite links. [17]. 

When distributing live video via networks that are prone 

to errors, like wireless networks, there are two issues from the 

standpoint of video coding: random access and packet loss 

correction techniques that do not impact consumers or 

equilibrium consumption with dependable connections are 

hard to come, valuable information is given regarding the 

provision of error recovery and low-latency fast channel 

switching capabilities with minimal impact on quality [18].  

The Full Reference Video Quality Assessment (FRVQA) 

methods may typically produce an acceptable performance 
because they have complete access to the reference data. 

Given that structural data has been shown to be crucial for 

Image Quality Assessment (IQA), it should also be helpful for 

Video Quality Assessment (VQA). Videos feature a third 

dimension over the period axis compared to photos. Therefore, 

for VQA, tracking data should also be essential. 

Furthermore, learning more about the Human Visual 

System (HVS) is particularly beneficial for creating an FR-

VQA approach that corresponds well with human perception, 

dividing the FR-VQA approaches into three groups, namely, 

methods that are directed by structural information, methods 
that are tuned for motion, and perceptually hybrid methods 

that HVS inspires. When it comes to video coding, random 

access and packet loss repair provide the two biggest obstacles 

to live video distribution across networks that are prone to 

errors, including wireless networks. The suggested approach 

lessens this effect by adding a companion stream made up 

entirely of keyframes to an efficient video stream for 

compression.  In addition, comprehensive quantification sheds 

light on how to offer error recovery and rapid, minimal latency 

channel conversion with little effect on average video quality 

[19]. 

3.1. Video Quality Assessment 
Retransmission is usually not employed in exceptionally 

interactive multimedia applications like telepresence, 

teleoperation, or video conferencing because of the 

application’s tight deadline. In these situations, the misplaced 

or inaccurate data needs to be hidden. There is no set standard 

by which to evaluate the perceived quality of the several 

mistake-concealing strategies that are available. The 

performance of currently used metrics for assessing image and 

video quality (such as PSNR, SSIM, VQM, etc.) in assessing 

error-concealed video quality is examined in this work. Packet 

loss occurs to the encoded video, and several error 
concealment strategies are used to mask the loss. We 
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demonstrate that the visual appeal of the frame with errors 

hidden alone does not always indicate the subjective quality 

of the video. Next, we utilize the metrics on the error-veiled 

photos and videos, and the goal of HEVC is to facilitate 

evaluating the output image frame quality in WVSNs [20]. For 

quality evaluation, both subjective and objective assessment 
markers are used. Subjective evaluation is provided by 

immediate display of the reconstructed frames. 

3.1.1. Peak Signal to Noise Ratio 

Peak Signal to Noise Ratio (PSNR) compares the greatest 

strength of an image to the amount of noise that is 

deteriorating to determine how well it can be reproduced. 

Using the most feasible power, an image must be compared to 

an optimum clear image to measure its PSNR. This is how 

PSNR is defined: 

𝑃𝑆𝑁𝑅 = 10 log10 (
(𝐿−1)2

𝑀𝑆𝐸
) = 20 log10 (

𝐿−1

𝑅𝑀𝑆𝐸
)   (1) 

In this case, L stands for the total number of possible 

intensity levels in a picture where the minimum intensity level 

is 0. The following is a description of the average squared 

error or MSE: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ (𝑂(𝑖, 𝑗) − 𝐷(𝑖, 𝑗)2)𝑛−1

𝑗=0
𝑚−1
𝑖=0  (2) 

The matrix data of the original and degraded images are 

denoted by the letters O and D, respectively. I is the index of 

the row inside the picture, where m stands for the number of 

rows of pixels. The term Mean Squared Error (MSE) refers to 

the relationship between the number of pixels (n) and the 
index (j) of each column inside the image. 

3.1.2. Structural Similarity Index (SSIM) 

The Structural Similarity Index (SSIM), which uses 

orthogonal quantitative metrics like brightness and contrast, is 

used to assess how comparable input images in both high- and 

low-resolution are, 

CL(I. I0) =
2μIμI0+C1

μI2+μI0
2+C1

  (3) 

Cc(I. I0) =
2σIσI0+C2

σI2+σI0
2+C2

 (4) 

Since C1 and C2 are constants, normalizing yields the 

image structure, as shown in Equation (5) and its correlations 

are used to evaluate the structural similarity measure. 

 

(I, I0) =  
2σII0+C3

σIσI0+C3
  (5)  

Where 

σII0 =
1

N − 1
∑(Ii − μI)(I0 − μI0)

N

i=1

 

3.1.3. RR-IQA  

The reference image in RR-IQA is not entirely available. 

Instead, the reference image is used to extract several features. 

These characteristics are used by the quality evaluation 

approach as auxiliary data to measure the test image quality. 

RR-IQA techniques can be used for a variety of purposes.  

They could be used to monitor how much the image’s 

aesthetic quality and video data being transferred via real-time 

visual communication networks is degrading. The frequency 

at which the side information is encoded is a crucial design 

factor for RR-IQA systems. If a high data rate is available, 

more information about the reference image can be included, 

allowing for more precise quality predictions. 

3.1.4. VMAF 

 A video quality metric built on machine learning is 

known as Video Multi-method Assessment Fusion (VMAF). 

Many have been drawn to it as a substitute metric to assess 

perceptual quality because it has been experimentally 
demonstrated to have a greater affinity with the visual system 

of the human system than traditional metrics like Peak Signal 

to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) 

in a variety of scenarios. Netflix created VMAF with the 

explicit intent of having a significant correlation with MOS 

ratings.  

A quality estimation model was trained using methods for 

machine learning using a large sample of MOS scores as the 

ground truth. It is a full-reference, perceptual video quality 

metric designed to mimic how people perceive video quality. 

The quality deterioration brought on by compression and 
rescaling is the main emphasis of this statistic. Through the 

computation of scores from several algorithms to determine 

quality and their fusion using a Support Vector Machine 

(SVM), VMAF calculates the perceived quality score. 

3.1.5. VQM  

The Video Quality Metrics (VQM) is an objective 

statistic that compares the amount of distortion people notice 

when assessing video quality. It helps assess video flaws such 

as jerkiness, block distortion, global noise, and colour 

distortion. The Video Quality Experts Group (VQEG) 

developed the VQM algorithm, tested it, and compared the 

results to subjective metrics. The results showed that the 
algorithms values correlated with subjective viewer ratings up 

to 0.9 (90%). 

4. Results and Discussion  
The choice of video quality metric depends on factors like 

the specific application, the nature of the content, and the 

available resources. It is common to use a combination of 
metrics, both objective and subjective, to get a comprehensive 

understanding of video quality. The evaluation of video 

quality is a field of active investigation, and new metrics and 
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models continue to be developed to improve the accuracy of 

quality evaluation. The objective quality value in the 

traditional PSNR scale is shown in Figure 1 for three different 

compression settings (low, medium, and high) during a 

notable packet loss surge. Depending on the degree of 

compression, the viewer perceives a rigid frame with distinct 
characteristics throughout this large burst.  

According to the PSNR data, quality begins to deteriorate 

significantly with the first frame affected by a burst. It 

continues to do so as the difference between the prior and 

current frames gets larger. There can be a further decline in 

quality around the middle of the burst.  

It has to do with a scene transition where the processor 

reconstructs even big sequences by using the H.265 codec and 

setting the error resilience parameters to the numbers. H.265 

is configured to generate one I frame for every 29 P frames 

without any B frames and seven in total slices of each 

structure, that we pack into respective packets and encase in 
RTP packets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 1 PSNR for different compression levels 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
Fig. 2 QoE metrics vs. Bitrate (using H.264 codec) 

Furthermore, as explained below, one-third of the 

macroblocks in every frame are encoded intramode-randomly. 

This procedure simulates packet losses in ad hoc scenarios by 

sending a corrupted bitstream to the decoder. 

Consequently, the QoE parameters acquired for viewer 

video source #1 are shown evolving when the bit rate intensity 

is changed in Figure 2. The expected QoE grading pattern for 

a file or sequence at various bit rates is as follows. a) If frame 

rate levels are beneath the saturation threshold, it should offer 

a decreasing degree of accuracy as the bit rate decreases. b) 

When bit rate levels are above the saturation threshold, a 

person’s perception of quality degree should be roughly the 

same. Video footage from users was transmitted using H.264. 

The measures have an exponential tendency to decline as the 

bit rate increases. 

Figure 3 shows how the QoE metrics vary with H.265, 

whereas H.265 produces a more consistent result. We can 

observe that regardless of the encoder, all QoE at high bitrates 

(high quality) captures the perceptual saturation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3  QoE metrics vs. Bitrate (using H.265 codec) 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 4 QoE metrics 
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As said in the above two cases, identical holds for all 

encoders and sequences. The mapping function is anticipated 

to exhibit monotonicity. Likewise, the expected behaviour 

should be flat, meaning that as bitrates drop, the metrics 

should signal lower quality values. However, if we focus on 

the two lowest bitrates in Figure 3, we see that the quality 
score provided by the RRIQA and H.264 metrics rises as the 

bitrate value drops. That is different from how a QoE should 

act according to expectations.  

The score of RRIQA for H.265 decreases with an 

increased bit rate. Using the H.265 codec, Figure 4 examines 

how the candidate metrics performed during a notable spike in 

QoE metrics. If one or more frames are lost, the quality must 

drastically decrease from a perceptual standpoint and stay 

there until the data flow is restored. Whether a scene shift 

occurs before or after the massive explosion should not matter. 

Despite the compression level, both the VIF and MSSIM 

measures have virtually reached their “bad quality” threshold 
at the time of the burst, where the scene changes; therefore, 

the reported quality has not significantly changed. The quality 

dropping to the bare minimum at the start of the burst indicates 

that entire frames were lost. 

5. Conclusion 
The new model performs substantially better than 

previous models, reaching its peak performance STS-PSNR. 

A significant portion of the predictive ability of the STS 

concept is probably derived from the combined analysis of 

temporal and spatial information as it functions in a domain 

different from where standard principles are applicable. 

Furthermore, the video is broadcast over RTP for both H.264 

and H.265 compression methods, and it evaluates packet loss 

across Full Reference QoE metrics such as PSNR, SSIM, 

VMAF, and RRIQA. To get the simulation results using the 

FFMPEG reference software, the authors employed the setting 

of the libx265 encoder parameters. HEVC reference software 
in various resolutions was used to replicate the measurements. 

The measurements were examined to show that compressed 

raw data provides a higher-quality streaming experience. 

When the video is compressed at low and high compression 

rates, the Full Reference measure displays nondeterministic 

behaviour with packet losses, making it challenging to detect 

and quantify this impact. The quality metrics should be used 

as a compromise between a high-quality measurement 

technique (like human visual perception) and communication 

complexity, notwithstanding minor variations in the packet 

drop strategy. 
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