
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 1, 58-67, January 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I1P106 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Automatic Software Vulnerability Classification Based

on Improved Whale Optimization Algorithm and

Attention Guided Deep Neural Network

Shazia Ali1, Arshia Arjumand Banu2

1Department of Information Technology & Security, College of Computer Science and Information Technology,

Jazan University, Jazan, Kingdom of Saudi Arabia.
2Department of Computer Science, College of Computer Science and Information Technology, Jazan University,

Jazan, Kingdom of Saudi Arabia.

2Corresponding Autohr : arshiabanu27@gmail.com

Received: 17 October 2023 Revised: 19 November 2023 Accepted: 15 December 2023 Published: 20 January 2024

Abstract - The use of computers and the Internet has had two distinct effects on sectors, given the fast-paced growth of
information technology. In addition to ease, they pose significant hazards and covert threats. The primary sources of several

safety problems are software flaws. The safety of the system will be severely compromised after hostile assaults have exposed a

weakness, and it may even result in catastrophic damage. Automated categorization techniques are thus preferred to manage

software vulnerabilities efficiently, enhance system safety, and lower the possibility of system assault and harm. This work

proposes a new automatic vulnerability classification model, the Improved Whale Optimisation Algorithm (IWO), and an

Attention-guided Deep Neural Network (ADNN). To optimize ADNN hyperparameters, IWO was developed based on the

humpback whales’ swarm foraging behaviour. The model uses Information Gain (IG), Term Frequency-Inverse Document

Frequency (TF-IDF), and ADNN. TF-IDF is employed to find the frequency and weight of every chat from the vulnerability

report. IG is employed for feature selection to get the best feature word set. The ADNN is used to build an automatic weakness

classifier to classify security issues accurately. The efficiency of the suggested model has been verified using data from the

National Vulnerability Database (NVD) of the United States. The ADNN model outperformed SVM, Naive Bayes, and KNN
regarding recall rate, precision, accuracy, and F1-score, among other multi-dimensional assessment measures.

Keywords - Information technology, Software vulnerabilities, Security, Automatic vulnerability classification model, Attention-

guided Deep Neural Network, Improved Whale Optimization algorithm (IWO), Term Frequency-Inverse Document Frequency,

Gathering information.

1. Introduction
Software is becoming more significant in many spheres

of life throughout the globe due to the fast growth of
information technology, including the military, society, and

business. Possible software security flaws are simultaneously

rising as a global problem. One of the main factors

contributing to security issues is software. High-skilled

hackers may leverage software flaws to their advantage to

carry out a variety of destructive actions as they see fit,

including stealing users’ sensitive information and shutting

down vital equipment [1].

Once a potential attack exploits a weakness in the

platform, the information system’s security is deeply

compromised. It could have priceless effects. Attackers are
using Windows system flaws in 2017 to expose organizations

all over the globe to Bitcoin recovery tools. Again, Microsoft

issued a total of 372 Office security updates at the same time.

Hackers use workplace security flaws to launch Advanced

Persistent Threat (APT) assaults, disseminate botnets, and

spread other malicious software. The number and diversity of

weaknesses are now gradually increasing, making it crucial to

analyze and manage software vulnerabilities.

According to Balasubramanian, Indian verticals related to

education, Government, and Banking, Financial Services, and
Insurance (BFSI) create the maximum risk. The COVID-19

pandemic has also altered the way attacks are deployed. Since

2020, the percentage of email-based attacks has gone up.

Before 2020, around 36% of threats came via email, with

the remaining threats originating from the Internet. The

percentage of email attacks increased to 89 percent in the first

half of 2022 [2]. In the last several decades, many strategies

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

59

have been put forward to lessen the harm caused by software

defects due to their potentially extreme and severe effects.

Data mining and machine learning techniques are several

approaches to solving this issue.

In [3], a comprehensive analysis of the numerous papers

in software security research and discoveries that employ
machine learning and data mining techniques is provided. To

anticipate software vulnerabilities in various databases, this

work has undertaken an operational investigation into using

specific well-known ML approaches and statistical methods.

Cascade-forward back propagation neural networks, feed-

forward back propagation neural networks, multi-layer

perceptrons, adaptive-neuro fuzzy inference systems,

bagging, support vector machines, M5Rrule, and M5P, along

with reduced error pruning trees, are among the ML

approaches that have been investigated.

The Alhazmi-Malaiya, linear, and logistic regression

models have all been examined statistically. Two distinct
methods are used to assess the techniques’ applicability:

prediction capabilities using various criteria and good-to-fit to

check how fine the model matches the data. It has been shown

that machine-learning approaches significantly outperform

quantitative security prediction algorithms for identifying

software issues [4].

In [5], examine how to use neural approaches for learning

and comprehending code semantics to simplify security

identification and evaluate and critique existing research using

Machine Learning and Deep Learning (DL) methods to

identify software flaws. Researchers have gradually put
forward several automation techniques due to the

advancement of DL technology, which has opened up new

prospects for examining possible software security

vulnerabilities. The purpose of [6] is to investigate how the

latest research employs neural techniques to learn and

interpret code semantics to enhance susceptibility

identification. A review is conducted of the work that uses DL

and neural network techniques to uncover security flaws in

software.

Despite several approaches in existing work, security is

still seen as an issue. So, combining DL technology with

program examination technology is essential to support
software security research and further encourage the growth

of automated detection technology. Traditional detection

methods require significant time and effort from domain

experts in creating feature engineering. This article provides a

detailed overview of the most recent developments in DL

research for software security identification. This paper

suggests a TFI-DNN system that automatically classifies

security risks based on IG, TF-IDF, and ADNN. It can handle

high and sparse word vector spaces better and get more out of

DL’s feature extraction. Following are the work’s significant

contributions:

 In the model, the pre-processing is done with three steps:

stop word filtering, lemmatization, and word

segmentation.

 Second, use TFIDFIG, a DL-based ADNN neural

network model, after using an algorithm to identify the

descriptive text’s features and shrink the produced high-
dimensional word vector space.

 The NVD’s vulnerability data was employed to train and

evaluate the ADNN model using an IWO-based

hyperparameter selection approach.

 The optimization algorithm tunes the hyperparameters

until better accuracy is achieved.

 The results of the tests demonstrate how well the

automated susceptibility detection model in this study

enhances the efficiency of susceptibility assessment.

There are four primary components to this study. The

context and driving forces for this study are discussed in

Section 2, along with the conclusion. The materials and
procedures are fully described in Section 3. The experimental

findings on two benchmark datasets are shown in Section 4.

Section 5 closes this study by outlining the following work.

2. Related Work
Wartschinski et al. [7] presented Vudenc, a vulnerability

detection tool grounded in DL that automatically picks up
characteristics of susceptible code from an extensive and real-

world Python codebase. To find code tokens with comparable

meaning properties and to produce a vector representation,

Vudenc uses a word2vec model.

The next step is to use a Long-Short-Term Memory cells

(LSTM) network to classify vulnerable code token sequences

at a fine-grained level. This will show exactly which source

code parts are most susceptible and give ratings for their

predictions’ reliability. However, this detection methodology

has to be supplemented by automated methods since it takes a

lot of time and requires specialist knowledge.

Yan et al. [8] proposed a Hierarchical Attention Network
for Binary Software Vulnerability Discovery (HAN-BSVD).

The training embedding network, which consists of the word-

attention module and Bi-GRU, adopts HAN-BSVD to

maintain the pertinent information after the pre-processor has

initially improved it with a unified jump address and

normalizing training.

Local features are also recorded, and the Text-CNN and

spatial-attention module feature extraction networks highlight

the most significant regions. The recommended method

outperforms the other examined approaches in terms of

detection when evaluated on the ICLR19 and Juliet Test Suite
datasets. When extracting characteristics from the susceptible

code, this detection method does not highlight critical portions

relevant to the vulnerability.

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

60

Niu et al., [9] A static taint analysis strategy based on DL

has been developed to automatically find Internet of Things

(IoT) software vulnerabilities. This method may reduce the

need for time-consuming human research and increase

identification reliability. The two-stage Bidirectional LSTM

(BLSTM) is used to locate and identify security
vulnerabilities. The suggested method is evaluated using two

vulnerabilities in C/C++ programs: buffer error susceptibility

(CWE-119), and resource management issues (CWE-399).

However, this approach is time-consuming.

Liu et al. [10] proposed a two-level DDoS assault

discovery technique founded on DL and information entropy.

First, suspect elements and ports are found using the

information entropy detection technique at a coarser

resolution. The Convolutional Neural Network (CNN) model

then uses a sophisticated packet-rooted discovery method to

distinguish between legitimate, and suspicious

communications. The controller then executes the defense
plan to block the assault.

Liu et al. [11] developed a deep balance system that

integrates the cutting-edge concepts of deep code

representation learning with fuzzy-based class rebalance.

Create a deep neural network with BLSTM at this stage to

learn exclusionary and invariant code models from labeled

vulnerable and non-sensible codes.

Then, by creating fake samples for the class of susceptible

code, a novel fuzzy oversampling technique is used to

rebalance the training data. At this stage, run several tests

using a real-world ground-truth code dataset from the
FFmpeg, LibTIFF, and LibPNG projects to assess how well

the new system performs. However, the recognition efficiency

of this method still has to be improved.

Zagane et al. [12] proposed the first VulDeePecker-based

DL solution for multiclass vulnerability identification. The

notion of code attention, which may gather data that can aid in

identifying specific vulnerabilities when the samples are

minimal, is the core insight of VulDeePecker. For this reason,

create a dataset from scratch and then use it to assess how

successful VulDeePecker is. This susceptibility detection

approach cannot solve multiclass categorization since it can

only identify problems but not the specific kinds of
vulnerability.

Li et al. [13] proposed a structured framework for DL to

find flaws in source-coded C/C++ applications. The system,

called Syntactic-based, Semantics-based, and Vector

Representations (SySeVR), aims to create program models

that may consider semantic and syntax data relevant to

vulnerability. Effective DL methods are required to minimize

the danger of system attack and destruction, increase the

administration effectiveness of software susceptibility

categorization, and lower the cost of susceptibility repair.

Wang et al. [14] proposed a CNN along with a Gate

Recurrent Unit Neural Network (GRU)-based automated

approach for classifying software vulnerabilities known as

SVC-CG. To begin with, the words in every susceptibility text

are mapped into the space with constrained dimensions to

reflect the semantic data using the Word2Vec-based Skip-
gram language model that was trained to create the word

vector. The local text features are then extracted using CNN,

while the global text context features are extracted using

GRU.

Guo et al. [15] present VulExplore, a model for finding

vulnerabilities that uses both a CNN for feature extraction and

an LSTM network for deep representation. It is based on the

local perception power of CNN, and the time-series forecast

power of LSTM. This vulnerability identification approach

does not adequately consider the implicit links between the

various metric characteristics. Batur Şahin & Abualigah [16]

theoretically processed memories of sequential features as
well as mapped from whole past of prior inputs to target

vectors using deep-learned, long-lived team-hacker features.

Using an immune-based feature choice model, the suggested

method tried to advance the discovery abilities of static

analyses, but there are many false positives in this case.

According to the research above, it is clear that classic

artificial vulnerability categorization approaches have their

limits when vulnerability complexity rises. As a result,

researchers are increasingly focusing on DNN-based

automated vulnerability classification. As discussed, many

DL-based approaches have been proposed, but still, every
work has some disadvantages, mainly in achieving better

accuracy and automatic detection. Also, no previous

approaches used optimization techniques to optimize the

hyperparameters of the proposed model.

3. Proposed Methodology
This study incorporates data from the well-respected

NVD [19] as input. The safety of the system will be severely
compromised after hostile assaults have exploited a

vulnerability, and it may even result in catastrophic losses.

Therefore, it is preferable to use automated categorization

techniques to manage software vulnerabilities efficiently,

enhance system security, and lower the likelihood that the

system will be attacked and compromised.

A brand-new automated vulnerability categorization

methodology (IWO-ADNN) has been put forward. The model

relies on three key components: IG, TF-IDF, and ADNN. TF-

IDF determines the frequency along with the weight of every

word in the vulnerability description; IG is utilized to choose
the best set of feature words; as well as ADNN, a Neural

Network Model, is used to create an ad-hoc vulnerability

classifier to attain effective vulnerability classification, as

illustrated in Figure 1.

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

61

Fig. 1 The proposed methodology framework

3.1. Data Pre-Processing

First, word segmentation is done so that all coherent

susceptibility text information is reduced to a single word,

making the complete susceptibility textual data the lowest

logical unit that can be tallied statistically. The susceptibility

text preparation procedure begins with this, the most crucial

phase. The term segmentation for the susceptibility mentioned
in English is pretty straightforward.

Second, lemmatization is when a non-root form in a word

set becomes a root form, or, depending on the individual, an

English verb changes from a descriptive to a verb prototype.

Transform a noun’s plural form into its single form, a gerund

form into a verb prototype, etc. These terms should fall under

the exact conceptually comparable words from a data mining

standpoint.

Finally, end word filtering, which encompasses both

common and professional end words, is a term used to

describe words that commonly occur in text but add little to

the content. One may obtain a public stop-word list on the
Internet [17], including conjunctions, modal verbs, pronouns,

and popular rewords.

3.2. TF-IDF Calculation

A DNN neural network model founded on DL is then

built into the model after using the TF-IDF-IG (TFIDFIG)

method [18] to extract the description text feature and

minimize the resulting high-dimensional word vector space

dimension. The National Security Database’s susceptibility

data was utilized to train and test the TFI-DNN model (NVD)

[19].

A widely used weighted technology based on statistical
techniques is TF-IDF. There are numerous files, and everyone

has a certain number of words. The significance of the word I

in file “J” should be defined as follows:

𝑡𝑘𝑖𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗

𝑘

 (1)

If i as well as j both contain positive integers, 𝑛𝑖,𝑗 It

frequently shows that a phrase appears in the j 𝐹𝑖𝑙𝑒. This is

how the IDF formula appears.

𝑖𝑑𝑓𝑖 =𝑙𝑜𝑔 𝑙𝑜𝑔
|𝐹𝑖𝑙𝑒|

|{𝑗:𝑤𝑖}|
 (2)

Where, |𝐹𝑖𝑙𝑒| is the number of documents in the collection

as a whole, 𝑓𝑗 is the jth file, and |{𝑗: 𝑤𝑖}| is the amount of

documents that include the term 𝑤𝑖 ∈ 𝑓𝑗. The following is the

TF-IDF equation.

𝑇𝐹𝐼𝐷𝐹 = 𝑡𝑘𝑖𝑗 ∗ 𝑖𝑑𝑓𝑖 (3)

The TF-IDF assesses a word’s significance to a file inside

a corpus or content collection. A word’s value rises

proportionately to how often it occurs in the file but also falls

inversely with its occurrence in the corpus.

If a characteristic is used, it is known as IG X in class Y.

If understood, class Y’s informational ambiguity will

diminish, and the decreased level of ambiguity shows the

significance of the characteristic X to the class Y. An

instructional data set is DS, where |DS| indicates the number of

items in DS. Allowing for K courses CLk, k = 1, 2, … , K, |DS|

is the proportion of examples in a certain class Ck,

∑ |CLk| = |DS|K
k=1 .

If a feature f has n different values {f1, f2, . . . , fn}, DS will

be separated into n subgroups based on characteristic ratings

f, denoted as DS = (DS1, DS2, . . . , DSn), where |DSi| is how

many examples there are in DSi. The group of examples that

make up a class CLk in DSi is DSik and whose calculation looks

like this:

 𝐷𝑆𝑖𝑘 = |𝐷𝑆𝑖| ∩ |𝐷𝑆𝑖𝑘| (4)

Where, |𝐷𝑆𝑖𝑘| the quantity of examples of 𝐷𝑆𝑖𝑘 . Entropy

measured empirically 𝐸(𝐷𝑆) of the data set 𝐷𝑆 is determined

as follows:

𝐸(𝐷𝑆) = − ∑
|𝐶𝐿𝑘|

|𝐷𝑆|
𝐾
𝑘=1 (5)

The entropy that is a conditionally scientific 𝐸(𝐷𝑆|𝑓) of

feature 𝑓 for the dataset 𝐷𝑆 is determined as follows:

𝐸(𝑓) = − ∑ ∑
|𝐷𝑆𝑖|

|𝐷𝑆|
∙

|𝐷𝑆𝑖𝑘|

|𝐷𝑆𝑖|
∙

|𝐷𝑆𝑖𝑘|

|𝐷𝑆𝑖|
𝐾
𝑘=1

𝑛
𝑖=1 (6)

The knowledge gained 𝐼𝐺 method for every concept’s

computation 𝑓 is as follows:

𝐼𝐺(𝐷𝑆, 𝑓) = 𝐸(𝐷𝑆) − 𝐸(𝑓) (7)

Each feature’s informational gain is computed following

the feature selection technique of the informative gain criteria,

and the features with higher informational gain values are

chosen. The step-by-step algorithm for TFIDFIG is given as

follows:

Input

Vulnerable

XML file

TF-IDF
Calculation

Information Gain

Calculation for

Feature Selection

Apply IWO-ADNN for

Vulnerability

Calculation

Performance Evaluation of
the Results

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

62

Algorithm 1. The steps of the TFIDFIG algorithm

Input : File 𝐹𝑖𝑙𝑒 and frequency of words 𝑛𝑖,𝑗.

Output : feature word set (𝑓).

1. Determine each word’s TF value in accordance

with (1).
2. Determine each word’s IDF value in accordance

with (2).

3. Determine each word’s TF-IDF rating in

accordance with (3).

4. TF-IDF value-based descending sorting of the word

set.

5. Choose the first n words as a crucial characteristic

group.

6. Include those n terms in the feature set.

7. Calculate the empirical conditional entropy

𝐸(𝐷𝑆) of the data set 𝐷𝑆 based on (5 and 6).

8. Estimate the 𝐼𝐺 value of every word according to

(7).

9. Keep a dictionary copy with each term and its

matching IG value. 15) The set of words is arranged

by IG value in decreasing order.

10. The feature words should include the paramount m

words you choose as features.

11. Return feature words 𝑚 as final, essential features.

4. Detection of Software Vulnerabilities Using

ADNN
Since there are m feature words in the feature word

collection, each vulnerability description in the
implementation of this study is stated as an m-dimensional

vector. The vector description of the susceptibility is created

by vectorizing each susceptibility text sample via m-

dimensional space. Every susceptibility sample may be

considered an opinion in a high-dimensional space

representing a single susceptibility sample. vi is vi =
wi {w1, w2, … , wm}.

The number m of feature words in this formula represents

the vector space dimension of vulnerability. After the

vectorization representations of the susceptibility
descriptions, the natural language-presented susceptibility text

data is altered into a data structure that can be recognized by a

computer and represented via statistical learning.

The words in various terms in a human phrase are

associated in this study, which uses the DL framework

ADNN. For example, the time adverbial controls whether the

predicate adds “ed,” and the subject may influence the

predicate’s forms (single or plural).

Therefore, it is suggested that self-attention considers

various words in a single sequence while computing

representations of the sequence [19]. As shown in Figure 2,

the structure of the ADNN is currently being discussed in
depth.

4.1. Embedding Block

The two sub-components of embedding E are word

encoding and learning embedding. The research considers the

word information in ADNN since the characteristics of

various words interact. Consequently, the term “encoding” is

established [19]. The word encoding converts a feature’s word
w from a specific input sequence to a d-dimensional word

vector. EW utilizing the following equations:

𝐸𝑤,2𝑖 = 𝑠𝑖𝑛 (
𝑤

10000
2𝑖
𝑑

) (8)

𝐸𝑤,2𝑖+1 = 𝑐𝑜𝑠 (
𝑤

10000
2𝑖
𝑑

) (9)

Where, 2𝑖, 2𝑖 + 1 ∈ [0, 𝑑 − 1] is the channel for the

incoming vector. Choose sine and cosine functions with a

constant of 10000 for this section. As a result of collecting all

text data related to vulnerabilities from 2000 to 2016 for

statistical purposes, ten thousand were chosen as the training

set, along with 1,000 serving as the test set.

As a result, each output dimension is a sinusoid.

Moreover, a geometric progression of wavelengths is [2𝜋,

10000 × 2𝜋]. Thus, for any given offset, these processes

enable the model to learn the related words 𝑘, 𝐸𝑤+𝑘 maybe

seen as a linear function of 𝐸𝑤. Each characteristic in the

vector is given a more profound significance thanks to the

learnt integration f [4]. Specifically, let 𝑓𝑖 ∈ [0, 255] be a

component of f, have:

𝑦𝑖 = 𝐶𝑙𝑜𝑛𝑒ℎ𝑜𝑡(𝑓𝑖) (10)

Where, the one hot encoding is indicated by the term “one

hot.” 𝑤𝑖 ; 𝐶𝑙 throughout learning, the learned coefficient

matrix C is revised in an adaptable manner and 𝑦𝑖 is a d-
dimensional embedding vector that has been transformed.

Therefore, for each fi ∈ f, have a PEpos and a yi at this stage,

accordingly. For f, at this moment, afterwards, Cf = Filew(f)

and Cl = FileE(f) where Filewand FileE symbolise the words

“learned embedding” and “encoding,” accordingly. Cf and

Cl are the matching outcomes presented as a matrix.

4.2. Encoder Block
Each encoder incorporates self-attention, residual

connection, layer normalization, and a straightforward one-

dimensional DNN, as illustrated in Figure 1. A function that

describes self-attention may map three matrices: File

𝐹𝑖𝑙𝑒 , frequency of words 𝑛𝑖,𝑗 , feature word set (𝑓) to a

weighted result of 𝑊𝑓𝑉. “Self” indicates that 𝐹𝑖𝑙𝑒 = 𝑛𝑖,𝑗 = 𝑓

and 𝑊𝑓is given as:

𝑊𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ∑ (
𝐹𝑖𝑙𝑒∙𝑛𝑖,𝑗

√𝑑′
)𝑛

𝑖=1 (11)

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

63

Where d′ stands for K’s dimensions. Here, the softmax

function is described as:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦)𝑗 =
𝑒𝑥𝑝𝑒𝑥𝑝 𝑦𝑗

∑ 𝑒𝑥𝑝𝑒𝑥𝑝 𝑦𝑖

𝑖

 (12)

Now, each element should be subjected to an exponential

process yj and divided. A complete number of linked indices

by the length of the input vector y is used to normalize these

values. Additionally, the encoder’s input ER is a matrix in

ERl×d something so huge that focusing on it directly might
cause a loss of local knowledge. Decide to split the d channels

into h groups now. (so 𝑑 ′ = 𝑑/ℎ).

Practice has shown that deeper networks may sometimes

perform better, thus cascade n encoders to ADNN at this stage.

Deep networks, however, exhibit the characteristics of

sluggish training. So, to speed up the training at this stage,

employ the residual connection [10] and layer normalization

[3]. The remaining link may be defined as,

𝑦 = 𝑂𝑝(𝑥) + 𝑥 (13)

Where, the function Op designates a few operations
carried out on input x using an attention-guided method. The

two “+” symbols in the encoder element of Figure 1 show the

residue connections. The left arrow of the “+” sign denotes

F(𝑥), while the top arrow denotes 𝑥. It’s important to note that

the remaining connectivity necessitates that the research

always ensures that the input dimension dx and the output

dimension dy are the same.

Hence, at this point set, 𝑑𝑥 = 𝑑𝑦 = 𝑑, where d is the

before-specified embed vector’s length. In addition, the layer

normalization converts the output y’s elements to floats with

values between 0 and 1 to aid in convergence. The encoder’s

DNN structure is straightforward. ReLU and Maxpool are

placed after the first convolution layer, respectively. The DNN

module’s convolution and pooling layers parameters are

kernel = 3, stride = 1, and pad = 1.

4.3. ADNN Classifier

A feature matrix is the outcome of the final encoder ′ ∈
 𝐸𝑅𝑙×𝑑 . Now, add together the rows to obtain a feature vector.

𝑣 ∈ 𝐸𝑅𝑙×𝑑. The vector at this position is obtained by

performing a linear projection on v.𝑣𝑁 ∈ 𝐸𝑅𝑁 , N is the

quantity of documents. 𝑣𝑁 does the softmax method’s input
consist of:

 𝛴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑁) (14)

The definition of softmax is in Equation (13). The values

of each component 𝛴𝑗 ∈ 𝛴 reflect the likelihood that the packet

falls within the relevant classification j. If 𝛴𝑗 the label j is

chosen as the last projection since it has the highest values.

Fig. 2 The overall structure of the ADNN method

The cross-entropy loss is created in the training phase,

depending on,

𝐿𝑜𝑠𝑠 =
−𝑙𝑜𝑔𝑙𝑜𝑔 𝛴𝑗

𝐹𝑖𝑙𝑒
 (15)

Where, v the actual class index is denoted by the letter j

and is the class probability vector from Equation (14). In the

present checking batch, the file is the total file count. The

backpropagation with loss algorithm will be used to modify

all parameters in the ADNN. The NVD dataset training sample

is then employed to train the TFI-DNN susceptibility
automated categorization model. The susceptibility test set is

then used to test how well the system works.

5. Hyperparameter Optimization Using IWO
This part uses IWO to optimize a variety of configuration

hyperparameters for the ADNN model, such as the set of

hidden layers, the neurons count in every layer, the neural

network’s learning rate, and the number of iterations. The
WOA is a revolutionary population-based optimization

approach that was recently created and is inspired by nature.

The WOA gathers search agents to identify the ideal response

Input

XML

File

P
re

p
ro

ce
ss

in
g

E
m

b
ed

d
in

g
 b

lo
ck

E
n

co
d
er

 b
lo

ck

C
la

ss
if

ie
r Loss and

probability

Back

Propagation

 A
tt

en
ti

o
n

G

u
id

ed

L
ay

er

D

N
N

L
ay

er
 N

o
rm

Encoding Learning

S
o

ft
 m

ax

Vulnerability

Detection

Weights

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

64

to an optimization issue. The WOA employs a technique

recognized as “bubble-net hunting” to mimic the actions used

by humpback whales as they pursue prey. The three foremost

phases of the WOA are surrounding the prey, bubble net

assaulting, and watching for the finest prey [20].

Once its target is located, the whale uses the spiral method
to create a bubble net and ascends to reach the prey. This is

the fundamental concept of whale bubble-net feeding. This

invasive behaviour consists of three stages: chasing the victim,

bubble-net assault, and enclosing the prey.

To identify the best solution for ADNN, the whales

surround their prey, such as fish, and then attempt to update

their locations. Equations provides the primary mathematical

representation of the WOA. (16);

X(t + 1) = {X∗(t) − A × |C × X∗(t) − X(t)| if p < 0.5 |C ×
X∗(t) − X(t)| × ebl ∙cos cos (2πt) + X∗(t) if p ≥ 0.5 (16)

Where, X is a vector containing the locations of each

whale, and t is a time or repetition index; X∗ is now the most

excellent option discovered; A = 2a. (rand − a); C =
2. rand; an is an iteration-dependent coefficient vector that

linearly reduces from 2 to 0; and is a random vector with

values sandwiched between 0 and with 1; In this paper, b is a

constant value that determines the form of the logarithmic

spiral depending on the chosen path; l is a random number

between -1 as well as 1; and p is a random numeral between 0

along with 1 and is utilized to switch updating the whales’

positions.

The probabilities are 50% and 50% in Equation (16),

meaning that whales choose either path randomly and with an

identical chance during optimization. As the bubble-net phase

progresses, the random value for 𝐴 is [-1, 1]; however, the

randomized number of vector A during the finding phase may

be more or lower than 1. In Equation (17), the search

algorithm is shown.

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 . |𝐶. 𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡) | (17)

This random search method, which stresses the searching

process along with causing the WOA algorithm to do a

worldwide search, has a value of | 𝐴 | bigger than one. The

WOA searching method begins with the creation of random

solutions. The procedure is then used to update these solutions

iteratively. The search will continue up to a predetermined

maximum number of iterations.

5.1. Improved Whale Optimization Algorithm (IWO)

A good trade-off between investigation and exploiting,

two crucial components of an optimizing technique, aids in

reaching a specific answer by avoiding local optima. In WOA,

a search agent’s step size gradually reduces as iterations go.

This step size is controlled by the parameter A.

Fig. 3 Flowchart of the WOA

However, it has been shown that WOA’s limiting of traps

into the local optimum occurs at later phases due to weak

convergence. This work employs an updated WOA to get
around such problems. This changes the value of A by

introducing the levy flying function.

This enhances the capacity to use and explore WOA

concurrently. Levy flight calculates the jump size using the

Levy probability dispersion function, a power-law function.

The Levy distribution’s mathematical formula is as follows:

L(𝑠, 𝜌, 𝜇) = {√
𝜌

2𝜋
×𝑒𝑥𝑝 𝑒𝑥𝑝 [−

𝜌

2(𝑠−𝜇)
]

1

(𝑠−𝜇)3/2 𝑖𝑓 0 < 𝜇 <

∞ 0 𝑖𝑓 𝑠 ≤ 0 (18)

Where, μ, ρ, The location parameter determines the

distribution’s scale, whereas the scale parameter determines

how many data points are collected for this distribution.

Variables and randomized

beginning populations
hyperparameters of ADNN

Determine each user’s level

of strength and keep the

finest ones

Start

Check

termination

If s<0

Update value using Eq. (17)

Output optimal

Update value
using Eq. (16)

Update value

using Eq. (18)

Update parameters

If p<0.5

Yes

No

Yes

Yes

No

No

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

65

6. Experimental Results and Discussion
In command, unified assessment criteria are required to

assess the effectiveness of the automated categorization model

IWO-ADNN in this study and to compare the efficacy of

various algorithms. The multiclass confusion matrix is the

most popular categorization technique for multiclass issue

assessment models, as per the standard approach of the data

mining model. The identically configured DNN model was

restated 20 times to compare the TF-IDF approach without IG

with the impact of TFI for feature word selection.

This paper proposes a DL-based vulnerability automated

categorization model called TFI-DNN. IWO-performance

ADNNs in the categorization of vulnerabilities will now be
compared to and evaluated against more established

algorithms based on TFI, such as Vudenc [7], deep balance

[11], and DNN [19], using correctness, precision, recall, as

well as F1-score. The percentage of test examples successfully

categorized by vulnerability to the overall test instances count

is known as correctness. Following is the computation

procedure.

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
TP

FN + TP

Precision =
TP

FP + TP

F1 − score =
2 × Precision × Recall

Precision + Recall

Precision comparison results between the suggested

IWO-ADNN, Vudenc, deep balance, and DNN classifiers are

shown in Figure 4. The graph indicates that, compared to other

methods currently in use, the suggested method has a high

precision rate. It is a highly effective technique with an

accuracy rate of 0.89% for identifying attacks. Vudenc, deep

balance, and DNN show reasonable precision rates of 0.75%,

0.81%, and 0.85%, respectively, when comparing the

precision of existing techniques with that of IWO-ADNN.
Furthermore, the precision of the IWO-ADNN training

functions with the IWO method was used to pick the optimum

hyperparameters, resulting in a higher precision rate.

The F-measure comparison of the proposed IWO-ADNN,

Vudenc, deep balance, and DNN classifiers is shown in Figure

5. The suggested IWO-ADNN achieves a high F-measure rate

of 0.9%, according to the data. When comparing the F-

measure rate between the current methodologies, Vudenc,

deep balance, and DNN yield lower rates of 0.775%, 0.8%,

and 0.87%, respectively. This indicates that the proposed

strategy can produce better attack identification results than

the earlier methods.

Fig. 4 Precision performance comparison

Fig. 5 F-measure comparison

Fig. 6 Recall performance comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20

P
re

ci
si

o
n
 (

%
)

Number of Iterations

Vudenc Deep Balance

DNN IWO-ADNN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 8 12 16 20

F
-m

ea
su

re
 (

%
)

Iterations Count

Vudenc Deep Balance

DNN IWO-ADNN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 8 12 16 20

R
ec

al
l
(%

)

Number of Iterations

Vudenc Deep Balance

DNN IWO-ADNN

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

66

Fig. 7 Accuracy performance comparison

This is explicable because the IWO-ADNN network has

practical pre-processing stages that increase the f-measure
value and generally trains much more quickly than the

Vudenc, deep balance, and DNN networks.

Figure 6 displays the recall comparison results for the

proposed DNN, Vudenc, deep balance, and IWO-ADNN

classifiers. The suggested method offers an incredibly high

recall rate of 0.85%. The results indicate that the proposed

IWO-ADNN has vital attack recognition accuracy and a high

recall rate value. Vudenc, deep balance, and DNN yield recall

rates of 0.775%, 0.8%, and 0.82%, respectively, compared to

the other ways’ recall rates.

This indicates that the proposed scheme can outperform

the earlier methods regarding attack recognition results.

Besides the importance of word frequency, TF-IDF also looks

at how relevant words are to the susceptibility categories to

get a better word set based on the IG value and improve

performance in different evaluation indices.

The graph in Figure 7 above compares the accuracy of

assault detection. Techniques like Vudenc, deep balance,
IWO-ADNN, and DNN multiclass classifiers are applied.

IWO-ADNN has a high accuracy rate of 0.9%, making it an

excellent tool for getting precise forecasts. The accuracy rates

of earlier methods, including Vudenc, deep balance, and

DNN, are 0.77%, 0.8%, and 0.87%, respectively. IWO-

ADNN learning techniques eliminate the local optima

problem and allow for improved accuracy due to their relative

resistance to noise in training data. Furthermore, IWO can

achieve faster convergence than other methods while

removing premature convergence, increasing the pace at

which vulnerabilities are discovered.

7. Conclusion and Future Work
This study aims to evaluate IWO-ADNN to detect

software vulnerabilities. There is a thorough discussion of the

method analysis and the building process of TFI along with

DNN. The susceptibility categorization system TFI-DNN on

the NVD dataset was now contrasted with TFI-SVM, TFI-

Naive Bayes, and TFI-KNN. According to the findings, the

suggested TFI-DNN model surpasses the competition
regarding correctness clarity and the F1 score and has a high

recall rate.

Finding the precise location of the susceptible code may

result from this. The research demonstrates that code metrics

are reliable information that helps IWO-ADNN understand

the qualities of easy code. It is also determined that despite the

intriguing findings acquired, IWO-ADNN are excellent but

not the best when the acquired findings are matched with the

published outcomes of those research.

As a part of the study, a dataset of code metrics has been

offered and made accessible to the public. Other researchers
may utilize this dataset to test and improve IWO-ADNN. Plan

to create an actual vulnerability detection system depending

on the suggested methodology and use conventional ML

approaches. Addressing the constraints would be fascinating

for future work.

One of the urgent future tasks that can be completed is the

classification of vulnerabilities in the “exposure leading to

access violation” class. The security risk of the software can

also be ascertained during the design phase using the

classification findings. There are design patterns that act as

mitigation strategies after the risk estimation process. This

enables program creators to address security flaws in software
early in the design process.

Another potential topic of future work is creating an

automated vulnerability classification tool. After classifying

the data, the first objective will be to identify, assess, and

classify design patterns that can be changed to protect the

newly developed program against vulnerabilities.

References
[1] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu, “A Large Scale Exploratory Analysis of Software Vulnerability Life

Cycles,” 2012 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, pp. 771-781, 2012. [CrossRef]

[Google Scholar] [Publisher Link]

[2] CNBC TV18, Technology News, Indian Enterprises Highly Vulnerable to Cyber-Attacks, Says Expert. [Online]. Available:

https://www.cnbctv18.com/technology/indian-enterprises-highly-vulnerable-to-cyber-attacks-cyber-expert-14684671.html

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20

A
cc

u
ra

cy
 (

%
)

Number of Features

Vudenc Deep Balance

DNN IWO-ADNN

https://doi.org/10.1109/ICSE.2012.6227141
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+large+scale+exploratory+analysis+of+software+vulnerability+life+cycles&btnG=
https://ieeexplore.ieee.org/abstract/document/6227141
https://www.cnbctv18.com/technology/indian-enterprises-highly-vulnerable-to-cyber-attacks-cyber-expert-14684671.html

Shazia Ali & Arshia Arjumand Banu / IJEEE, 11(1), 58-67, 2024

67

[3] Seyed Mohammad Ghaffarian, and Hamid Reza Shahriari, “Software Vulnerability Analysis and Discovery Using Machine-Learning and

Data-Mining Techniques: A Survey,” ACM Computing Surveys, vol. 50, no. 4, pp. 1-36, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Gul Jabeen, “Machine Learning Techniques for Software Vulnerability Prediction: A Comparative Study,” Applied Intelligence, vol. 52,

pp. 17614-17635, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[5] Aya El-Rahman Kamal El-Deen Ramadan, Ahmed Bahaa, and Amr Ghoneim, “A Systematic Literature Review on Software Vulnerability

Detection Using Machine Learning Approaches,” Informatics Bulletin, Faculty of Computers and Artificial Intelligence, vol. 4, no. 1, pp.

1-9, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[6] Guanjun Lin et al., “Software Vulnerability Detection Using Deep Neural Networks: A Survey,” Proceedings of the IEEE, vol. 108, no.

10, pp. 1825-1848, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[7] Laura Wartschinski, “VUDENC: Vulnerability Detection with Deep Learning on a Natural Codebase for Python,” Information and

Software Technology, vol. 144, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Han Yan et al., “HAN-BSVD: A Hierarchical Attention Network for Binary Software Vulnerability Detection,” Computers & Security,

vol. 108, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] Weina Niu, “A Deep Learning Based Static Taint Analysis Approach for IoT Software Vulnerability Location,” Measurement, vol. 152,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Ying Liu, “Software-Defined DDoS Detection with Information Entropy Analysis and Optimized Deep Learning,” Future Generation

Computer Systems, vol. 129, pp. 99-114, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Shigang Liu et al., “Deep Balance: Deep-Learning and Fuzzy Oversampling for Vulnerability Detection,” IEEE Transactions on Fuzzy

Systems, vol. 28, no. 7, pp. 1329-1343, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[12] Deqing Zou et al., “μμVulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection,” IEEE Transactions on

Dependable and Secure Computing, vol. 18, no. 5, pp. 2224-2236, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[13] Zhen Li et al., “Sysevr: A Framework for Using Deep Learning to Detect Software Vulnerabilities,” IEEE Transactions on Dependable

and Secure Computing, vol. 19, no. 4, pp. 2244-2258, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[14] Qian Wang et al., “An Automatic Algorithm for Software Vulnerability Classification Based on CNN and GRU,” Multimedia Tools and

Applications, vol. 81, pp. 103-7124, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Junjun Guo et al., “Detecting Vulnerability in Source Code Using CNN and LSTM Network,” Soft Computing, vol. 27, pp. 1131-1141,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Canan Batur Şahin, and Laith Abualigah, “A Novel Deep Learning-Based Feature Selection Model for Improving the Static Analysis of

Vulnerability Detection,” Neural Computing and Applications, vol. 33, pp. 14049-14067, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[17] Stop Words, 2018. [Online]. Available: https://pypi.org/project/stop-words/

[18] Guoyan Huang et al., “Automatic Classification Method for Software Vulnerability Based on Deep Neural Network,” IEEE Access, vol.

7, pp. 28291-28298, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[19] Information Technology Laboratory, National Vulnerability Database. [Online]. Available: https://nvd.nist.gov/

[20] Andrzej Brodzicki, Michał Piekarski, and Joanna Jaworek-Korjakowska, “The Whale Optimization Algorithm Approach for Deep Neural

Networks,” Sensors, vol. 21, no. 23, pp. 1-16, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/3092566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+vulnerability+analysis+and+discovery+using+machine-learning+and+data-mining+techniques%3A+A+survey&btnG=
https://dl.acm.org/doi/abs/10.1145/3092566
https://dl.acm.org/doi/abs/10.1145/3092566
https://doi.org/10.1007/s10489-022-03350-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+techniques+for+software+vulnerability+prediction%3A+a+comparative+study&btnG=
https://link.springer.com/article/10.1007/s10489-022-03350-5
https://doi.org/10.21608/FCIHIB.2022.87660.1058
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Literature+Review+on+Software+Vulnerability+Detection+Using+Machine+Learning+Approaches&btnG=
https://fcihib.journals.ekb.eg/article_214737.html
https://doi.org/10.1109/JPROC.2020.2993293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+vulnerability+detection+using+deep+neural+networks%3A+a+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9108283
https://doi.org/10.1016/j.infsof.2021.106809
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=VUDENC%3A+Vulnerability+Detection+with+Deep+Learning+on+a+Natural+Codebase+for+Python&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584921002421
https://doi.org/10.1016/j.cose.2021.102286
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HAN-BSVD%3A+a+hierarchical+attention+network+for+binary+software+vulnerability+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404821001103
https://doi.org/10.1016/j.measurement.2019.107139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+based+static+taint+analysis+approach+for+IoT+software+vulnerability+location&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S026322411931005X
https://doi.org/10.1016/j.future.2021.11.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software-defined+DDoS+detection+with+information+entropy+analysis+and+optimized+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21004386
https://doi.org/10.1109/TFUZZ.2019.2958558
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepBalance%3A+Deep-learning+and+fuzzy+oversampling+for+vulnerability+detection&btnG=
https://ieeexplore.ieee.org/abstract/document/8930093
https://doi.org/10.1109/TDSC.2019.2942930
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%24%5Cmu+%24+%CE%BC+VulDeePecker%3A+A+Deep+Learning-Based+System+for+Multiclass+Vulnerability+Dete&btnG=
https://ieeexplore.ieee.org/abstract/document/8846081
https://doi.org/10.1109/TDSC.2021.3051525
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sysevr%3A+A+framework+for+using+deep+learning+to+detect+software+vulnerabilities&btnG=
https://ieeexplore.ieee.org/abstract/document/9321538
https://doi.org/10.1007/s11042-022-12049-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+automatic+algorithm+for+software+vulnerability+classification+based+on+CNN+and+GRU&btnG=
https://link.springer.com/article/10.1007/s11042-022-12049-1
https://doi.org/10.1007/s00500-021-05994-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+vulnerability+in+source+code+using+CNN+and+LSTM+network&btnG=
https://link.springer.com/article/10.1007/s00500-021-05994-w
https://doi.org/10.1007/s00521-021-06047-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+deep+learning-based+feature+selection+model+for+improving+the+static+analysis+of+vulnerability+detection&btnG=
https://link.springer.com/article/10.1007/s00521-021-06047-x
https://link.springer.com/article/10.1007/s00521-021-06047-x
https://pypi.org/project/stop-words/
https://doi.org/10.1109/ACCESS.2019.2900462
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+classification+method+for+software+vulnerability+based+on+deep+neural+network&btnG=
https://ieeexplore.ieee.org/abstract/document/8654631
https://nvd.nist.gov/
https://doi.org/10.3390/s21238003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+whale+optimization+algorithm+approach+for+deep+neural+networks&btnG=
https://www.mdpi.com/1424-8220/21/23/8003

