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Abstract - Energy management is an imperative practice involving the detailed monitoring, regulation, and optimization of 

energy consumption within various domains aimed at conserving resources and controlling energy costs. The escalating demand 

for electricity and integrating renewable energy sources has brought forth an array of complexities that challenge energy 

management efforts. As a result, the need to enhance the precision of load forecasting has surged in importance, attracting 

significant attention from researchers and organizations alike. Traditional time series models have their own limitations. These 

models rely on the assumption of linear relationships and stationary time series data, thereby potentially falling short of 

capturing the intricate, non-linear variations often present in energy consumption patterns. This limitation necessitates the 

exploration of more advanced and adaptable forecasting techniques. Campus buildings present some challenges for load 

forecasting. These challenges arise from the dynamic and ever-changing load patterns within educational institutions, which 

can fluctuate significantly based on various factors such as lecture schedules, semester breaks, and special occasions. This study 

introduces an innovative hybrid model called CNN-BiLSTM, which integrates Convolutional Neural Networks (CNN) with 
Bidirectional Long Short-Term Memory (BiLSTM) models to address the complexities of load patterns to produce accurate 

forecasts. The proposed model is thoroughly benchmarked against traditional Artificial Neural Networks (ANN) and BiLSTM 

models. Load data from the UiTM Permatang Pauh campus building, which encompasses 343 days of data collected at 30-

minute intervals, a total of 16,464 data points for analysis. Leveraging this load data, comprehensive feature engineering was 

conducted, leading to the generation of categorical data such as hour, calendar attributes, and semester status. The CNN-

BiLSTM model outperforms its counterparts, achieving a remarkable Mean Absolute Percentage Error (MAPE) of 6.9%. 

Therefore, as demonstrated through rigorous benchmarking, the model's superior performance highlights its potential 

significance for improving energy management in educational institutions and other domains with similar load complexity. 

Keywords - Load forecasting, Artificial Neural Network, Bidirectional, Long Short-Term Memory. Convolutional Neural 

Network, CNN-LSTM, Campus building.

1. Introduction and Literature Review  
Energy management refers to the systematic and strategic 

monitoring, control, and optimization of an entity's energy 

consumption to conserve resources and minimise energy 

costs. The growing electricity demand, combined with the 

integration of renewable energy, is making energy 

management more difficult since renewable energy leads to 

greater fluctuations in power levels within the system [1]. 
Organizations must prioritize their power systems' reliable, 

secure, and efficient operation. Therefore, improving accuracy 

in load forecasting has gained interest among researchers. 

Accurate load consumption forecasting is important in energy 

management as it gives insights to the energy manager on 

future or estimated load usage, which helps to ensure power 

system stability, safety, and optimized operational costs [2]. 

Load dispatch planning relies on an accurate load forecasting 

model to improve power system performance. Ensuring the 

power supply's reliability and the grid's stability hinges on the 
efficient dispatch of electricity. Nevertheless, the task of 

managing dispatch becomes intricate due to the inherent 

fluctuations and intermittent nature of electric power [3]. 

These challenges demand high-accuracy load forecasting to 

improve power distribution and efficient energy usage [4].  

Buildings account for approximately 40% of global 

energy consumption [5]. It is projected that by 2030, this 

proportion will escalate to 50%. Within Malaysia, buildings 

account for a significant 48% of the country's generated 

electricity consumption [5]. The substantial energy 

consumption involves both residential and commercial 
buildings, a trend accentuated by the growing population. 

Consequently, the significance of effective energy 

management in handling building energy becomes paramount, 

extending even to campus facilities. According to the 
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Malaysian Ministry of Education, there are more than 100 

educational institutions in Malaysia, including both public and 

private universities [6]. Given Malaysia's considerable 

number of campus buildings, there is a pressing need to 

enhance current energy management practices, with a 

particular emphasis on refining load forecasting accuracy to 
effectively anticipate energy consumption within these 

facilities [7]. Modelling precise load forecasting for campus 

buildings poses challenges due to varying load patterns arising 

from lecture sessions, semester breaks, and, notably, elevated 

weekend loads attributed to student residences [8]. Given the 

inherent complexity and fluctuations present in load 

consumption patterns, traditional forecasting models often 

struggle to deliver optimal performance [9]. Given these 

intricate challenges, the core of this study lies in enhancing the 

precision of load forecasting models specifically designed for 

campus buildings with solar PV.  

Load forecasting is a technique energy providers use to 
predict the amount of power or energy required to ensure that 

demand and supply remain balanced [10]. The precision of 

these predictions holds vital importance for utility companies' 

operational and managerial aspects. Most forecasting 

techniques rely on numerical methods or Artificial 

Intelligence algorithms like regression, neural networks, and 

fuzzy logic [11]. Long-term, medium-term, and short-term are 

the time frames encompassed by load forecasting [12]. In the 

short term, which spans from one hour to a week, forecasts are 

instrumental in managing daily operational systems and unit 

commitment. Medium-term load forecasting, covering one 
week to a year, aids in tasks like fuel supply scheduling and 

unit management. Long-term load forecasting, on the other 

hand, extends beyond a year and involves predicting loads 

over extended periods. As short-term load forecasting 

provides efficiency in energy management, this study focuses 

on day-ahead load consumption forecasting, which falls into 

short-term categories.  

The area of load forecasting primarily revolves around the 

utilization of time series models, as highlighted in literatures 

[8-11]. This forecasting approach encompasses both 

conventional techniques and modern machine learning 

methods, offering a diverse array of tools to predict future load 
patterns based on historical data. Seasonal Autoregressive 

Integrated Moving Average (SARIMA), Autoregressive 

Integrated Moving Average (ARIMA), Autoregressive 

Moving Average (ARMA), Moving Average (MA), and 

Autoregression (AR) are among the commonly used models 

in traditional time series forecasting methods. In-depth 

investigations into these methodologies are conducted in [12-

14], specifically examining their utility in shaping load 

forecasting. One prominent model within this category, the 

Auto Regressive Integrated Moving Average (ARIMA), is 

particularly remarkable. This predictive approach examines 
the underlying laws governing time series correlations, 

making it a suitable tool for analysing load patterns and 

making future predictions. Nevertheless, acknowledging the 

limitations of the ARIMA model is crucial. This approach 

assumes linear relationships and stationary time series data, 

which might not adequately capture complex and nonlinear 

load variations [19]. 

Additionally, ARIMA may struggle with handling 
seasonal and irregular data patterns, potentially leading to less 

accurate forecasts in situations where these factors play a 

significant role. To overcome these challenges, the 

involvement of machine learning methods, particularly 

Artificial Neural Networks (ANN), emerges as a promising 

solution. These techniques have the capacity to learn intricate 

nonlinear relationships within data, enabling them to handle 

both complex load variations and irregular patterns [20]. By 

incorporating ANN into load forecasting practices, the 

shortcomings of traditional models like ARIMA can be 

effectively addressed, resulting in more accurate predictions 

of load consumption.  

The author in [20] conducted a comprehensive analysis of 

household electricity consumption forecasting, comparing the 

performance of the ARIMA model and Artificial Neural 

Networks (ANN). The study sought to assess how effectively 

an Artificial Neural Network (ANN) captures the non-linear 

patterns in household electricity consumption, which are 

frequently difficult for traditional time series models such as 

ARIMA to handle. The results indicated that the ANN model 

significantly outperformed ARIMA, reducing the forecasting 

error by 30%. ANN excels in modelling the complex and non-

linear dynamics of household electricity consumption, as 
evidenced by the significant reduction in error, making it a 

more reliable tool for accurate load forecasting. 

A comprehensive examination involving Quantile 

Regression, Decision Tree, and Artificial Neural Network 

(ANN) methods is carried out in the literature [21]. The 

investigation revolves around household electricity 

consumption data from Cameroon, utilizing it for simulation 

purposes. The outcomes highlight that, when compared to 

Quantile Regression and Decision Tree, ANN yields notably 

improved scores in metrics, including Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE). Additionally, the Artificial 
Neural Network (ANN) demonstrates a higher coefficient of 

determination (R²) value. Similarly, in [22], the authors 

explore a comparison between ANN and traditional statistical 

methods, specifically linear regression, for the task of load 

forecasting in building contexts during both working and non-

working days. The results indicate that the ANN model 

provides more accurate predictions of load consumption on 

working days. 

Meanwhile, there is no significant accuracy difference 

between ANN and Linear Regression in the scenario of non-

working days. The study in [23] conducted a short-term (1 
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hour ahead) load forecasting for educational buildings using 

various machine learning models, including Gradient 

Boosting Machine, XGBoost, and Random Forest. The results 

indicate that the performance of these techniques was not 

particularly significant. While ANN and other traditional 

machine learning techniques appear sufficient for load 
forecasting modelling, it is essential to acknowledge that 

various types of neural networks each have their distinct 

advantages. For instance, Recurrent Neural Networks (RNN) 

and Convolutional Neural Networks (CNN) each possess 

specialized capabilities. 

A Recurrent Neural Network RNN is an artificial neural 

network built to handle data sequences by creating 

connections that enable information to be transmitted from 

one step in the sequence to the subsequent steps [24]. Unlike 

normal ANNs, RNNs have loops within their architecture that 

enable them to keep information of memory in previous 

inputs. This built-in memory mechanism makes RNNs 
especially effective for tasks that involve sequential or time-

dependent data, where the order of inputs and the context of 

previous inputs are crucial for accurate predictions or 

classifications.  

The Long Short-Term Memory (LSTM) model is a recent 

development in RNN technology, created to tackle the 

gradient vanishing issue prevalent in conventional RNNs [25]. 

A comparative analysis undertaken in [18, 19] compares 

LSTM with Autoregressive Integrated Moving Average 

(ARIMA) in the domain of load forecasting, focusing solely 

on meteorological data as input variables. The findings 
indicate that LSTM exhibits superior performance to ARIMA 

in terms of Root Mean Square Error (RMSE), Mean Square 

Error (MSE), and Mean Absolute Percentage Error (MAPE) 

measurements. The Convolutional Neural Network (CNN) is 

commonly employed in image classification due to its ability 

to extract meaningful features from input data. 

Nonetheless, significant investigations have ventured into 

the utilization of CNN for load forecasting. Specifically, 

studies detailed in [4, 26] have crafted CNN models to predict 

load consumption in small-scale integrated energy systems 

and residential areas situated in Sceaux, France. Impressively, 

the proposed models in both studies yielded positive 
outcomes, highlighting CNN's capacity to effectively extract 

valuable features from input data, thereby enhancing its 

applicability in load forecasting.  

In [27], an investigation compares univariate time series 

load forecasting models that utilize CNN and LSTM 

techniques. Each setup includes models arranged in one, two, 

and three layers. The study encompasses both 1-day and 2-

day-ahead load forecasting scenarios. The results reveal that 

in the case of 1-day ahead forecasting, the 1-layer CNN 

outperforms the 1-layer LSTM, displaying a lower RMSE by 

0.4 compared to the LSTM. Conversely, for both 1-day and 2-

day-ahead load forecasting, the 3-layer LSTM demonstrates 

an RMSE approximately 2.0 lower than the 3-layer CNN.  It's 

worth noting that CNN possesses limitations when compared 

to other neural network types. 

In contrast to RNN, which excels in handling sequential 

and time-dependent data due to its inherent memory 
capabilities, CNN lacks this recurrent memory mechanism 

[28]. This can potentially limit CNN's effectiveness in 

capturing temporal dependencies present in load forecasting 

data, where time sequences play a crucial role. A fusion of 

both CNN and RNN architectures could be proposed to 

mitigate this. By integrating the strengths of CNN's feature 

extraction with RNN's temporal understanding, a hybrid 

model could be created that harnesses the power of both 

approaches. This could lead to improved load forecasting 

accuracy by effectively capturing both spatial features and 

temporal patterns inherent in energy consumption data [29].  

The research documented in the literature [29] introduces 
the concept of univariate time series load forecasting through 

a hybrid approach, combining CNN and LSTM 

methodologies specifically tailored for the Bangladesh Power 

System. Also, authors detailed in the literature [30] dive into 

Univariate time series load forecasting, employing a fusion of 

CNN and LSTM techniques. The dataset utilized for their 

study encompasses load consumption data from New South 

Wales, Australia, spanning the years 2006 to 2010, without 

incorporating solar integration. The primary objective is to 

predict 24-hour load consumption ahead.  

Notably, the hybrid CNN-LSTM approach in previous 
studies [23, 24] showcases enhanced predictive accuracy 

compared to standalone LSTM models. Existing research on 

CNN-LSTM models for load forecasting primarily centres 

around residential and commercial buildings, often 

disregarding the inclusion of solar Photovoltaic (PV) systems. 

However, existing research on CNN-LSTM models for load 

forecasting has predominantly focused on residential and 

commercial buildings, often excluding solar Photovoltaic 

(PV) systems. A significant gap exists in investigating 

educational buildings, which face unique challenges due to 

varying load patterns during semester breaks, ongoing 

semesters, and special events. This underrepresentation in the 
educational sector highlights the need for more 

comprehensive research in load forecasting. 

Moreover, there is a noticeable scarcity of studies 

utilizing advanced deep learning techniques, such as CNN-

BiLSTM models, for day-ahead load forecasting in 

educational buildings. This gap in the literature underscores 

the novelty and importance of exploring CNN-BiLSTM 

models in this context, particularly with the inclusion of solar 

PV integration, to better address the complex load patterns 

characteristic of educational institutions. 
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This paper's key contributions can be encapsulated as 

follows: 

 This study introduces an innovative approach to day-

ahead load consumption forecasting for university 

buildings by employing a hybrid model that combines 

CNN and BiLSTM architectures. The aim is to effectively 
capture the complex load patterns that occur during 

semester running and semester breaks, addressing the 

unique challenges these distinct occasions pose. 

 To enhance the accuracy of the proposed technique, an 

optimization process for hyperparameters has been 

integrated using the Bayesian optimization algorithm. 

This approach facilitates the identification of the best 

hyperparameter values, leading to enhanced performance 

and efficiency of the CNN-BiLSTM model. 

 The study thoroughly compares ANN, BiLSTM, and 

CNN-BiLSTM models to observe their varying 
performances. This detailed analysis provides insights 

into the differences among these models. 

In summary, the paper's novelty lies in its innovative 

hybrid CNN-BiLSTM approach, the integration of 

hyperparameter optimization using Bayesian optimization, 

and the detailed comparative analysis of different neural 

network models. These factors work together to enhance the 

accuracy of day-ahead load forecasting for university 

buildings, specifically dealing with the challenges of changing 

load patterns during different academic periods. 

2. Methodology  
Neural Networks (NNs) are primarily grounded in 

simplified mathematical representations of how we believe the 

human brain functions. Figure 1 illustrates that a neural 

network architecture typically comprises three or more layers: 

an input layer, an output layer, and one or more hidden layers.  

 

 

 

 

 

 

 

 

Fig. 1 The basic structure of the Neural Network (NN) model [31] 

This section examines the models evaluated in the study, 

including BiLSTM, Convolutional Neural Network CNN-

BiLSTM, and Artificial Neural Network (ANN). The 

fundamental concepts behind each model are outlined. 

Furthermore, the framework of the proposed model is 

comprehensively explained, offering a clear understanding of 
its design. 

2.1. Artificial Neural Network (ANN)  

An Artificial Neural Network (ANN) is a computational 

model modeled after the structure and operation of the human 

brain [32]. It consists of nodes, commonly known as neurons 

that are interconnected and organized into several layers. Each 

neuron processes inputs, applies weights to them, and 

generates an output. ANNs are designed to identify patterns 

and relationships within the data through training by adjusting 

the weights according to the input data and the desired output, 

enabling them to generate predictions, classifications, or other 

data-driven tasks [17]. At the core of an ANN lies the artificial 
neuron, arranged in layers and linked to neurons in different 

layers through connections referred to as synaptic weights. 

During the training process, a key goal is to determine and 

adjust these weights, facilitating the network's ability to learn 

and adapt. A neuron's activation is calculated by summing its 

weighted inputs, a process represented mathematically in 

Equation (1): 

𝑂 =  𝑓(∑(𝑊𝑖𝑗𝑋𝑗))  (1) 

Where, O represents the output of the neuron, Xj is the 

input to that neuron, Wij is the weight of the connection of the 

input to the neuron with f as a transfer function. The sigmoidal 

function is typically used in the transfer function of neural 

networks.  

2.2. Bidirectional Long Short-Term Memory (BiLSTM) 

Long Short-Term Memory (LSTM), a specialized form of 

Recurrent Neural Network (RNN), is engineered to address 
the problem of vanishing gradients. The LSTM architecture 

comprises essential components, including a cell, an input 

gate, an output gate, and a forget gate [33]. Figure 2 provides 

a detailed visualization of the LSTM cell diagram, 

highlighting the structure of the Long Short-Term Memory 

(LSTM) neural network. This diagram outlines the various 

components and their interactions within the LSTM, 

incorporating the input, forget, and output gates, along with 

the cell and hidden states. The forget gate is calculated 

mathematically as denoted in Equation (2), while Equation (3) 

denotes the input gate formula. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (3) 
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Fig. 2 LSTM cell diagram 

𝐶�̌� = tanh (𝑊𝑐 ∗ [ℎ𝑡−1 − 𝑥𝑡] + 𝑏𝑐)  (4) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡  (5) 

The forget gate 𝑓𝑡  , is essential to the LSTM’s architecture 

by employing a sigmoid function to assess both the previously 

hidden state, denoted as ℎ𝑡−1, and the current input at the time 

step, represented as 𝑥𝑡. Its primary function is to selectively 

eliminate information deemed less important or irrelevant. 

Within the input gates layer 𝑖𝑡 , a sigmoid (𝜎) operation serves 

the purpose of determining which values should undergo an 

update, as outlined in Equation (3). Subsequently, a 
hyperbolic tangent (tanh) layer produces a fresh vector of 

candidate values, denoted as 𝐶�̃�, which may potentially be 

incorporated into the state in accordance with Equation (4). 

The existing cell state, 𝐶𝑡−1, is then replaced with the newly 

computed cell state, 𝐶𝑡, following the principles set forth in 

Equation (5). 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (6) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)  (7) 

The output gate (𝑜𝑡) functions by generating an output 

determined by the cell state. A sigmoid layer is employed to 

decide which segment of the cell state will be emitted, as 

indicated in Equation (6). To determine which segment of the 

cell state will be emitted, the cell state undergoes a 

transformation through the hyperbolic tangent (tanh) function, 

which scales values to range between -1 and 1 [34].  

The result is then multiplied by the output from the 

sigmoid gate, as detailed in Equation (7), ht is the new updated 

hidden state. Where, Wf, Wc, Wi, and Wo are the rectangular 

weight arrays for forget gate (f), cell state (c), input gate (i) 
and output gate (o). While  bf, bi, bc and bo are the bias 

vectors, and sigma is the logistic sigmoid for each respective 

gate and cell state.  

A BiLSTM is a neural network that utilizes two LSTM 

layers, where one layer processes the sequence from 

beginning to end, and the other layer processes it from end to 

beginning. The core idea behind a BiLSTM is to allow the 

network to access information from both past and future parts 

of the input sequence.  

The forward LSTM layer processes data in the usual 

chronological sequence, while the backward LSTM layer 

handles data in reverse chronological order. [35]. These two 

LSTM layers are connected and interact with each other, 

allowing the BiLSTM model to build a more comprehensive 

understanding of the input data compared to a standard 

unidirectional LSTM [36]. The network receives the input 

data in both the normal time sequence and the reverse time 

sequence, providing a richer representation of the sequential 

information. 

This bidirectional flow of information through the two 

LSTM layers allows the BiLSTM model to better model and 
learn from sequential data, as it can leverage both past and 

future context at each time step [36]. The final output of the 

BiLSTM is a combination of the outputs from the forward and 

backward LSTM layers. In summary, the BiLSTM 

architecture harnesses the strengths of two complementary 

LSTM layers operating in opposite directions to capture a 

more complete understanding of the input sequence. 

2.3. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) stands out as a 

unique class of neural network designed with the capability to 

extract important elements from input data. It operates as a 
feedforward neural network featuring a multi-layer structure 

incorporating convolutional computations. Traditionally, 

CNNs have been employed for image classification tasks [29]. 

However, their adaptability extends to time-series forecasting 

applications.  

The framework of CNN includes several essential 

components: convolutional layers, pooling layers, flattening 

layers, and fully connected layers. Convolutional layers take 

the input data, and a filter is applied to generate a feature map. 

An activation function is subsequently applied to the result. 

By leveraging information from the convolutional layer, the 

pooling layer decreases the size of the feature map. Finally, 
the flattening layer converts the reduced feature map into a 

one-dimensional array, preparing it for the subsequent fully 

connected layer. In this layer, weights are applied to process 

the data efficiently. 

2.4. Data Collection 

This section provides a comprehensive explanation of the 

data collection process. The dataset in question was obtained 

from UiTM Permatang Pauh, specifically selected as a case 

study due to the presence of its substantial 2.8 MW solar 

facility.  
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Fig. 3 Load consumption data of UiTM Permatang Pauh campus 

Figure 3 visually presents the load data for UiTM 

Permatang Pauh, encompassing a total of 343 days ranging 

from May 22, 2023, until April 30, 2024. The data is at 30-

minute intervals, for a total of 16464 data points. Leveraging 

this load data, comprehensive feature engineering was 

conducted, leading to the generation of categorical data such 

as hour, calendar attributes, and semester status. These 

additional data can further the analysis of developing an 

accurate model. 

2.5. Overall Modelling Framework 

This section provides an in-depth explanation of the 

overall modelling framework, which includes our proposed 

load forecasting model designed specifically for campus 

buildings. The proposed model combines the strengths of 

CNN and BiLSTM, with CNN serving as the foundational 

layer, followed by an additional seven layers of BiLSTM. This 

unique layering strategy is summarized to give a concise 

overview of the model's architecture. 

Figure 4 hows the overall modelling framework. For 

model training, 70% of the collected data is utilized, featuring 

various input variables such as the day, hour, lagged load 
consumption from the previous week and day, the presence of 

a public holiday, the current semester status (whether it's 

lecture or office), and any ongoing semester breaks. These 

parameters are leveraged to predict the target variable, the 

day-ahead load consumption.  

The ANN model consists of 8 layers, which have 100 

neurons for the first layer, 100 for the second layer, 80 for the 

third layer, 120 for the fourth layer, 100 for the fifth layer, 30 

for the sixth layer, 90 for the seventh layer and 1 for the eighth 

layer. At the same time, the BiLSTM model consists of 7 

layers, which have 180 neurons for the first layer, 80 for the 
second and third layers, 50 for the fourth layer, 10 for the fifth 

layer, 15 for the sixth layer and 1 for the seventh layer.  The 

proposed CNN-BiLSTM model consists of 128 filters of 2D 

CNN with 4 kernel sizes and 7 BiLSTM layers, like previous 

BiLSTM used. These configurations were obtained by using 

the Bayesian Optimization Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Overall modelling framework 

The ANN, LSTM, and CNN-BiLSTM models were all 
trained using identical input data. Subsequently, these trained 

models were assessed using a testing dataset, comprising 30% 

of the total dataset, to forecast day-ahead load consumption. 

The results were evaluated based on several metrics, including 

Mean Absolute Percentage Error, Root Mean Square Error 

(RMSE) and Mean Square Error (MSE). The formula for 

evaluation metrics is shown in Equation (8)-(11), where 𝐴𝑖 

represents the actual value and 𝑃𝑖 is the predicted value. 
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Figure 5 illustrates the CNN-LSTM framework proposed 

in this study. The CNN component serves as a feature 

extractor tasked with capturing load patterns based on the 
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provided labels. The BiLSTM layer then utilizes the features 

extracted by the CNN. It conducts the sequence learning to 

capture temporal dependencies, ultimately leading to the 

generation of more accurate output with minimized errors. 

 

 

 

 

 

 

 

 

Fig. 5 Proposed model framework 

3. Results and Discussion  
This section presents the results of the data analysis and 

model testing phase, where the model architecture was 
obtained by implementing hyperparameter optimization. This 

section also illustrates the evaluation scores, as well as the 

forecast and actual plot. An analysis result of load 

consumption pattern during weekdays and weekends on 

lecture week and non-lecture week is shown in Figure 6 and 

Figure 7. The blue line in the plot shown is for load during 

lecture week, and the red line is during non-lecture week. The 

load consumption during lecture weeks is higher than in non-

lecture weeks on weekdays and weekends. Detailed statistical 

analysis is shown in Tables 1and 2. These tables present load 

consumption statistics for weekdays and weekends during 
lecture and non-lecture weeks.  

 

 

 

 

 

 

 

 

Fig. 6 Average load comparison for weekday 

 

 

 

 

 

 

 

Fig. 7 Average load comparison for the weekend 

On weekdays, the average load consumption during 

lecture weeks is 1766.95 kW, significantly higher than the 

1263.95 kW recorded during non-lecture weeks. This suggests 
that energy demand is higher when academic activities are 

ongoing. Additionally, the minimum and maximum loads 

during lecture weeks are 565.55 kW and 3255.73 kW, 

respectively, compared to 450.96 kW and 2408.12 kW during 

non-lecture weeks, indicating greater fluctuations in load 

consumption when lectures are in session. 

 A similar pattern is observed on weekends, with the 

average load during lecture weeks at 905.89 kW, higher than 

the 611.04 kW during non-lecture weeks. The minimum load 

during lecture weekends is 541.64 kW, while non-lecture 

weekends see a lower minimum of 431.60 kW. The maximum 

load also follows this trend, reaching 1346.65 kW during 
lecture weeks and 841.47 kW during non-lecture weeks.  

Table 1. Statistical description for weekday load profile 

Statistic 
Weekday 

Lecture Week 

Weekday 

Lecture Week 

Mean 1766.95 kW 1263.95 kW 

Minimum 565.55 kW 450.96 kW 

Maximum 3255.73 kW 2408.12 kW 

 
Table 2. Statistical description for weekend load profile 

Statistic 
Weekend 

Lecture Week 

Weekend 

Lecture Week 

Mean 905.89 kW 611.04 kW 

Minimum 541.64 kW 431.60 kW 

Maximum 1346.65 kW 841.47 kW 
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Table 3. Optimized model’s architecture 

Model Neurons per Layer 
Learning 

Rate 

ANN 100,100,80,120,100,30,90,1 0.001 

BiLSTM 180,80,80,50,10,15,1 0.001 

CNN-

BiLSTM 
128,4,180,80,80,50,10,15,1 0.001 

Overall, the data shows that both weekdays and weekends 

during lecture weeks consistently have higher load 

consumption and larger fluctuations compared to non-lecture 

weeks, highlighting the significant impact of academic 

activities on energy usage patterns. Table 3 illustrates the 

model architecture for ANN, BiLSTM and CNN-BiLSTM. 

All the hyperparameters are obtained by using the Bayesian 

Optimization algorithm. All three models have a similar batch 
size, 32, but different neurons and the number of layers. The 

number of neurons for each model is illustrated in sequence, 

starting from the first layer and continuing to the last layer. 

Table 4. Performance evaluation of models 

Model 
RMSE 

(kW) 

MSE 

(kW) 

MAE 

(kW) 

MAPE 

(%) 

ANN 240.94 62973.20 187.59 13.03 

BiLSTM 198.12 42772.47 144.57 8.77 

CNN-

BiLSTM 
165.87 34067.52 115.23 6.99 

 

Table 4 illustrates the model performances based on 

RMSE, MSE, and MAE. The CNN-BiLSTM model delivers 

improved results over the ANN and BiLSTM, with a MAPE 

score of 6.99%. The higher error observed with the ANN in 

this finding can be attributed to its simpler algorithm 

compared to the more complex models, which limits its ability 

to capture intricate patterns in the data. 

 

Figures 8, 9, and 10 present the actual versus forecasted 
plots for the ANN, BiLSTM, and CNN-BiLSTM models. The 

figure accompanying this analysis illustrates a 7-day plot 

comparing the actual versus forecasted load. The time steps 

between 0-250 correspond to weekdays, while the range from 

250-360 represents the weekend. During the weekdays, the 

proposed model maintains close alignment with the actual 

load values, demonstrating its robustness in handling 

fluctuations in working-day demand.  

As we move into the weekend, slight variations are 

observed, yet the model still performs accurately, confirming 

its ability to generalize across different days of the week. This 
visual representation supports the conclusion that the CNN-

BiLSTM model is highly effective for load forecasting tasks, 

especially in environments with varying load patterns. 

 

 

 

 

 

 

 

 

Fig. 8 ANN actual vs forecasted plot 

 

 

 

 

 

 

 

 

Fig. 9 BiLSTM actual vs forecasted plot 

 

 

 

 

 

 

 

Fig. 10 CNN-BiLSTM actual vs forecasted plot 
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actual data, particularly during peak load periods. The ANN 

model shows the most significant discrepancy, attributed to its 

simpler algorithm, lacking the depth and complexity of the 

CNN-BiLSTM model. Meanwhile, the BiLSTM performs 

better than ANN but still struggles to match the predictive 

accuracy of CNN-BiLSTM. This comparison highlights that 
the CNN-BiLSTM model's superior architecture effectively 

addresses the limitations encountered in models like ANN and 

BiLSTM, particularly in environments with varied load 

patterns. 

4. Conclusion  
In conclusion, this paper explored the application of 

various neural network models for load consumption 
forecasting. Specifically, we examined the performance of 

ANN, BiLSTM, and CNN-BiLSTM. Notably, the proposed 

CNN-BiLSTM model emerged as the frontrunner in this 

analysis, outperforming both ANN and BiLSTM by achieving 

a remarkable MAPE value of 6.99%. This observation 

underscores the critical importance of accuracy in load 

forecasting models, as it directly enhances energy 

management systems. As we address the ever-growing energy 

demands, the utilization of advanced neural network 
architectures like CNN-BiLSTM proves to be a promising 

avenue for achieving more precise load forecasts and 

optimizing energy resource allocation. This study has the 

potential to significantly contribute to energy management 

strategies, particularly in academic building environments. 
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