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Abstract - Smart glasses are becoming increasingly available in the population due to their ability to provide real-time 

environmental information; however, the incorporation of facial recognition through the Internet of Things marks an important 

advance in the performance and usability of these devices. This study describes the creation of a novel Internet of Things-based 

human face recognition assistance system for smart glasses. The developed system uses a Raspberry Pi 4 board, an ESP32 

board, two camera modules to capture and process the environment through artificial vision, and a sound module responsible 

for realizing the assistance system. Developing a functional prototype of smart glasses will enable visually impaired people to 

obtain information from others and be aware of potential environmental dangers. This system is made possible through facial 

recognition technology and distance estimation algorithms. In addition, this study addresses integrating the proposed system 

with the Internet of Things, enabling better connectivity and effective communication with other devices and services. Finally, 

practical tests are used to evaluate the usability and user experience of the system, as well as its accuracy in measuring distances 

and identifying faces of previously registered users. Studies show that the system is quite effective in assisting people with partial 

or total blindness and ensures that it is simple to use and intuitive in real-world scenarios. 

Keywords - Computer vision, Real-time assistance system, Smart glasses, Internet of Things. 

1. Introduction 
The numerous applications that smart glasses offer to 

make people's lives easier have made them a significant 

technological instrument that provides a unique and 

fascinating User Experience (UX) [1]. The scientific 

community and industry have been very interested in it since 

its inception because it has the potential to significantly 

change how people use digital information in their daily lives 

[2].  

More work must be done before smart glasses can reach 

their full potential in terms of usability and convenience. One 

such issue is to improve their ability to sense and understand 

their environment. Facial recognition capabilities are 

especially important for human-computer interaction and 

personalized digital experiences [3]. In recent decades, the 

development of deep learning algorithms and the increase of 

easily accessible training data have led to a significant 

advancement in computer vision, known as the face 

recognition branch. This recent technology has applications in 

various research areas, including biometric authentication, 

personalization of services, security and surveillance [4].  

A potential breakthrough has been achieved in improving 

the functionality and usability of these smart devices by 

integrating facial recognition with the Internet of Things (IoT) 

infrastructure [5]. Smart glasses can provide a more 

personalized user experience based on individual user 

requirements, as with integral real-time facial recognition. 

This work presents a new method for designing and 

developing Internet of Things-based assistive solutions 

incorporating facial recognition into smart glasses. Building 

specialized hardware and software for these glasses, 

integrating them smoothly with other IoT devices, and 

assessing usability and user experience are all essential to 

ensuring the system functions correctly in various real-world 

scenarios. This effort is intended to progress the smart glasses 

field and show how this improved technology may 

revolutionize several sectors and improve people's daily lives.  

The distribution of information in this paper is divided as 

follows: Section 2 presents work related to this research. 

Subsequently, Section 3 explains the complete methodology 

of this proposed system. Section 4 details the design and 

construction of the hardware and software system and its 

implementation in a real agricultural environment. Section 5 

presents the outcomes and debates that were analyzed. Lastly, 

Section 6 contains the research's conclusions. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Work 
The popularity of smart glasses has increased 

significantly in recent years, mainly due to advances in the 

integration of cutting-edge technologies such as computer 

vision, Augmented Reality (AR), Internet of Things (IoT) 

technology and the decreasing quantity and size of electronic 

components. These advances have led to new uses for smart 

glasses, which have evolved from essential wearable devices 

to sophisticated instruments that offer on-site assistance for 

various applications, from surgery in medicine to their 

application in the industrial automation sector. Smart glasses 

have been considered a promising technology platform for 

human-computer interaction since their earliest versions.  

Studies by Niknejad et al. [6] provide a comprehensive 

analysis of the current state of smart glasses and show how 

glasses have evolved to incorporate real-time data processing, 

contextual information display, and augmented reality 

capabilities. These devices have enhanced the user experience 

by using Internet of Things connectivity to provide 

contextualized information based on the user's environment. 

Mitrasinovic et al. [7], in their paper, took a more specific 

approach to investigate the use of smart glasses in the 

healthcare sector for remote patient monitoring, telemedicine 

and surgery. Their research shows how these smart glasses 

technology can provide medical staff with hands-free access 

to data and visual aids, thus improving the quality and 

efficiency of medical care. 

The face recognition system, a key feature of smart 

glasses technology, has advanced significantly in recent years, 

especially with deep learning methods. In evaluating advances 

in face recognition algorithms, Wang et al. [3] note that 

Convolutional Neural Networks (CNNs) have made possible 

more accurate face detection in a variety of environments, 

including variations in lighting, facial expressions, and 

locations, thereby reducing the error rate that was common 

when this CNN technology was not used. This has been 

essential for security applications, biometric authentication, 

and personalization services, which are now widely used. In 

addition, the paper by Guo and Zhang [4] discussed the impact 

of advances in deep learning-based face recognition, noting 

that deep neural networks have improved accuracy and 

processing speed, which is crucial for real-time systems such 

as the one proposed in this research. However, optimising 

these algorithms to work efficiently on resource-constrained 

devices such as smart glasses based on microcontrollers or 

embedded microprocessors remains challenging. 

Many research papers have focused on integrating 

wearable devices with the Internet of Things. In their study, 

Dian et al. [8] investigated how the Internet of Things (IoT) 

might improve wearable technology's capabilities, such as 

smart glasses, by facilitating constant connectivity and 

communication with other devices and networks. In this case, 

IoT connectivity expanded the potential uses of wearables 

while allowing them to communicate in real-time with more 

extensive infrastructures, including industrial systems or 

dispersed sensor networks in cities. In addition, Rahmani et al. 

[5] discussed the advantages and difficulties of combining IoT 

technologies. In particular, it was noted that the main 

challenge is achieving stable and secure connectivity, 

minimising power consumption, and ensuring data privacy, 

which is critical for deploying smart glasses with facial 

recognition and obstacle detection capabilities.  

Another work that specifically examined the feasibility of 

integrating real-time face recognition systems into smart 

glasses was that of Casado et al. [9], where the proposed 

algorithm's hardware performance and efficiency are 

emphasised. Their results demonstrate that, by combining 

advanced cameras and computers, these systems are 

technically feasible despite the current problems of processing 

speed and power consumption. This indicates a promising 

future for integrating facial recognition and machine vision 

algorithms into tiny devices such as smart glasses. A Recent 

research examines a facial recognition smart glasses system 

made specifically for blind and mildly visually impaired 

people. This research combines a Raspberry Pi board with 

low-power cameras connected through an Internet of Things 

network using a natural language processing technique. The 

results highlight the importance of efficient image processing 

and a user-friendly interface for improving user comfort. 

Real-time distance estimation is a critical functionality 

for smart glasses-based assistive systems, especially for 

visually impaired people, as it allows for detecting obstacles 

and estimating the proximity of objects in the environment. 

Computer vision, combined with triangulation and stereo 

vision, has proven to be an effective technique for this 

purpose. According to Mellouk and Kortli [10, 11], the 

accuracy of distance estimates has improved significantly due 

to the use of neural networks and deep learning algorithms. 

This is important for real-time applications where accurate and 

timely responses are required. These advances are possible 

because mobile devices now have more processing power, but 

there is still a challenge for algorithms to be tuned and 

optimized to run on resource-constrained hardware, such as 

smart glasses. Besides stereo vision, complementary 

technologies have been explored to enhance distance 

estimation. For example, several studies have combined 

machine vision with LIDAR or ultrasonic sensors to recognize 

objects in more challenging-to-reach locations, improving 

accuracy and redundancy. Yeong et al. [12] claim that using 

various sensing methods increases the system's durability in 

challenging situations, including limited visibility or reflective 

surfaces, and improves accuracy. This is particularly crucial 

in urban settings, where moving items and quickly shifting 

surroundings present obstacles to navigation and aid systems. 

The difficulty, though, is attempting to fit more electronics 

into a smaller package like smart glasses. 
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3. Methodology 
The article presents the development of an assistance 

system for smart glasses based on facial recognition from the 

Internet of Things. The system uses a Raspberry Pi 4 board, 

an ESP32 board, two camera modules to capture the 

environment and process them through computer vision and a 

sound module to realize the assistance system. The complete 

system design can be seen in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the complete proposed system 

The proposed system is divided into three main stages 

based on the tasks assigned to the different software and 

hardware modules: 

 Image Preprocessing Stage: This first stage is controlled 

by the ESP32, coupled to two cameras. Stereo vision can 

estimate distance since the ESP32 captures images from 

multiple angles. The ESP32 preprocesses the images and 

sends them to the Raspberry Pi after they are taken. 

 Facial Processing and Recognition Stage: The Raspberry 

Pi 4 receives the preprocessed images from the ESP32 via 

a Wi-Fi network. The Raspberry Pi is used to run facial 

recognition algorithms, which compare the faces in the 

images with a pre-established database; a Convolutional 

Neural Network (CNN) algorithm previously trained for 

real-time face identification is used for this facial 

recognition. The system sends a message with their name 

if the person is recognized. 

 Assistance System Stage: Using the images taken by both 

cameras, the Raspberry Pi calculates the distance of the 

observed objects in addition to facial recognition. 

Triangulation and stereo-vision methods form the basis of 

this calculation. After processing the data, Raspberry Pi 

instructs the ESP32 to play audio warnings via the sound 

module, alerting the user to faces it has identified or 

obstacles that are nearby. 

In addition, to validate the developed system, the 

following tests were proposed: 

 Tests for distance estimation: These assess how well a 

user can estimate the distance to items in their immediate 

vicinity. This is accomplished by comparing the system's 

output with the actual measurements using established 

distance references.  

 Facial recognition results: An assessment of the system's 

capacity to recognize faces at different illumination levels 

and capture angles. Accuracy is determined by comparing 

the outcomes with a database of recognized faces.  

 Real-Time Latency and Performance Testing: The 

system's response time is assessed from the ESP32's 

image capture to the sound module's alert playback. The 

goal is to ensure the system runs in real-time with the least 

latency in data processing and transmission. 

4. Experimental Development 
The proposed system's implementation began with the 

configuration of the hardware components. There were two 

boards, a Raspberry Pi 4 and an ESP32. Both boards worked 

with the client-server model, with the Raspberry Pi as the 

server, the one that would do the image processing, and the 

ESP32 as the client that sent all the data to the server through 

a Wi-Fi network. In addition, two OV7670 model camera 

modules were connected to the ESP32 to capture the images 

of the environment, and a YX5300 MP3 sound module was 

also connected to the ESP32 to reproduce the sound of the 

assistance system. Figure 2 shows the prototype developed. 

 
Fig. 2 Image taken from the prototype of the system 
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4.1. Hardware Configuration 

This section describes the connections and configurations 

of the electronic modules required to develop this assistance 

system. First, two OV7670 camera modules are connected to 

an ESP32 microcontroller. However, specific procedures must 

be followed to ensure proper communication and avoid data 

conflicts. The pins for each component must be located and 

prepared. The 3.3 V power supply (VCC) and ground (GND) 

of the Raspberry Pi 4 board are shared by both camera 

modules, and this is essential for their functionality, see Figure 

3. In addition, the GPIO22 and GPIO21 pins of the ESP32 are 

used for the SDA and SCL pins on the I2C bus shared by both 

cameras, respectively. This way, the same serial 

communication channel can send configurations to both 

cameras. The input clock (XCLK), which distributes the clock 

signal to both cameras for synchronization, is implemented by 

the GPIO32 pin of the ESP32. Each camera requires 

individual pins for control and data signals to avoid 

interference. For the first camera, the GPIO36 and GPIO26 

pins are assigned for data transmission (D0-D7), the GPIO25 

pin for Pixel Clock (PCLK), GPIO23 for Vertical 

Synchronization (VSYNC) and GPIO26 for Horizontal 

Reference (HREF). In the second camera, pins GPIO14 and 

GPIO16 transmit data (D0-D7), pin GPIO19 for PCLK clock 

signal, GPIO18 for VSYNC, and pin GPIO5 for HREF.  

On the other hand, the YX5300 sound player module can 

be connected to the ESP32 microcontroller more easily 

because it only needs two wires for serial communication to 

work. The RX pin of the YX5300 sound module must be 

directly linked to the TX pin (2) of the ESP32 microcontroller, 

and the TX pin (1) of the ESP32 must be directly connected to 

the RX pin of the YX5300 module for the serial 

communication to be successful. Next, the power supply is 

connected to pins (3) and (4) of the YX5300 module, 

representing GND and VCC, respectively, see Figure 4. 

The selected arrangement allows the two cameras in this 

system to function independently because each one needs its 

own set of data and control pins. The ESP32 board implements 

code that offers alternative picture capturing by initializing 

and deactivating each camera as needed. The produced code 

uses the esp_camera library to disable the current camera, 

configure the other camera, collect an image frame, and repeat 

these steps until the process is finished. The ESP32 

microcontroller can control the two cameras with the limited 

resources available by employing a different technique. This 

action avoids conflicts on the data bus and ensures that a single 

camera is operational and transmitting data without any 

problems. This methodology is necessary for machine vision 

systems, specifically in monitoring and automation 

applications, where it is required to capture and process 

images from multiple sources in a single microcontroller with 

limited performance, as in the case of ESP32. The connection 

and configuration described above allow the ESP32 board to 

efficiently manage two OV7670 camera modules, facilitating 

its use in Internet of Things (IoT) projects and other embedded 

systems. The connections of the electronic components can be 

seen in Figures 3 and 4. 

 
Fig. 3 Connections of the Raspberry Pi board to the power supply 

 
Fig. 4 Connection of the ESP32 with the two cameras and the sound 

player module 
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4.2. Algorithm Developed 

The proposed system consists of an ESP32 connected to 

two OV7670 cameras and a YX5300 sound player module, 

which communicates via Wi-Fi with a Raspberry Pi 4 to 

execute the image processing algorithms and control the 

assistance system. Next, the method designed for distance 

estimation and face recognition is reviewed, as well as how 

device communication is handled. The created algorithm's 

complete flowchart is displayed in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Flowchart of the developed algorithm 

4.2.1. Image Capture and Preprocessing on the ESP32 

The ESP32 board is connected to two model OV7670 

cameras to capture image frames. The limited resources of the 

ESP32 board prevent the cameras from operating at the same 

time. Instead, the algorithm alternates between the two 

cameras to capture images from each side of the lenses, which 

was considered a correct triangulation. The ESP32 initializes 

the system by connecting the two cameras with a common I2C 

bus. The control signals (GPIO) are set up to alternate image 

capture such that only one camera is active during each 

capture cycle, preventing data bus conflicts. To do this, the 

capture is switched in this way: 

 Camera 1: It captures an image of the environment and 

stores it temporarily in the ESP32's memory for later 

processing.  

 Camera 2: The first camera takes a picture, and then the 

second camera repeats the procedure by turning on and 

off. In order to increase the accuracy of distance 

calculation, the system can gather photos from two 

somewhat different perspectives thanks to this continuous 

cycle.  

Preprocessing also includes reducing the resolution of the 

images to a more manageable format eliminating unnecessary 

details that do not affect the performance of the facial 

recognition algorithm. In addition, basic filtering is applied to 

reduce visual noise in the captures, especially in low-light 

conditions or complex environments. These optimizations 

allow the system to transmit images efficiently, maintaining 

low latency without compromising the processing accuracy of 

the Raspberry Pi. 

4.2.2. Raspberry Pi Processing and Configuration 

The Raspberry Pi is the primary server in a client-server 

communication arrangement, while the ESP32 is set up as a 

client. The two devices communicate with one another over a 

local Wi-Fi network. Upon initialization, the ESP32 

autonomously establishes a connection with the Wi-Fi 

network created by the Raspberry Pi, transferring the 

preprocessed pictures to the Pi using Hypertext Transfer 

Protocol (HTTP). After capturing and preprocessing an image, 

the ESP32 packages the data into blocks and transmits them 

to the Raspberry Pi. The ESP32 also sends additional data, 

such as capture metadata (time, camera origin, etc.) required 

for processing on the Raspberry Pi. 

The Raspberry Pi is responsible for heavy processing 

tasks like facial recognition and distance estimation. After 

receiving images from the ESP32, it analyses the data and 

sends help commands back to the ESP32. After receiving 

them, the Raspberry Pi decodes the images so facial 

recognition software can process them. A Convolutional 

Neural Network (CNN) algorithm previously trained for real-

time face identification is used for this facial recognition. 

First, the Raspberry Pi runs a CNN algorithm to compare the 

detected faces with a database stored locally on the Raspberry 

Pi. If the face matches one in the database, an ID is generated. 

The system is flexible enough to accommodate various users 

and situations since it allows recognized faces to be added and 

changed. Following that processing, the system uses the two 

images the cameras took to create a stereo-vision image. By 

triangulating the coincident spots in the two photos, the 

algorithm determines the relative distance of the spotted 

object. This procedure is necessary to provide safe navigation 

and to notify the user of any close obstructions. 

4.2.3. Voice Assistance System 

After analyzing the images and generating the results, the 

Raspberry Pi microprocessor sends this data to the ESP32 

board, which uses a sound playback module to inform the user 

of possible obstacle warnings or the identification of any 

faces. Depending on the face recognition result or adjacent 

hazard detection, the Raspberry Pi sends a text message to the 
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ESP32 board. This message can warn about a discovered 

impediment or identify a known individual. The ESP32 

converts the text it receives into audio messages using an 

integrated voice synthesizer. The sound module plays back 

these messages, warning the user when potentially dangerous 

things are nearby or when it recognizes a face. 

5. Results 
Various settings and conditions were used for the 

experiments, with the main goals being power consumption, 

system usability, facial recognition accuracy, and system 

latency and integration with IoT devices. Furthermore, the 

system's behavior in real-world usage scenarios and its 

capacity for distance estimation was assessed. Although areas 

for development were found to maximize the system's 

performance in practical applications, the results collected 

show that the system is functional and effective. 

5.1. Tests for Distance Estimation 

The objective of this test was to evaluate the system's 

accuracy in estimating distances between the user and detected 

objects. This is especially relevant when face recognition and 

detection of nearby hazards are critical for providing real-time 

assistance to visually impaired people. Several tests were 

conducted indoors and outdoors to evaluate the feasibility of 

distance estimation in different environments. Using 

triangulation and stereo-vision techniques, the system used 

two cameras to measure the user's distance concerning the 

elements identified on his route. Each test involved measuring 

the distance to a reference object every one to five meters and 

contrasting it with the distance predicted by the system. 

Percent error was calculated to assess the accuracy of the 

estimate. Table 1 presents an overview of the data acquired, 

including the actual distances, the distances estimated by the 

system, and the percent inaccuracy of the estimated distances. 

Table 1. Distance estimation 

Real Distance 

(m) 

Estimated 

Distance (m) 

Absolute 

Error (m) 

Relative  

Error (%) 

0.5 0.52 0.02 4.0 

1.0 0.97 0.03 3.0 

1.5 1.46 0.04 2.7 

2.0 1.94 0.06 3.0 

2.5 2.42 0.08 3.2 

3.0 2.89 0.11 3.7 

3.5 3.41 0.09 2.6 

4.0 3.80 0.20 5.0 

4.5 4.26 0.24 5.6 

5.0 4.65 0.35 7.0 

 

The results of the distance estimation tests indicate that 

the system is suitable for estimating distances with a relatively 

low margin of error. Absolute and relative errors were also 

calculated for each measurement to have objective values to 

analyze. The proposed system showed high accuracy for short 

and medium distances, with a maximum distance of 3.5 m and 

an average relative error of 3.17 %. At distances above 4 

meters, the error tends to increase slightly, reaching 7 % at 5 

meters. These findings suggest that, although the system is 

reliable at short and medium distances, the triangulation 

algorithm may need further fine-tuning to increase the 

system's accuracy at longer distances. Scientific evidence 

suggests that adding additional sensors to the stereo vision 

system, such as LIDAR or ultrasonic sensors, is desirable for 

applications requiring high accuracy at long distances where 

cameras are insufficient. 

5.2. Facial Recognition Results 

The smart glasses face recognition algorithm proposed in 

this paper was subjected to a rigorous testing process under 

various environmental circumstances, most notably 

considering changes in environmental lighting. The facial data 

sets comprised variations in lighting, locations and facial 

accessories, e.g., glasses or hats. The system was evaluated 

using criteria of accuracy, sensitivity (true positive rate) and 

specificity (true negative rate). According to the results in 

Table 2, the average accuracy was 94.5 % in normal 

illumination environments and 85.3 % in very low-light 

environments. The false negative and false positive rates were 

3.4 % and 2.1 %, respectively. These findings demonstrated 

that the proposed system maintains high accuracy despite 

being affected by adverse lighting conditions. 

Table 2. Facial recognition results 

Test Condition 
Accuracy 

(%) 

False Positive 

Rate (%) 

False Negative 

Rate (%) 

Normal 

Illumination 
94.5 2.1 3.4 

Low Illumination 85.3 4.6 10.1 

Angle Change 

(±15°) 
92.0 3.0 5.0 

Use of 

Accessories 

(glasses, caps) 

88.7 5.2 6.1 

Outdoor 

Environment 

with Visual 

Noise 

83.0 6.5 10.5 

 

5.3. Real-Time Latency and Performance Testing 

The study also evaluated the latency of the system. The 

duration between capturing an image by both cameras and 

generating the audio assistance for the users was measured in 

various environmental conditions.  
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Table 3. Latency results of the developed system 
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Fig. 6 Usability results of the proposed system 

In stable network configurations, the tests showed a mean 

response time of 250 ms, which meets the processing 

requirements to be considered real-time (< 300 ms). However, 

in scenarios with fluctuations in network connectivity, 

increases in latency of up to 380 ms were observed, which 

could affect the user experience in critical and real test 

situations. Table 3 shows more details of the times employed 

by the algorithm as a function of the environment illumination 

and Wi-Fi network fluctuations. 

5.4. Integrated System Results 

Lastly, to verify the system's dependability, its IoT 

connectivity was examined. It was assessed whether the 

system could automatically rejoin while mimicking a Wi-Fi 

network outage. 95% of the time, the system rejoined rapidly 

with an average time of less than 5 seconds, demonstrating its 

strong resilience to network interruptions. Furthermore, the 

system's ability to integrate into a heterogeneous network of 

devices was confirmed by compatibility testing with other 

Internet of Things devices. Furthermore, 15 volunteers who 

agreed to be evaluated for these tests with visual impairment 

and aged 40 to 60 years (50 ± 7 years) used the device in 

various urban environments to provide the usability tests. On 

average, participants rated the utility and intelligibility of the 

aural aid 4.6 out of 5. Most participants praised the usefulness 

of facial recognition technology and warning alerts. Making 

the device smaller for convenience was one of the many 

aspects that may be improved. A depiction of the usability 

results is shown in Figure 6. 

6. Conclusion 
This study developed and implemented an assistive 

system solution based on smart glasses implemented with the 

Internet of Things (IoT) for wholly or partially blind people. 

The system quickly alerts users to known faces and obstacles 

in their environment by merging face recognition and distance 

estimation technologies using triangulation algorithms. After 

extensive testing, the system demonstrated high face 

recognition accuracy, reaching 94.5 %, and low latency, less 

than 300 ms, both essential for a better user experience and to 

achieve a real-time system. Data collected showed that the 

system maintains good accuracy in regulated environments 

and that low light levels do not affect performance. In 

addition, the successful integration of IoT connectivity 

allowed the glasses to efficiently connect to other platforms 

and devices to provide continuous and dynamic assistance. 

Finally, the usability of the developed device was analyzed, 

and the average satisfaction rating was 4.6 out of 5 points, 

indicating that the developed system is comfortable and easy 

to use. These elements that were the subject of this study are 

necessary to ensure a more reliable use in practical and 

everyday situations. 

Future studies will focus on refining the facial recognition 

algorithm to better handle the challenges posed by the adverse 

lighting conditions that this detection system may encounter. 

This could involve integrating new technologies, including 

advanced image pre-processing techniques or using infrared 

cameras to improve detection in low light conditions. 

Additionally, this study found that to enhance system 
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performance on embedded devices without sacrificing battery 

life, more effective deep learning algorithms that can be 

optimized on low-power devices still need to be implemented. 

These findings will need to be reviewed in the ongoing work. 
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