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Abstract - Function approximation is a technique for estimating an unknown underlying function from input-output instances 

or examples. Researchers have proposed different methods of function approximations, such as the neural network method, the 

support vector regression method, the reinforced learning method, the clustering method, the neuro-fuzzy method, etc. This 

paper introduces a novel data-driven function approximation scheme where the input-output data set is first segmented into 

multiple pieces. A Mamdani-type fuzzy submodel is constructed for each piece or portion, and the membership functions’ 

parameters for antecedent and consequent are optimally selected through the differential evolution algorithm. The efficacy of 

the suggested model is verified on three nonlinear functions, viz., a piecewise polynomial function, an exponentially decreasing 

sinusoidal function, and an exponentially increasing sinusoidal function. A comparative analysis is done based on the simulation 

results from the proposed model and the results obtained through the two state-of-the-art function approximation techniques, 

viz., the support vector regression model and the radial basis function network. The simulation results show that the proposed 
function approximator has satisfactorily approximated the three functions examined here, surpasses the two state-of-the-art 

techniques in approximating the two sinusoidal functions, and performs the near-best performance for the piecewise polynomial 

function. The proposed function approximator is expected to be applied as a new state-of-the-art method for function 

approximation. 

Keywords - Differential evolution, Function approximation techniques, Membership function generation, Optimal fuzzy model, 

Piecewise function. 

1. Introduction  
Function approximation reveals the underlying 

relationship between input and output variables in a given data 

set [1]. Function approximation may also be considered a 

mapping from the examples of input to the examples of output. 

The intention here is to find a relationship between the input 

and output. When the relation is approximated using some 

function, it is called a function approximation. The fitness of 

a function approximation technique for a given data set (X, Y) 

is estimated by the error function. The most frequently 

employed error function is given by Equation (1). 
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Where, E denotes the cost function, n represents the data 

point size, and f is the approximated function.  

The function approximation techniques target to 

minimize this error function to enhance accuracy in 

estimation. There are multiple approaches to function 

approximation, such as the polynomial approximation 

approach [2-4], the artificial neural network-based approach 

[5], the support vector regression approach [6, 7], the 

reinforced learning approach [8], the clustering approach [9, 
10], etc. 

The polynomial function approximation is one of the 

direct and most straightforward models for function 

approximations. In polynomial function approximation, a 

polynomial of a certain degree is considered, and the 

polynomial coefficients are selected to minimize the error in 

the approximation. The higher the degree of the polynomial, 

the better the approximation accuracy.  

However, complexity and computing performance are 

sacrificed to achieve accuracy. Therefore, efforts are made to 

obtain roughly the same performance with a polynomial of a 
lesser degree. Different polynomials, such as Chebyshev 

polynomials [11, 12], Weierstrass polynomials [13], and 

Bernstein polynomials [14], have been used for function 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024 

2 

approximation. A chronology of function approximation using 

polynomial methods has been outlined by Trefethen [15]. 

Selecting the polynomial, determining the order of the 

polynomial, and choosing the coefficients of the polynomial 

are crucial tasks in function approximation, as they greatly 

influence the performance of the approximators. 

 Another widely applied method in Machine Learning for 

function approximation is Artificial Neural Network-based 

approximation. Cybenko [16], and Hornik et al. [17] believed 

that a 3-layer neural network can accurately estimate nonlinear 

functions. Researchers have used various artificial neural 

networks for function approximation.  

Ferrari and Stengel [18] presented an algebraic approach 

for smooth function representation using a feed-forward 

neural network. Yang et al. [5] investigated the performance 

of Radial Basis Function Network (RBFN), backpropagation, 

and regression neural network for approximating Sphere, 

Rastrigin, and Griewank functions. Zainuddian and Pauline 
employed RBFN and wavelet neural networks to compare 

continuous functions. DeVore et al. have presented a detailed 

survey of different neural networks for approximation [19].  

The significant drawback of the Artificial Neural 

Network-based method is its requirement for a considerable 

number of neurons in the hidden layer. A neural network 

requires many hidden neurons to approximate a function 

properly. As hidden neurons increase, memory and 

computational time requirements increase. 

Another method of function approximation is Support 

Vector Regression (SVR). SVR is a Support Vector Machine 
(SVM) extension for regression. The data is transferred into a 

higher-dimensional space called the kernel space to obtain 

greater accuracy with nonlinear functions. Different kernels 

are used in SVR, such as linear, Gaussian, polynomial, etc. 

Although not as popular as SVM, SVR has also been proven 

effective in function approximation [6].  

Fernando et al. [20] proposed a Multi-dimensional 

Support Vector Regression (MSVR). It employs a cost 

function with a hyper-spherical insensitive zone and can 

perform better than an SVM used separately for each feature. 

This paper uses an iterative process to the Karush-Kuhn-

Tucker criteria to resolve the MSVR. Chuang et al. [7] have 
recommended a robust SVR network for function 

approximation, including outliers. Another robust SVR model 

is suggested in [21], where the rough set is used to tackle 

imprecise information in the support vector regression model.  

Lin et al. [22] introduced a hybrid model, i.e., Support 

Vector Regression-based Fuzzy Neural Network (SVRFNN), 

to integrate the reasoning efficiency of Fuzzy Neural Network 

(FNN) with high accuracy and robustness of SVR for function 

approximation. One of the significant problems in SVR lies in 

selecting an appropriate kernel, as no single kernel is best 

suited for all types of nonlinear functions. 

Researchers have also used the clustering technique for 

function approximation. Clustering is an unsupervised 

learning tool that segregates data elements into different 

categories. Hence, modifications to conventional clustering 
techniques, namely the Alternative Cluster Estimation (ACE) 

algorithm, have been proposed in [9, 10].  

The clustering technique has also been coupled with other 

function approximation techniques, such as enhanced 

clustering function approximation for RBFN, which is 

proposed in [23]. However, no fixed or standard rule exists to 

select the number of clusters that best approximate the 

function. Some other notable methods employed for function 

approximation are the gradient boosting method [24], 

reinforced learning method [8], neuro-fuzzy method [25], etc. 

From the previous discussion, it appears that the 

performance of different methods for function approximations 
is influenced by the parameter selection, the architecture, or 

the type of approximator used, such as the order of 

polynomials in polynomial function approximation, the kind 

or architecture, and number of hidden layers for an artificial 

neural network, the types of kernel functions in support vector 

regression, and the number of clusters in alternative cluster 

estimation.  

Thus, expert knowledge is required while selecting the 

parameters, architecture, or types of existing methods; 

otherwise, the approximators may fail to approximate the 

given function properly. With those flaws, this paper proposes 
a novel function approximation model, discussed in the next 

section. 

The proposed work aims to present a new technique of 

function approximation in which less or no prior or expert 

knowledge is required. In the proposed model for function 

approximation, the envelope of the given data set function is 

divided into multiple segments. For each segment, a 

Mamdani-type fuzzy model is designed.  

The membership functions’ parameters of the fuzzy 

models are optimally selected by using the differential 

evolutional algorithm. To check the efficacy of the proposed 

model, the proposed algorithm is applied to approximate three 
nonlinear functions. It is compared with two well-known 

function approximation methods: radial basis function 

network and support vector regression. The remainder of this 

paper is arranged as given.  

Section 2 illustrates the proposed method. The simulation 

results are reported and discussed in sections 3 and 4. Finally, 

the paper concludes with a future work scope in section 5. 
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2. Proposed Method 
The proposed fuzzy model for function approximation is 

developed broadly in two stages: dividing the data set or 

function envelope into multiple pieces and generating a fuzzy 

submodel for each piece. Figure 1 presents the proposed 

framework. A detailed description of the proposed method is 

illustrated in the following subsections.  

Fig. 1 Proposed framework 

2.1. Division of Data Set Envelope into Pieces  

At first, the function considered for approximation is 

uniformly sampled into N number of discrete points to 

generate a data set of discrete points. Then, the data set is 

divided into multiple pieces. To find the ranges of different 

pieces or portions, the extreme points, i.e., the maxima and the 

minima points, are first estimated. The following two 

conditions are used to find the extreme points of the data set.  

Condition 1: A point of x, say xi, is one of the maxima 

points, if  

1 1and for [ , ]i i i iy y y y i in f   
  (2) 

Condition 2: Similarly, xi is one of the minima points, if 

1 1and for [ , ]i i i iy y y y i in f   
 (3) 

Here, yi is the corresponding output of xi. For illustration 

of this step, one example data set (X, Y) is considered in Figure 

2. 

For the data set shown in Figure 2, assume that y is 

defined in the discrete points: in, in+1, in+2,…, f. Using the 

above two conditions given in Equation (2) and Equation (3), 
the extreme points of the data set envelope are first found.  

Let us assume that the maxima points of the data set given 

in Figure 2 are denoted by (xa, ya), (xc, yc), and (xe, ye), and the 

minima points are represented by (xb, yb), (xd, yd). Then, the 

given data set is segmented into six piecewise intervals 

denoted by P1, P2, P3, P4, P5, and P6. The input and output 

ranges of each piece are given in Table 1.  

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

Fig. 2 An example data set 

2.2. Generation of Fuzzy Submodel for Each Piece  

Next, a fuzzy submodel is constructed for each piece of 
the data set envelope. In this paper, the fuzzy model is of the 

Mamdani type. The shapes of the membership functions are 

considered to be Gaussian.  

Both the antecedent and consequent fuzzy sets consist of 

three fuzzy subsets: Low, Medium, and High. The low subset 

is regarded as a right-sided Gaussian, and the high subset is a 

left-sided Gaussian. The membership function parameters are 

optimally generated using the differential evolution algorithm.  

Differential Evolution (DE) is a metaheuristic 

optimization tool that helps find the optimal parameter value 

in the search space [26-28].  
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In this paper, DE is used to select the parameters of 

membership functions for the antecedent and the consequent. 

Each individual in the optimization technique is represented 

by the following structure in Figure 3. 

Table 1.  Input and output ranges of each piece 

Piece Input Range Output Range 

P1 [xin, xa] [yin, ya] 

P2 [xa+1, xb] [ya+1, yb] 

P3 [xb+1, xc] [yb+1, yc] 

P4 [xc+1, xd] [yc+1, yd] 

P5 [xd+1, xe] [yd+1, ye] 

P6 [xe+1, xf] [ye+1, yf] 

 

σLA cMA σMA σHA σLC cMC σMC σHC 

Fig. 3 Individual representing membership functions parameters 

In Figure 3, the following notations are used.  

σLA, σMA, σHA : Standard deviations of antecedent subsets, 

low, medium, and high, respectively. 

cMA, cMC : Mean of subset medium for antecedent and 

consequent, respectively. 

σLC, σMC, σHC : Standard deviations of consequent subsets, 

low, medium, and high, respectively. 

In the optimization technique, the cost function for the jth 

piece, say, f(j), is calculated by the sum squared errors of all 

kj data points belonging to the jth piece, as given in Equation 

(4). 

2

1

( ) ( ( ) ( )) ; (1, )
jk

m

f j act m fs m j p


        (4) 

Here, act(m) is the actual or given output value of the mth 

input data point, fs(m) is the output obtained through the 
proposed model for the m-th point,  p denotes the total number 

of pieces of the given data set.  

The optimization technique at each stage aims to reduce 

the above cost/objective function. The best individual found 

at the final iteration provides the membership functions’ 
parameters for the antecedent and, consequently, the fuzzy 

submodel constructed for the jth piece data segment.  

An algorithm for selecting the parameters of membership 

functions using differential evolution is given in Algorithm 1. 

Algorithm 1: Membership function generation of fuzzy 

submodel for the jth piece 

get no. of data points (kj) in j-th piece, maxitr 

generate initial population or target vectors 

calculate cost functions of the target vectors (Equation 4) 

set itr=0 
while itr < maxitr 

set itr=itr+1 

for each individual 

perform mutation to generate donor vector  

perform recombination and create a trial vector 

calculate the cost function of the trial vector 

(Equation 4) 

select the target vector for the next iteration 

end for 

end while 

return the best individual of the last iteration 

In general, the nonlinear functions contain maxima and 
minima points. As a result, a single rule base to design fuzzy 

function approximators will not apply to the whole data set. 

This is the primary motive for dividing the data set into 

multiple pieces. The extreme points create the different 

portions, so each piece represents either a monotonically 

increasing or a monotonically decreasing piece. Then, two sets 

of rule bases (Rule Base 1 for the monotonically increasing 

pieces and Rule Base 2 for the monotonically decreasing 

pieces) are used.  

Rule Base 1:  

Rule 1 : If the Antecedent is Low, Then the Consequent is 
Low.  

Rule 2 : If the Antecedent is Medium, Then Consequent is 

Medium. 

Rule 3 : If the Antecedent is High, Then the Consequent is 

High.  

Rule Base 2:  

Rule 1 : If the Antecedent is Low, Then the Consequent is 

High.  

Rule 2 : If the Antecedent is Medium, Then the Consequent 

is  Medium.  

Rule 3 : If the Antecedent is High, Then the Consequent is 

Low. 

For each input training data point, three rules of the 

corresponding Rule Base (either Rule Base 1 or Rule Base 2) 

are inferred with varying firing strengths, and the 

corresponding consequents are estimated. Outputs of all three 

rules are aggregated using the fuzzy MAX aggregation 

method [29].  

The outcome of the inference engine is fuzzy, with the 

system being Mamdani-type. Hence, the output needs to be 

defuzzified to get a crisp output.  
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This paper uses one popular defuzzification technique, 

i.e., Center of Gravity (COG) [30] for defuzzification. The 

steps involved in generating the suggested fuzzy model are 

depicted in Algorithm 2. 

Algorithm 2: Design of the proposed model 

get function to be approximated 
perform sampling the function uniformly into n number of 

data points 

for each data point 

check if it is an extreme point (maximum or minimum 

point) 

end for 

perform division of data points in p numbers of pieces  

according to the extreme points 

for each piece 

design a fuzzy sub system 

end for 

return database of the proposed model (input range, rule   
base, optimized membership functions’ parameters 

for each piece) 

function design  of fuzzy subsystem for each piece 

if  the piece is an increasing piece 

set Rule Base 1 for the fuzzy sub system 

else if 

              set  Rule Base 2 for the fuzzy sub system 

end if 

perform optimization using differential evolution algorithm  

for membership functions’ parameters 

return fuzzy sub system parameters for each piece 

An example database generated after constructing the 

proposed model for the function depicted in Figure 2 is given 

in Table 2.  

After constructing the proposed fuzzy model, the 

uniformly sampled input data points are again used to check 

the performance of the designed model in function 

approximation. The steps for approximating the function 

using the designed model are depicted in Algorithm 3.  

Algorithm 3: Function approximation using the proposed 

model 

get the database generated after training 

perform sampling the function uniformly into n numbers 

 of data points 

for each input data point 
check in which piece the data point belongs to 

fetch the rule base and membership functions’ 

parameter of that piece from the database 

  use Mamdani fuzzy model with MAX 

aggression and COG defuzzification to 

estimate output 

              end for 

return predicted output for each input data point 

By joining the test input-output data points, the function 

is approximated. The proposed model is named a piecewise 

optimum fuzzy model, or, in short, POFM. 

3. Simulation Results 
This section presents and analyzes the experimental 

results in approximating three nonlinear functions (a 

piecewise polynomial function, an exponentially decreasing 

sinusoidal, and an exponentially increasing sinusoidal 

function).  

The Performance of the Proposed Model (POFM) is 
evaluated with the results obtained through the Radial Basis 

Function Network (RBFN) and the Support Vector Regression 

(SVR).  

In RBFN, the goal of min squared error and the spread 

were set at their default values of 0 and 1, respectively, and 

the number of epochs was 500.  For SVR, the kernel function 

is of the Gaussian type.  

For DE in POFM, the coefficient F was generated using a 

Cauchy distribution. The crossover probability in DE was kept 
at 0.8, and the number of iterations was fixed at 500.  

Table 2.  Generated database after training 

Piece Input Range Membership Parameters Rule Base 

P1 [xin, xa] 

The value of the best individual 

(Figure 3) as obtained from the 

optimization technique for the 

respective piece 

Rule Base 1 

P2 [xa+1, xb] Rule Base 2 

P3 [xb+1, xc] Rule Base 1 

P4 [xc+1, xd] Rule Base 2 

P5 [xd+1, xe] Rule Base 1 

P6 [xe+1, xf] Rule Base 2 
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The simulation results of the three models (RBFN, SVR, 

and POFM) were compared based on two error measures: 

average sum squared error and average error, as given in 

Equation (5), and in Equation (6), respectively. 

Average Sum Squared Error (ASSE) =  

2

1

1
( ( ) ( ))

m

i

exact i predicted i
m



  (5) 

Average Error (AE) = 
1

1
| ( ) ( ) |

m

i

exact i predicted i
m



  (6) 

In Equation (5), and Equation (6), m denotes the test data 

set size. The simulations were done in MATLAB 2016a, and 

the results are given below in Examples 1-3. 

 

Example 1: Piecewise Polynomial Function 

The underlying function is a piecewise polynomial [9], as 

given in Equation (7), with x being the input and y being the 

output. 

exp(0.5( 4)) for 0 4

exp( 0.5( 4)) for 4 8

x x
y

x x

  
 

   
  (7) 

The functions approximated by different models (RBFN, 

SVR, and POFM) are shown in Figures 4(b) - 4(d). A 

comparison of performance based on the errors of the models 

for the piecewise polynomial function is given in Table 3. 

Example 2: Exponentially Decreasing Sinusoidal Function 

The function given by Equation (8) comprises one 

sinusoidal part and another exponentially decreasing 

component [1]. The combined effect is shown in Figure 5(a). 

       
sin(4 )exp( | 5 |) 1 1y x x for x    

         
  (8) 

The simulation results for approximating the function in 

Example 2 with three different models are depicted in Figures 

5(b) - 5(d). The approximation errors of the models for the 

exponentially decreasing function are reported in Table 4.  

Example 3: Exponentially Increasing Sinusoidal Function 

In contrast to the function considered in Example 2, the 
function in Example 3 is an exponentially increasing 

sinusoidal function, as given in Equation (9). 

sin(4 )exp(| 5 |) 1 1y x x for x     (9) 

The functions approximated by RBFN, SVR, and POFM 

for the Example given in Equation (9) are shown in Figures 

6(b) - 6(d). The errors in the approximation of the models are 

compared in Table 5. 

 
Table 3. Errors of different approximators for the function in example 1 

Approximator Used Average Sum Squared Error Average Error 

RBFN 0.000025 0.002966 

SVR 0.000467 0.020371 

POFM 0.000051 0.005034 
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(c)                                                                                                                          (d) 

Fig. 4(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 1. 
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Fig. 5(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 2. 

Table 4. Errors of different approximators for the function in example 2 

Approximator Used Average Sum Squared Error Average Error 

RBFN 0.028153 0.132018 

SVR 0.043062 0.122560 

POFM 0.000016 0.002276 
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(a)                                                                                                                       (b) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
(c)                                                                                                                            (d) 

Fig. 6(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 3. 

Table 5. Errors of different approximators for the function in example 3 

Approximator Used Average Sum Squared Error Average Error 

RBFN 6.790763 2.185588 

SVR 417.123242 14.040023 

POFM 0.355411 0.324149 

 

4. Discussion 
Figure 4 shows that all three models (POFM, RBFN, and 

SVR) can approximate the piecewise polynomial function 

with certain deviations at some points from the exact 

polynomial function. Table 3 indicates that the Proposed 

Model (POFM) for the piecewise polynomial function does 

not show the best performance, but its performance is much 

closer to the best approximator (RBFN). For the piecewise 

polynomial function, the Average Sum Squared Error and 

Average Error are 0.000025 and 0.002966, respectively, for 
RBFN; 0.000467 and 0.020371, respectively, for SVR; and 

0.000051 and 0.005034, respectively, for POFM. 
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a significant average sum square error (2.185588), as reported 

in Table 5. Figure 6(c) and Table 5 indicate the failure of the 

SVR in approximating the exponentially increasing sinusoidal 

function. Figure 6(d) shows that the Proposed Model (POFM) 

has satisfactorily approximated the exponentially increasing 

sinusoidal function and has encountered the lowest average 
sum squared error and the lowest average error compared to 

RBFN and SVR. 

5. Conclusion 
In this paper, a new function approximation model is 

proposed. The proposed model consists of multiple fuzzy 

submodels, where each submodel is employed for an 

individual interval of the given data. The only parameters 
required to be designed in the proposed model are the 

membership functions’ parameters, which have been selected 

using the optimization technique. Therefore, not much expert 

knowledge is required to choose the parameters of the 

suggested approximator.  

From the investigation results, it can be seen that the 

suggested framework has satisfactorily approximated the 
three nonlinear functions considered here. Compared to two 

widely used function approximation models (Support Vector 

Regression & Radial Basis Function Network), the suggested 

model performs best for two nonlinear functions and the 

second best for one nonlinear function in terms of 

approximation errors. A similar piecewise function 

approximation technique may be developed, with each piece 

formulated by an optimized T-S-type fuzzy model.  
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