
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 2, 1-10, February 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I2P101 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimized Fuzzy Model in Piecewise Interval for

Function Approximation

Anup Kumar Mallick1, Sumantra Chakraborty2, Kabita Purkait3
, Angsuman Sarkar4

1,3,4Department of Electronics & Communication Engineering, Kalyani Government Engineering College, West Bengal, India.
2Department of Electronics & Telecommunication Engineering, Gaighata Government Polytechnic, West Bengal, India.

1Corresponding Author : anup.mallick@kgec.edu.in

Received: 10 November 2023 Revised: 29 November 2023 Accepted: 11 January 2024 Published: 16 February 2024

Abstract - Function approximation is a technique for estimating an unknown underlying function from input-output instances

or examples. Researchers have proposed different methods of function approximations, such as the neural network method, the

support vector regression method, the reinforced learning method, the clustering method, the neuro-fuzzy method, etc. This

paper introduces a novel data-driven function approximation scheme where the input-output data set is first segmented into

multiple pieces. A Mamdani-type fuzzy submodel is constructed for each piece or portion, and the membership functions’

parameters for antecedent and consequent are optimally selected through the differential evolution algorithm. The efficacy of

the suggested model is verified on three nonlinear functions, viz., a piecewise polynomial function, an exponentially decreasing

sinusoidal function, and an exponentially increasing sinusoidal function. A comparative analysis is done based on the simulation

results from the proposed model and the results obtained through the two state-of-the-art function approximation techniques,

viz., the support vector regression model and the radial basis function network. The simulation results show that the proposed
function approximator has satisfactorily approximated the three functions examined here, surpasses the two state-of-the-art

techniques in approximating the two sinusoidal functions, and performs the near-best performance for the piecewise polynomial

function. The proposed function approximator is expected to be applied as a new state-of-the-art method for function

approximation.

Keywords - Differential evolution, Function approximation techniques, Membership function generation, Optimal fuzzy model,

Piecewise function.

1. Introduction
Function approximation reveals the underlying

relationship between input and output variables in a given data

set [1]. Function approximation may also be considered a

mapping from the examples of input to the examples of output.

The intention here is to find a relationship between the input

and output. When the relation is approximated using some

function, it is called a function approximation. The fitness of

a function approximation technique for a given data set (X, Y)

is estimated by the error function. The most frequently

employed error function is given by Equation (1).

2

1

1
(() ())

2

n

i

E y i f i


  (1)

Where, E denotes the cost function, n represents the data

point size, and f is the approximated function.

The function approximation techniques target to

minimize this error function to enhance accuracy in

estimation. There are multiple approaches to function

approximation, such as the polynomial approximation

approach [2-4], the artificial neural network-based approach

[5], the support vector regression approach [6, 7], the

reinforced learning approach [8], the clustering approach [9,
10], etc.

The polynomial function approximation is one of the

direct and most straightforward models for function

approximations. In polynomial function approximation, a

polynomial of a certain degree is considered, and the

polynomial coefficients are selected to minimize the error in

the approximation. The higher the degree of the polynomial,

the better the approximation accuracy.

However, complexity and computing performance are

sacrificed to achieve accuracy. Therefore, efforts are made to

obtain roughly the same performance with a polynomial of a
lesser degree. Different polynomials, such as Chebyshev

polynomials [11, 12], Weierstrass polynomials [13], and

Bernstein polynomials [14], have been used for function

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

2

approximation. A chronology of function approximation using

polynomial methods has been outlined by Trefethen [15].

Selecting the polynomial, determining the order of the

polynomial, and choosing the coefficients of the polynomial

are crucial tasks in function approximation, as they greatly

influence the performance of the approximators.

 Another widely applied method in Machine Learning for

function approximation is Artificial Neural Network-based

approximation. Cybenko [16], and Hornik et al. [17] believed

that a 3-layer neural network can accurately estimate nonlinear

functions. Researchers have used various artificial neural

networks for function approximation.

Ferrari and Stengel [18] presented an algebraic approach

for smooth function representation using a feed-forward

neural network. Yang et al. [5] investigated the performance

of Radial Basis Function Network (RBFN), backpropagation,

and regression neural network for approximating Sphere,

Rastrigin, and Griewank functions. Zainuddian and Pauline
employed RBFN and wavelet neural networks to compare

continuous functions. DeVore et al. have presented a detailed

survey of different neural networks for approximation [19].

The significant drawback of the Artificial Neural

Network-based method is its requirement for a considerable

number of neurons in the hidden layer. A neural network

requires many hidden neurons to approximate a function

properly. As hidden neurons increase, memory and

computational time requirements increase.

Another method of function approximation is Support

Vector Regression (SVR). SVR is a Support Vector Machine
(SVM) extension for regression. The data is transferred into a

higher-dimensional space called the kernel space to obtain

greater accuracy with nonlinear functions. Different kernels

are used in SVR, such as linear, Gaussian, polynomial, etc.

Although not as popular as SVM, SVR has also been proven

effective in function approximation [6].

Fernando et al. [20] proposed a Multi-dimensional

Support Vector Regression (MSVR). It employs a cost

function with a hyper-spherical insensitive zone and can

perform better than an SVM used separately for each feature.

This paper uses an iterative process to the Karush-Kuhn-

Tucker criteria to resolve the MSVR. Chuang et al. [7] have
recommended a robust SVR network for function

approximation, including outliers. Another robust SVR model

is suggested in [21], where the rough set is used to tackle

imprecise information in the support vector regression model.

Lin et al. [22] introduced a hybrid model, i.e., Support

Vector Regression-based Fuzzy Neural Network (SVRFNN),

to integrate the reasoning efficiency of Fuzzy Neural Network

(FNN) with high accuracy and robustness of SVR for function

approximation. One of the significant problems in SVR lies in

selecting an appropriate kernel, as no single kernel is best

suited for all types of nonlinear functions.

Researchers have also used the clustering technique for

function approximation. Clustering is an unsupervised

learning tool that segregates data elements into different

categories. Hence, modifications to conventional clustering
techniques, namely the Alternative Cluster Estimation (ACE)

algorithm, have been proposed in [9, 10].

The clustering technique has also been coupled with other

function approximation techniques, such as enhanced

clustering function approximation for RBFN, which is

proposed in [23]. However, no fixed or standard rule exists to

select the number of clusters that best approximate the

function. Some other notable methods employed for function

approximation are the gradient boosting method [24],

reinforced learning method [8], neuro-fuzzy method [25], etc.

From the previous discussion, it appears that the

performance of different methods for function approximations
is influenced by the parameter selection, the architecture, or

the type of approximator used, such as the order of

polynomials in polynomial function approximation, the kind

or architecture, and number of hidden layers for an artificial

neural network, the types of kernel functions in support vector

regression, and the number of clusters in alternative cluster

estimation.

Thus, expert knowledge is required while selecting the

parameters, architecture, or types of existing methods;

otherwise, the approximators may fail to approximate the

given function properly. With those flaws, this paper proposes
a novel function approximation model, discussed in the next

section.

The proposed work aims to present a new technique of

function approximation in which less or no prior or expert

knowledge is required. In the proposed model for function

approximation, the envelope of the given data set function is

divided into multiple segments. For each segment, a

Mamdani-type fuzzy model is designed.

The membership functions’ parameters of the fuzzy

models are optimally selected by using the differential

evolutional algorithm. To check the efficacy of the proposed

model, the proposed algorithm is applied to approximate three
nonlinear functions. It is compared with two well-known

function approximation methods: radial basis function

network and support vector regression. The remainder of this

paper is arranged as given.

Section 2 illustrates the proposed method. The simulation

results are reported and discussed in sections 3 and 4. Finally,

the paper concludes with a future work scope in section 5.

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

3

2. Proposed Method
The proposed fuzzy model for function approximation is

developed broadly in two stages: dividing the data set or

function envelope into multiple pieces and generating a fuzzy

submodel for each piece. Figure 1 presents the proposed

framework. A detailed description of the proposed method is

illustrated in the following subsections.

Fig. 1 Proposed framework

2.1. Division of Data Set Envelope into Pieces

At first, the function considered for approximation is

uniformly sampled into N number of discrete points to

generate a data set of discrete points. Then, the data set is

divided into multiple pieces. To find the ranges of different

pieces or portions, the extreme points, i.e., the maxima and the

minima points, are first estimated. The following two

conditions are used to find the extreme points of the data set.

Condition 1: A point of x, say xi, is one of the maxima

points, if

1 1and for [,]i i i iy y y y i in f   
 (2)

Condition 2: Similarly, xi is one of the minima points, if

1 1and for [,]i i i iy y y y i in f   
 (3)

Here, yi is the corresponding output of xi. For illustration

of this step, one example data set (X, Y) is considered in Figure

2.

For the data set shown in Figure 2, assume that y is

defined in the discrete points: in, in+1, in+2,…, f. Using the

above two conditions given in Equation (2) and Equation (3),
the extreme points of the data set envelope are first found.

Let us assume that the maxima points of the data set given

in Figure 2 are denoted by (xa, ya), (xc, yc), and (xe, ye), and the

minima points are represented by (xb, yb), (xd, yd). Then, the

given data set is segmented into six piecewise intervals

denoted by P1, P2, P3, P4, P5, and P6. The input and output

ranges of each piece are given in Table 1.

Fig. 2 An example data set

2.2. Generation of Fuzzy Submodel for Each Piece

Next, a fuzzy submodel is constructed for each piece of
the data set envelope. In this paper, the fuzzy model is of the

Mamdani type. The shapes of the membership functions are

considered to be Gaussian.

Both the antecedent and consequent fuzzy sets consist of

three fuzzy subsets: Low, Medium, and High. The low subset

is regarded as a right-sided Gaussian, and the high subset is a

left-sided Gaussian. The membership function parameters are

optimally generated using the differential evolution algorithm.

Differential Evolution (DE) is a metaheuristic

optimization tool that helps find the optimal parameter value

in the search space [26-28].

Function

under

Approximation

Uniformly Sample the Function into N

Numbers of Data Points

Find the Extreme (Maxima & Minima) of

the Data Points

Based on Extreme Points, Divide the

Whole Data Set into p Numbers of Pieces

For Each Piece, Design A Fuzzy System

with its Membership Functions being

Optimized by Differential Evolution

Construct A Data Base Containing Input

Range, Optimized Membership

Functions’ Parameters & Rule Base for

Each Piece

O
u

tp
u

t
(y

)

Input (x)

(x
in

,, y
in

) (x
b
, y

b
)

(x
d
, y

d
)

(x
f
, y

f
)

(x
e
, y

e
)

(x
a
, y

a
)

(x
c
, y

c
)

P
1

P
2

P
3

P
4
 P
5

P
6

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

4

In this paper, DE is used to select the parameters of

membership functions for the antecedent and the consequent.

Each individual in the optimization technique is represented

by the following structure in Figure 3.

Table 1. Input and output ranges of each piece

Piece Input Range Output Range

P1 [xin, xa] [yin, ya]

P2 [xa+1, xb] [ya+1, yb]

P3 [xb+1, xc] [yb+1, yc]

P4 [xc+1, xd] [yc+1, yd]

P5 [xd+1, xe] [yd+1, ye]

P6 [xe+1, xf] [ye+1, yf]

σLA cMA σMA σHA σLC cMC σMC σHC

Fig. 3 Individual representing membership functions parameters

In Figure 3, the following notations are used.

σLA, σMA, σHA : Standard deviations of antecedent subsets,

low, medium, and high, respectively.

cMA, cMC : Mean of subset medium for antecedent and

consequent, respectively.

σLC, σMC, σHC : Standard deviations of consequent subsets,

low, medium, and high, respectively.

In the optimization technique, the cost function for the jth

piece, say, f(j), is calculated by the sum squared errors of all

kj data points belonging to the jth piece, as given in Equation

(4).

2

1

() (() ()) ; (1,)
jk

m

f j act m fs m j p


   (4)

Here, act(m) is the actual or given output value of the mth

input data point, fs(m) is the output obtained through the
proposed model for the m-th point, p denotes the total number

of pieces of the given data set.

The optimization technique at each stage aims to reduce

the above cost/objective function. The best individual found

at the final iteration provides the membership functions’
parameters for the antecedent and, consequently, the fuzzy

submodel constructed for the jth piece data segment.

An algorithm for selecting the parameters of membership

functions using differential evolution is given in Algorithm 1.

Algorithm 1: Membership function generation of fuzzy

submodel for the jth piece

get no. of data points (kj) in j-th piece, maxitr

generate initial population or target vectors

calculate cost functions of the target vectors (Equation 4)

set itr=0
while itr < maxitr

set itr=itr+1

for each individual

perform mutation to generate donor vector

perform recombination and create a trial vector

calculate the cost function of the trial vector

(Equation 4)

select the target vector for the next iteration

end for

end while

return the best individual of the last iteration

In general, the nonlinear functions contain maxima and
minima points. As a result, a single rule base to design fuzzy

function approximators will not apply to the whole data set.

This is the primary motive for dividing the data set into

multiple pieces. The extreme points create the different

portions, so each piece represents either a monotonically

increasing or a monotonically decreasing piece. Then, two sets

of rule bases (Rule Base 1 for the monotonically increasing

pieces and Rule Base 2 for the monotonically decreasing

pieces) are used.

Rule Base 1:

Rule 1 : If the Antecedent is Low, Then the Consequent is
Low.

Rule 2 : If the Antecedent is Medium, Then Consequent is

Medium.

Rule 3 : If the Antecedent is High, Then the Consequent is

High.

Rule Base 2:

Rule 1 : If the Antecedent is Low, Then the Consequent is

High.

Rule 2 : If the Antecedent is Medium, Then the Consequent

is Medium.

Rule 3 : If the Antecedent is High, Then the Consequent is

Low.

For each input training data point, three rules of the

corresponding Rule Base (either Rule Base 1 or Rule Base 2)

are inferred with varying firing strengths, and the

corresponding consequents are estimated. Outputs of all three

rules are aggregated using the fuzzy MAX aggregation

method [29].

The outcome of the inference engine is fuzzy, with the

system being Mamdani-type. Hence, the output needs to be

defuzzified to get a crisp output.

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

5

This paper uses one popular defuzzification technique,

i.e., Center of Gravity (COG) [30] for defuzzification. The

steps involved in generating the suggested fuzzy model are

depicted in Algorithm 2.

Algorithm 2: Design of the proposed model

get function to be approximated
perform sampling the function uniformly into n number of

data points

for each data point

check if it is an extreme point (maximum or minimum

point)

end for

perform division of data points in p numbers of pieces

according to the extreme points

for each piece

design a fuzzy sub system

end for

return database of the proposed model (input range, rule
base, optimized membership functions’ parameters

for each piece)

function design of fuzzy subsystem for each piece

if the piece is an increasing piece

set Rule Base 1 for the fuzzy sub system

else if

 set Rule Base 2 for the fuzzy sub system

end if

perform optimization using differential evolution algorithm

for membership functions’ parameters

return fuzzy sub system parameters for each piece

An example database generated after constructing the

proposed model for the function depicted in Figure 2 is given

in Table 2.

After constructing the proposed fuzzy model, the

uniformly sampled input data points are again used to check

the performance of the designed model in function

approximation. The steps for approximating the function

using the designed model are depicted in Algorithm 3.

Algorithm 3: Function approximation using the proposed

model

get the database generated after training

perform sampling the function uniformly into n numbers

 of data points

for each input data point
check in which piece the data point belongs to

fetch the rule base and membership functions’

parameter of that piece from the database

 use Mamdani fuzzy model with MAX

aggression and COG defuzzification to

estimate output

 end for

return predicted output for each input data point

By joining the test input-output data points, the function

is approximated. The proposed model is named a piecewise

optimum fuzzy model, or, in short, POFM.

3. Simulation Results
This section presents and analyzes the experimental

results in approximating three nonlinear functions (a

piecewise polynomial function, an exponentially decreasing

sinusoidal, and an exponentially increasing sinusoidal

function).

The Performance of the Proposed Model (POFM) is
evaluated with the results obtained through the Radial Basis

Function Network (RBFN) and the Support Vector Regression

(SVR).

In RBFN, the goal of min squared error and the spread

were set at their default values of 0 and 1, respectively, and

the number of epochs was 500. For SVR, the kernel function

is of the Gaussian type.

For DE in POFM, the coefficient F was generated using a

Cauchy distribution. The crossover probability in DE was kept
at 0.8, and the number of iterations was fixed at 500.

Table 2. Generated database after training

Piece Input Range Membership Parameters Rule Base

P1 [xin, xa]

The value of the best individual

(Figure 3) as obtained from the

optimization technique for the

respective piece

Rule Base 1

P2 [xa+1, xb] Rule Base 2

P3 [xb+1, xc] Rule Base 1

P4 [xc+1, xd] Rule Base 2

P5 [xd+1, xe] Rule Base 1

P6 [xe+1, xf] Rule Base 2

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

6

The simulation results of the three models (RBFN, SVR,

and POFM) were compared based on two error measures:

average sum squared error and average error, as given in

Equation (5), and in Equation (6), respectively.

Average Sum Squared Error (ASSE) =

2

1

1
(() ())

m

i

exact i predicted i
m



 (5)

Average Error (AE) =
1

1
| () () |

m

i

exact i predicted i
m



 (6)

In Equation (5), and Equation (6), m denotes the test data

set size. The simulations were done in MATLAB 2016a, and

the results are given below in Examples 1-3.

Example 1: Piecewise Polynomial Function

The underlying function is a piecewise polynomial [9], as

given in Equation (7), with x being the input and y being the

output.

exp(0.5(4)) for 0 4

exp(0.5(4)) for 4 8

x x
y

x x

  
 

   
 (7)

The functions approximated by different models (RBFN,

SVR, and POFM) are shown in Figures 4(b) - 4(d). A

comparison of performance based on the errors of the models

for the piecewise polynomial function is given in Table 3.

Example 2: Exponentially Decreasing Sinusoidal Function

The function given by Equation (8) comprises one

sinusoidal part and another exponentially decreasing

component [1]. The combined effect is shown in Figure 5(a).

sin(4)exp(| 5 |) 1 1y x x for x    

 (8)

The simulation results for approximating the function in

Example 2 with three different models are depicted in Figures

5(b) - 5(d). The approximation errors of the models for the

exponentially decreasing function are reported in Table 4.

Example 3: Exponentially Increasing Sinusoidal Function

In contrast to the function considered in Example 2, the
function in Example 3 is an exponentially increasing

sinusoidal function, as given in Equation (9).

sin(4)exp(| 5 |) 1 1y x x for x    (9)

The functions approximated by RBFN, SVR, and POFM

for the Example given in Equation (9) are shown in Figures

6(b) - 6(d). The errors in the approximation of the models are

compared in Table 5.

Table 3. Errors of different approximators for the function in example 1

Approximator Used Average Sum Squared Error Average Error

RBFN 0.000025 0.002966

SVR 0.000467 0.020371

POFM 0.000051 0.005034

(a) (b)

1

0 2 4 6 8

0.8

0.6

0.4

0.2

0

Input

O
u

tp
u

t

1

0 2 4 6 8

0.8

0.6

0.4

0.2

0

Input

O
u

tp
u

t

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

7

(c) (d)

Fig. 4(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 1.

(a) (b)

(c) (d)

Fig. 5(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 2.

Table 4. Errors of different approximators for the function in example 2

Approximator Used Average Sum Squared Error Average Error

RBFN 0.028153 0.132018

SVR 0.043062 0.122560

POFM 0.000016 0.002276

1

0 2 4 6 8

0.8

0.6

0.4

0.2

0

Input

O
u

tp
u

t
1

0 2 4 6 8

0.8

0.6

0.4

0.2

0

Input

O
u

tp
u

t

0.5

-1 -0.5 0 0.5 1

0

-0.5

Input

O
u

tp
u

t

0.4

0.2

0

-0.4

-0.2

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

0.015

0.01

0.005

0

-0.005

-0.01

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

0.5

-1 -0.5 0 0.5 1

0

-0.5

Input

O
u

tp
u

t

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

8

(a) (b)

(c) (d)

Fig. 6(a) Exact function and approximated functions by, (b) RBFN, (c) SVR, and (d) POFM for the function in example 3.

Table 5. Errors of different approximators for the function in example 3

Approximator Used Average Sum Squared Error Average Error

RBFN 6.790763 2.185588

SVR 417.123242 14.040023

POFM 0.355411 0.324149

4. Discussion
Figure 4 shows that all three models (POFM, RBFN, and

SVR) can approximate the piecewise polynomial function

with certain deviations at some points from the exact

polynomial function. Table 3 indicates that the Proposed

Model (POFM) for the piecewise polynomial function does

not show the best performance, but its performance is much

closer to the best approximator (RBFN). For the piecewise

polynomial function, the Average Sum Squared Error and

Average Error are 0.000025 and 0.002966, respectively, for
RBFN; 0.000467 and 0.020371, respectively, for SVR; and

0.000051 and 0.005034, respectively, for POFM.

From Table 4, it is found that for the exponentially

decreasing sinusoidal function approximation, the Proposed

Model (POFM) yields the least Average Sum Square Error

(0.000016) and the least Average Error (0.002276) in

comparison to the average mean square error (0.028153) and
average error (0.132018) for the RBFN model and the

Average Sum Square Error (0.043062) and Average Error

(0.122560) of the SVR model.

Figure 5 shows that RBFN and SVR fail to adequately

approximate the exponentially decreasing sinusoidal function

properly, whereas the Proposed Model (POFM) has

satisfactorily approximated the function.

Regarding the exponentially increasing sinusoidal

function, Figure 6(b) shows that RBFN performs well. Still, it

yields a sizeable Average Sum Squared Error (6.790763) and

100

50

0

-50

-100

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

100

50

0

-50

-100

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

60

40

0

-40

-60

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

20

-20

100

50

0

-50

-100

Input

O
u

tp
u

t

-1 -0.5 0 0.5 1

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

9

a significant average sum square error (2.185588), as reported

in Table 5. Figure 6(c) and Table 5 indicate the failure of the

SVR in approximating the exponentially increasing sinusoidal

function. Figure 6(d) shows that the Proposed Model (POFM)

has satisfactorily approximated the exponentially increasing

sinusoidal function and has encountered the lowest average
sum squared error and the lowest average error compared to

RBFN and SVR.

5. Conclusion
In this paper, a new function approximation model is

proposed. The proposed model consists of multiple fuzzy

submodels, where each submodel is employed for an

individual interval of the given data. The only parameters
required to be designed in the proposed model are the

membership functions’ parameters, which have been selected

using the optimization technique. Therefore, not much expert

knowledge is required to choose the parameters of the

suggested approximator.

From the investigation results, it can be seen that the

suggested framework has satisfactorily approximated the
three nonlinear functions considered here. Compared to two

widely used function approximation models (Support Vector

Regression & Radial Basis Function Network), the suggested

model performs best for two nonlinear functions and the

second best for one nonlinear function in terms of

approximation errors. A similar piecewise function

approximation technique may be developed, with each piece

formulated by an optimized T-S-type fuzzy model.

References
[1] Zarita Zainuddin, and Ong Pauline, “Function Approximation Using Artificial Neural Networks,” International Journal of Systems

Applications, Engineering & Development, vol. 1, no. 4, pp. 173-178, 2007. [Google Scholar] [Publisher Link]

[2] Ivy Kidron, “Polynomial Approximation of Functions: Historical Perspective and New Tools,” International Journal of Computers for

Mathematical Learning, vol. 8, pp. 299-331, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[3] Victor Zalizniak, Essentials of Scientific Computing: Numerical Methods for Science and Engineering, Horwood Publishing, England,

2008. [Google Scholar] [Publisher Link]

[4] Michael A. Cohen, and Can Ozan Tan, “A Polynomial Approximation for Arbitrary Functions,” Applied Mathematics Letters, vol. 25,

no. 11, pp. 1947-1952, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[5] Sibo Yang et al., “Investigation of Neural Networks for Function Approximation,” Procedia Computer Science, vol. 17, pp. 586-594,

2013. [CrossRef] [Google Scholar] [Publisher Link]

[6] Mariette Awad, and Rahul Khanna, Efficient Learning Machines - Theories, Concepts, and Applications for Engineers and System

Designers, Apress Open, 2015. [Google Scholar] [Publisher Link]

[7] Chen-Chia Chuang et al., “Robust Support Vector Regression Networks for Function Approximation with Outliers,” IEEE Transactions

on Neural Networks, vol. 13, no. 6, pp. 1322-1330, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[8] Xin Xu, Lei Zuo, and Zhenhua Huang, “Reinforcement Learning Algorithms with Function Approximation: Recent Advances and

Applications,” Information Sciences, vol. 261, pp. 1-31, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] T.A. Runkler, and J.C. Bezdek, “Alternating Cluster Estimation: A New Tool for Clustering and Function Approximation,” IEEE

Transactions on Fuzzy Systems, vol. 7, no. 4, pp. 377-393, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[10] J. Gonzalez et al., “A New Clustering Technique for Function Approximation,” IEEE Transactions on Neural Networks, vol. 13, no. 1,

pp. 132-142, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[11] S.Y. Reutskiy, and C.S. Chen, “Approximation of Multivariate Functions and Evaluation of Particular Solutions Using Chebyshev

Polynomial and Trigonometric Basis Functions,” International Journal of Numerical Methods in Engineering, vol. 67, no. 13, pp. 1811-

1829, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[12] Theodore J. Rivlin, Chebyshev Polynomials, 2nd ed., Courier Dover Publications, 2020. [Google Scholar] [Publisher Link]

[13] Dilcia Perez, and Yamilet Quintana, “A Survey on the Weierstrass Approximation Theorem,” Arxiv, 2006. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Rida T. Farouki, “The Bernstein Polynomial Basis: A Centennial Retrospective,” Computer Aided Geometric Design, vol. 29, no. 6, pp.

379-419, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[15] Lloyd N. Trefethen, Approximation Theory and Approximation Practice, Extended ed., Society for Industrial and Applied Mathematics

(SIAM) Publications, 2019. [Google Scholar] [Publisher Link]

[16] G. Cybenko, “Approximation by Superposition of a Sigmoidal Function,” Mathematics Control, Signals and Systems, vol. 2, pp. 303-314,

1989. [CrossRef] [Google Scholar] [Publisher Link]

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Multilayer Feedforward Networks are Universal Approximator,” Neural

Networks, vol. 2, no. 5, pp. 359-366, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[18] S. Ferrari, and R.F. Stengel, “Smooth Function Approximation Using Neural Networks,” IEEE Transactions on Neural Networks, vol.

16, no. 1, pp. 24-38, 2005. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Function+Approximation+Using+Artificial+Neural+Networks&btnG=
https://www.naun.org/main/UPress/saed/2007.htm
https://doi.org/10.1023/B:IJCO.0000021793.71677.cd
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Polynomial+Approximation+of+Functions%3A+Historical+Perspective+and+New+Tools&btnG=
https://link.springer.com/article/10.1023/B:IJCO.0000021793.71677.cd
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Essentials+of+Scientific+Computing%3A+Numerical+Methods+for+Scintific+and+Engineering&btnG=
https://books.google.co.in/books?hl=en&lr=&id=eJmjAgAAQBAJ&oi=fnd&pg=PP1&dq=Essentials+of+Scientific+Computing:+Numerical+Methods+for+Scintific+and+Engineering&ots=8lKBVOUzM9&sig=1Vt-KWEy0StAioPt-u0bru38DU4&redir_esc=y#v=onepage&q=Essentials%20of%20Scientific%20Computing%3A%20Numerical%20Methods%20for%20Scintific%20and%20Engineering&f=false
https://doi.org/10.1016/j.aml.2012.03.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+polynomial+approximation+for+arbitrary+functions&btnG=
https://www.sciencedirect.com/science/article/pii/S0893965912001607
https://doi.org/10.1016/j.procs.2013.05.076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Investigation+of+Neural+Networks+for+Function+Approximation&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050913002093
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+Awad%2C+and+R.+Khanna%2C+Efficient+Learning+Machines%2C+Apress+Open%2C+2015&btnG=
https://library.oapen.org/bitstream/handle/20.500.12657/28170/1/1001824.pdf
https://doi.org/10.1109/TNN.2002.804227
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+support+vector+regression+networks+for+function+approximation+with+outliers&btnG=
https://ieeexplore.ieee.org/abstract/document/1058069
https://doi.org/10.1016/j.ins.2013.08.037
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reinforcement+learning+algorithms+with+function+approximation%3A+Recent+advances+and+applications&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025513005975
https://doi.org/10.1109/91.784198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alternating+cluster+estimation%3A+a+new+tool+for+clustering+and+function+approximation&btnG=
https://ieeexplore.ieee.org/abstract/document/784198
https://doi.org/10.1109/72.977289
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+clustering+technique+for+function+approximation&btnG=
https://ieeexplore.ieee.org/abstract/document/977289
https://doi.org/10.1002/nme.1679
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximation+of+multivariate+functions+and+evaluation+of+particular+solutions+using+Chebyshev+polynomial+and+trigonometric+basis+functions&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1679
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+J.+Rivlin%2C+Chebyshev+polynomials%2C+2nd+ed.%2C+Courier+Dover+Publications%2C+pp.+67-191%2C+2020&btnG=
https://books.google.co.in/books?hl=en&lr=&id=rPLwDwAAQBAJ&oi=fnd&pg=PA1&dq=T.+J.+Rivlin,+Chebyshev+polynomials,+2nd+ed.,+Courier+Dover+Publications,+pp.+67-191,+2020&ots=x_qE-IkDqn&sig=kV8AiKQDuIEqIT1sb7iD_khFvDQ&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.48550/arXiv.math/0611038
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+the+Weierstrass+approximation+theorem&btnG=
https://arxiv.org/abs/math/0611038
https://doi.org/10.1016/j.cagd.2012.03.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Bernstein+polynomial+basis%3A+A+centennial+retrospective&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167839612000192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximation+Theory+and+Approximation+Practice&btnG=
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975949.bm
https://doi.org/10.1007/BF02551274
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximation+by+Superposition+of+a+Sigmoidal+Function&btnG=
https://link.springer.com/article/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multilayer+Feedforward+Networks+are+Universal+Approximator&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://doi.org/10.1109/TNN.2004.836233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smooth+Function+Approximation+Using+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/1388456

Anup Kumar Mallick et al. / IJEEE, 11(2), 1-10, 2024

10

[19] Ronald DeVore, Boris Hanin, and Guergana Petrova, “Neural Network Approximation,” Acta Numerica, vol. 30, pp. 327-444, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[20] Fernando Pérez-Cruz et al., “Multi-Dimensional Function Approximation and Regression Estimation,” International Conference on

Artificial Neural Networks, vol. 2415, pp. 757-762, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[21] Chih-Ching Hsiao, Shun-Feng Su, and Chen-Chia Chuang, “A Rough-Based Robust Support Vector Regression Network for Function

Approximation,” 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan, pp. 2814-2818, 2011.

[CrossRef] [Google Scholar] [Publisher Link]

[22] Chin-Teng Lin et al., “Support-Vector-Based Fuzzy Neural Network for Pattern Classification,” IEEE Transactions on Fuzzy Systems,

vol. 14, no. 1, pp. 31-41, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[23] H. Pomares et al., “An Enhanced Clustering Function Approximation Technique for A Radial Basis Function Neural Network,”

Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 286-302, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[24] Jerome H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189-

1232, 2001. [Google Scholar] [Publisher Link]

[25] Paulo Vitor de Campos Souza, “Fuzzy Neural Networks and Neuro-Fuzzy Networks: A Review the Main Techniques and Applications

Used in the Literature,” Applied Soft Computing, vol. 92, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[26] Rainer Storn, and Kenneth Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous

Spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[27] Rainer Storn, “Differential Evolution Research -Trends and Open Questions,” Advances in Differential Evolution, vol. 143, pp. 1-31,

2008. [CrossRef] [Google Scholar] [Publisher Link]

[28] Swagatam Das, and Ponnuthurai Nagaratnam Suganthan, “Differential Evolution: A Survey of the State-of-the-Art,” IEEE Transactions

on Evolutionary Computation, vol. 15, no. 1, pp. 4-31, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[29] Samir Roy, and Udit Chakraborty, Introduction to Soft Computing, Neuro-Fuzzy and Genetic Algorithms, Pearson, India, 2013. [Google

Scholar] [Publisher Link]

[30] Snehashish Chakraverty, Deepti Moyi Sahoo, and Nisha Rani Mahato, Concepts of Soft Computing, Fuzzy and ANN with Programming,

Springer, Singapore, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1017/S0962492921000052
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+network+approximation%2C+Acta+Numerica&btnG=
https://www.cambridge.org/core/journals/acta-numerica/article/neural-network-approximation/7077A90FB36D405D903DCC82683B7A48
https://doi.org/10.1007/3-540-46084-5_123
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-dimensional+Function+Approximation+and+Regression+Estimation&btnG=
https://link.springer.com/chapter/10.1007/3-540-46084-5_123
https://doi.org/10.1109/FUZZY.2011.6007454
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+rough-based+robust+support+vector+regression+network+for+function+approximation&btnG=
https://ieeexplore.ieee.org/abstract/document/6007454
https://doi.org/10.1109/TFUZZ.2005.861604
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Support-vector-based+fuzzy+neural+network+for+pattern+classification&btnG=
https://ieeexplore.ieee.org/abstract/document/1593641
https://doi.org/10.1016/j.mcm.2011.07.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+clustering+function+approximation+technique+for+a+radial+basis+function+neural+network&btnG=
https://www.sciencedirect.com/science/article/pii/S0895717711004201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Greedy+Function+Approximation%3A+A+Gradient+Boosting+Machine&btnG=
https://www.jstor.org/stable/2699986
https://doi.org/10.1016/j.asoc.2020.106275
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+neural+networks+and+neuro-fuzzy+networks%3A+A+review+the+main+techniques+and+applications+used+in+the+literature&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494620302155
https://doi.org/10.1023/A:1008202821328
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differential+Evolution+-+A+Simple+and+Efficient+Heuristic+for+Global+Optimization+over+Continuous+Spaces&btnG=
https://link.springer.com/article/10.1023/a:1008202821328
https://doi.org/10.1007/978-3-540-68830-3_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+Storn%2C+%E2%80%9CDifferential+Evolution+Research+-Trends+and+Open+Questions%2C%E2%80%9D+Studies+in+Computational+Intelligence&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-68830-3_1
https://doi.org/10.1109/TEVC.2010.2059031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differential+Evolution%3A+A+Survey+of+the+State-of-the-Art&btnG=
https://ieeexplore.ieee.org/abstract/document/5601760
https://scholar.google.com/scholar?q=S.+Roy,+and+U.+Chakraborty,+Introduction+to+Soft+Computing,+1st+ed.,+Pearson+India,+pp.+111-144,+2013&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=S.+Roy,+and+U.+Chakraborty,+Introduction+to+Soft+Computing,+1st+ed.,+Pearson+India,+pp.+111-144,+2013&hl=en&as_sdt=0,5
https://books.google.co.in/books?hl=en&lr=&id=Ujw8BAAAQBAJ&oi=fnd&pg=PP1&dq=S.+Roy,+and+U.+Chakraborty,+Introduction+to+Soft+Computing,+1st+ed.,+Pearson+India,+pp.+111-144,+2013&ots=lkcndJsyL0&sig=hwmOBP4uT8NXLQn0WPWwbDcplXc&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1007/978-981-13-7430-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Chakraverty%2C+D.+M.+Sahoo+and+N.+R.+Mahato%2C+Concepts+of+Soft+Computing%2C+1st+ed.%2C+Springer%2C+Singapore%2C+pp.+117-127%2C+2019&btnG=
https://link.springer.com/book/10.1007/978-981-13-7430-2

