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Abstract - This article proposes the utilization of the Least-Square Support Vector Machine (LS-SVM) approach to ascertain 

the presence of a fault in power transformers. Power transformers are essential elements of electrical power systems. The failure 

of a power transformer can cause a disturbance in the functioning of power distribution and transmission systems. This situation 

will result in an increase in operating expenses due to the need for repairs and maintenance. The reliability of the electrical grid 

may be compromised. Therefore, it is crucial to identify any flaws in the power transformer at an early stage. In this paper, the 

LS-SVM utilizes Dissolved Gas Analysis (DGA) data as its input. The DGA methodology is widely accepted as the prevailing 

method for identifying the early stages of defects that arise in power transformers by analyzing the ratio of essential gases. The 

simulation data acquired from the industry comprises a standard state and six distinct fault types of transformers, which are 

utilized as input for the LS-SVM models. The suggested model underwent testing in multiple scenarios, yielding a maximum 
accuracy of 97.37%. 

Keywords - Dissolved Gas Analysis, Least-Square Support Vector Machine, Incipient fault, Power transformer, ANN. 

1. Introduction 
Power transformers are a necessary, costly, and crucial 

component of the electrical power system, and their failure 

would be catastrophic [1]. A transformer failure or damage 
can cause the suspension or interruption of electrical 

distribution and transmission activities, as well as significant 

repair costs. The primary role of transformer oil is to insulate, 

prevent arcing and corona discharge, and disperse heat from 

the transformer windings and core [2]. As a result, recognizing 

and fixing any faults in power transformers is crucial for 

improving system efficiency. Detecting incipient problems in 

power transformer oil via an intelligent system technology has 

become an intriguing research topic. 

Several studies on monitoring and analyzing approaches 

to assess the state of the health of the power transformer for 

subsequent preventative and maintenance operations have 
been offered. Dissolved Gas Analysis (DGA) is a dependable 

and widely used technology for detecting early problems in 

power transformer-immersed oil [3]. The DGA requires 

regular oil testing as well as modern technology for online 

analysis and monitoring. Analyzing the vapors recovered from 

the transformer oil can uncover early-stage faults within the 

transformer [4]. The quantity and types of these gases are 

determined by the amount of energy exposed by the oil [5]. 

Several sources have offered fault detection in power 

transformers utilizing the Dissolved Gas Analysis (DGA) 

technique, taking into account both normal and faulty 

situations. The analysis of dissolved gas can be conducted 

using several ways for interpreting faults, such as the Roger 

ratio method, Doernenburg ratio method, key gas method, IEC 

ratio method, and Duval triangle method [6]. References [7-

11] have described how to identify a power transformer fault 

by taking into account both the normal and the defective 
conditions. The Multilayer Perceptron Neural Network 

(MLPNN) identification of fault types in a power transformer 

is described in reference [7]. Combinations of Roger’s ratio, 

Doernenburg’s ratio, and Roger’s and Doernenburg’s ratios 

are used with the MLPN model. The suggested method can 

increase the accuracy of power transformer incipient defects 

by 85.31%.  

Artificial Neural Network (ANN) technology was utilized 

in [8] to determine the type of power transformer fault. 

Levenberg Marquardt’s backpropagation technique as 

multilayer reverse diffusion is the ANN training algorithm 
that is utilized. To identify different kinds of faults, the DGA 

approach incorporated the key gas method and Duval triangle 

method into consideration. The performance of the forecast 

was evaluated for accuracy using Mean Absolute Error. 

http://www.internationaljournalssrg.org/
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RadBas, Tan-Sigmoid, Log-Sigmoid, and Purelin linear 

transfer functions are utilized. The results demonstrate that the 

mean absolute error produced using ANN is less than that 

obtained using the manual fault prediction technique. 

Another study in [9] also proposed a multilayer 

perceptron type of ANN with DGA to determine the 
transformer conditions. Monitoring transformer conditions is 

critical for improving transformer dependability and 

efficiency. It can also extend the life of the power transformer. 

The results show that the ANN using DGA data provides an 

accurate solution. Multilayer Artificial Neural Network 

(MANN) and Support Vector Machine (SVM) models have 

been presented in [10] to classify the types of faults occurring 

in power transformers using DGA data. The accuracy 

achieved with the SVM classifier is 81.4%, which is higher 

than the performance with the multilayer ANN, which is only 

76% accurate. In [11], SVM was used to determine the types 

of defects using DGA data. Power transformer faults were 
classified into four types: low-intensity discharge, high-

intensity discharge, thermal fault, and no fault. 

References [12-15] examined power transformer fault 

diagnosis based solely on fault condition. Reference [12] 

advocated using ANN to identify the types of issues that may 

occur in power transformers. DGA data was generated using 

the Duval triangle method, Roger ratio method, and 

Doernenburg method ratio. The Duval triangle method has the 

best accuracy (85%), followed by the Doernenburg ratio 

method (58.97%) and the Roger ratio method (52.27%). In 

[13], two SVM models are presented: Fine Gaussian for 
SVM1 and Kernel Linear for SVM2. Power transformer fault 

types were classified into four categories: partial discharge, 

low energy discharge, high energy discharge, and thermal 

fault. SVM1 has a better accuracy than SVM 2, which is 

97.9% and 91%, respectively. 

In their study, the authors of reference [14] have 

introduced a multistage Support Vector Machine (SVM) 

approach for accurately categorizing the different failure types 

in power transformers. The faults were categorized into four 

stages: SVM1, SVM2, SVM3, and SVM4. The SVM1 

algorithm was employed to detect the presence of discharge 

fault and thermal fault. The SVM2 algorithm was employed 
to detect and classify partial discharge and discharge faults. 

The SVM3 algorithm was employed to detect thermal faults 

that are below 700°C and those that are above 700°C. The 

SVM4 algorithm was employed to detect the discharge of low-

energy and high energy.  

The SVM1, SVM2, SVM3, and SVM4 achieved 

accuracies of 91.45%, 98.80%, 91.18%, and 83.78% 

correspondingly. Different research conducted in [15] has 

introduced a Hybrid Genetic Algorithm and Artificial Neural 

Network (GA-ANN) to detect various forms of faults in power 

transformers. The performance of GA-ANN is being 

compared to a conventional approach. The results indicate that 

the proposed method achieved an accuracy of 95%, whereas 

the conventional method only achieved an accuracy of 72%.  

Most previous researchers categorize various types of 

faults that occur in power transformers. Identifying power 

transformer failures in real-life scenarios is known for its 
inherent difficulty. Furthermore, determining the sort of fault 

occurring in a power transformer and how to avoid it is quite 

challenging. Therefore, this research has suggested a 

technique for determining whether a transformer requires 

maintenance or is in a normal state.  

Based on DGA analysis data, the classification technique 

LS-SVM is provided to identify and predict the type of faults 

that occur. The DGA data in this research is analyzed using 

the IEC ratio approach, which is based on key-gas ratio 

concentrations. The DGA data obtained from the power 

industry is employed as a training and testing data set for LS-

SVM. Seven distinct categories of incipient defects are 
considered: partial discharge, discharge of low energy, 

discharge of high energy, thermal fault below 300ºC, thermal 

fault between 300ºC and 700ºC, thermal fault over 700ºC, and 

normal state. 

2. Methodology 
2.1. Dissolved Gas Analysis (DGA)  

This work introduces the adoption of LS-SVM for 

classifying different types of faults in power transformers 

using data received from Dissolved Gas Analysis (DGA). The 

DGA data is acquired according to the IEC 60599 (2007) 

standard. The IEC ratio method employs five gases: Hydrogen 

(H2), Methane (CH4), Acetylene (C2H2), Ethylene (C2H4), and 

Ethane (C2H6). The gas ratios C2H2/C2H4, CH4/H2, and 

C2H4/C2H6 are determined from these gases [11]. Table 1 

displays the elucidation of gas that is dissolved in the oil [1]. 

Table 2 displays the IEC standard that is utilized for 

interpreting the various forms of defects in power 

transformers. It includes three gas ratios that correlate to the 
optional fault analysis.  

Table 1. Interpreting dissolved gases in transformer oil [1] 

Gas Detected Interpretation 

Hydrogen (H2) 
Electric Discharge (Corona Effect, 

Low Partial Discharge) 

Acetylene 

(C2H2) 
Electric Fault (Arc, Spark) 

Ethylene (C2H4) Thermal Fault (Overheating Local) 

Ethane (C2H6) 
Secondary Indicator of Thermal 

Fault 

Methane (CH4) 
Secondary Indicator of an Arc or 
Serious Overheating 
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Table 2. Classification of gas ratios and fault types according to IEC60599 (2007)  

Fault Type Fault Type Code C2H2 / C2H4 CH4 / H2 C2H4 / C2H6 

Partial Discharge PD <0.1 <0.1 <0.2 

Discharge of Low Energy D1 >0.1 0.1-0.5 >0.1 

Discharge of High Energy D2 0.6-2.5 0.1-1 >2 

Thermal Fault below 300°C T1 <0.1 >1 <1 

Thermal Fault between 300°C and 
700°C 

T2 <0.1 >1 1-4 

Thermal Fault above 700°C T3 <0.1 >1 >4 

 
2.2. Least Square-Support Vector Machine (LS-SVM) 

Least-Square Support Vector Machines (LS-SVM) are 

highly effective for addressing nonlinear classification, 

function estimation, and density estimation problems. LS-

SVM is a type of Support Vector Machine (SVM) that solves 

linear Karush-Kuhn-Tucker (KKT) problems. The goal of LS-

SVM is to find the optimal hyperplane that separates the 

outcomes by decreasing the margin between the hyperplane 

and the data points [16].  

The default configuration of the LS-SVM classifier is 

specifically designed to handle binary classification issues. In 

these situations, the data is divided by an ideal hyperplane that 

a group of support vectors determines. Support vectors are a 

subset of the training set that determines the border values 

separating the two classes [17].  

This paper utilized LS-SVM as a multi-classifier to 

develop a model for categorizing power transformers into non-

faulty and various fault types. The LS-SVM function is 

expressed in (1), where y represents the output vector and x 

represents the input vector. The function Ø(x) is a nonlinear 

mapping function utilized to transform input data into a space 
with a higher number of dimensions. The revised weight 

vector is represented as w, whereas the scalar threshold value 

is represented as c. 

𝑦(𝑥) = 𝑤𝑇∅(𝑥) + 𝑐   (1) 

Equation (2) represents the LS-SVM classification 

model, which is governed by (3). In (3), ᵞ denotes the cost 

function, i refers to the input instance, and ei represents the 

error value. This study uses the radial basis kernel function. 

The Gaussian Radial Basis Kernel (RBF) function, as depicted 

in (4), utilizes the kernel function K(xi,xj) to enable the 

computation of dot products in high-dimensional feature 

spaces using low-dimensional data. The parameter σ 

represents the standard deviation. 

min 
1

2
𝑤𝑇𝑤 + 𝛾

1

2
∑ 𝑒𝑖

2𝑛
𝑖=1     (2) 

𝑒𝑖 = 𝑦𝑖 − (𝑤𝑇∅(𝑥) + 𝑏),    𝑖 = 1,2,3 … . 𝑛    (3)              

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎
)     (4) 

In order to achieve the best level of accuracy in 

classification, it is necessary to fine-tune two parameters: 

gamma (ᵞ) and sigma (σ²). The optimal values of the gamma 
and sigma parameters in this research were determined by a 

mix of Coupled Simulated Annealing (CSA) and the 

conventional complex approach. The formula for computing 

classification accuracy is depicted in (5). Np represents the 

count of accurate predictions, while Tp is the overall count of 

prediction data. 

Accuracy = (Np/Tp) x 100%  (5)  

2.3. LS-SVM for Classification of Fault Types 

The LS-SVM model utilizes gas ratios as input data and 

generates seven various forms of incipient failure output. The 

LS-SVM model was developed and tested to accurately 
categorize the faulty state of a power transformer into several 

categories. The LS-SVM model categorized the outputs into 

the following categories: “1” for partial discharge, “2” for 

discharge of low energy, “3” for discharge of high energy, “4” 

for thermal fault with temperature below 300°C, “5” for 

thermal fault with temperature ranging from 300°C to 700°C, 

“6” for thermal fault with temperature exceeding 700°C, and 

“7” for normal state. Table 3 displays the class code and the 

quantity of data utilized, as seen in Table 3. 

The LS-SVM model’s methodology is illustrated in 

Figure 1. Prior to proceeding, it is necessary to load the input 

and output data. This article utilizes seven distinct 
permutations of training and testing data. Gamma and sigma 

values were thereafter selected optimally by the utilization of 

the cross-validation technique. The data will then undergo 

training using a classification algorithm. The mean accuracy 

will be computed once the training operation is finished. 

Should the convergence conditions fail to be met, the 
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hyperparameter values will be altered. The procedure is 

iterated until convergence is achieved. Subsequently, the 

testing procedure commences. Ultimately, the correctness of 

the testing data will be computed. 

Table 3. Representation of class codes and number of samples for the 

LS-SVM classifier 

Fault Types 
Class 

Code 

No. of 

Data 

Partial Discharge (PD) 1 17 

Discharge of Low Energy (D1) 2 3 

Discharge of High Energy (D2) 3 12 

Thermal Fault below 300 °C (T1) 4 154 

Thermal Fault between 300°C and 

700°C (T2) 
5 3 

Thermal fault above 700°C (T3) 6 110 

Normal (N) 7 6 

Total Data 305 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Flowchart of LS-SVM for classification of fault types 

3. Results and Discussion 
This study presents actual data on flammable gasses found 

in transformer oil from utility companies. The dataset 

comprises measurements of dissolved gas levels and the status 

of power transformers. The conditions are partial discharge, 

low energy discharge, high energy discharge, thermal fault 

below 300°c, thermal fault between 300°c and 700°c, thermal 

fault over 700°c, and normal condition.  

The simulation utilized a total of 305 samples. Multiple 

simulations were conducted for various case studies. In 

scenario 1, 90% of the data is allocated for training purposes, 

while the remaining 10% is reserved for testing. In Case 2, 

Case 3, Case 4, Case 5, Case 6, and Case 7, the training data 
consists of 85%, 80%, 75%, 70%, 65%, and 60% of the total 

data, respectively. The training outcomes for Cases 1 through 

7 are illustrated in Figures 2 to 8 respectively. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 2 Classification results of LS-SVM for case 1 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3 Classification results of LS-SVM for case 2 
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Fig. 4 Classification results of LS-SVM for case 3 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 5 Classification results of LS-SVM for case 4 

 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 

 

Fig. 6 Classification results of LS-SVM for case 5 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 
  

Fig. 7 Classification results of LS-SVM for case 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8 Classification results of LS-SVM for case 7 

The categorization accuracy exhibited variability across 

several cases, specifically Case 1 to Case 7, as depicted in 

Figures 2 to 8. The observed variation can be attributed to 

disparities in the quantity of training and testing data.   

Therefore, the selection of the amount of training and testing 

data is vital for attaining accurate classification models. 

Furthermore, the optimal selection of RBF parameters varies 

for each specific case study. The outcomes of the LS-SVM 

and DGA data-based classification precision evaluations for 
power transformer fault categories are displayed in Table 4.  

The findings are reported for different ratios of training 

and testing data. The highest level of accuracy, reaching 

97.37%, was attained by employing a blend of 229 training 

datasets and 76 testing datasets. These datasets were divided 

into a ratio of 75% for training and 25% for testing, derived 

from a total of 305 samples. The recommended values for 

gamma and sigma are 1.4101 and 4.3232, respectively. Table 
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4 unequivocally illustrates that the precision of fault detection 

for power transformers in each of the seven categories is above 

90%. By allocating 75% of the data for training and 25% for 

testing, a high level of accuracy, precisely 97.37%, can be 

achieved. Figure 9 provides a summary of the findings for 

each case, including the total amount of training data utilized, 
as well as the number of TRUE and FALSE data points. The 

term “TRUE” refers to data that has been accurately predicted, 

whereas “FALSE” denotes data that has been inaccurately 

forecasted.  Case 4 exhibits the lowest number of inaccurate 

data, with a total of 229 data points and 223 correctly 

identified data points. There were just six instances where the 

data points were categorized improperly. The most significant 

error is evident in Case 2, where 23 data points were 

erroneously classified. Comparable observations can be drawn 

in Case 1, where the imprecision is very significant. This may 

be attributed to insufficient testing data. Case 1 and Case 2 
included 31 and 46 testing data points, respectively. The given 

results suggest that, apart from the parameter settings of RBF, 

the amount of training and testing data can also impact the 

accuracy of classification. Consequently, it necessitates 

careful and suitable selection.

Table 4. Performance of each classifier trained in LS-SVM 

No. Case Study 
Percentage of 

Training Data (%) 

Percentage of 

Testing Data (%) 
Gamma Sigma Accuracy (%) Error (%) 

1. Case 1 90 10 2.5657 3.5035 93.33 6.67 

2. Case 2 85 15 1.0310 6.9872 91.30 8.70 

3. Case 3 80 20 6.4374 1.6182 95.08 4.92 

4. Case 4 75 25 1.4101 4.3232 97.37 2.63 

5. Case 5 70 30 3.3941 1.7280 96.70 3.30 

6. Case 6 65 35 4.7734 1.5749 96.26 3.74 

7. Case 7 60 40 4.9659 2.4024 95.90 4.10 

 
Fig. 9 Summarized results of LS-SVM for all cases 

4. Conclusion 
This work introduced the categorization of power 

transformer faults in a power system using the Least-Square 

Support Vector Machine (LS-SVM) technique. A total of 305 

data samples were collected by Dissolved Gas Analysis 

(DGA). The DGA approach utilized IEC key-gas ratios to 

detect and pinpoint the first faults in transformers effectively. 

The dataset has seven distinct categories: partial discharge, 

discharge of low energy, discharge of high energy, thermal 

fault at temperatures less than 300°c, thermal fault with 

temperatures ranging from 300°c to 700°c, thermal fault at a 
temperature more than 700°c and normal condition. The 

efficacy of the LS-SVM model was evaluated through 

multiple case studies. The test results indicate that the LS-

SVM classification model provided can attain a diagnosis 

accuracy of 97.37%, which is considered high. Utilizing it 

would be advantageous for the utilities as it would help 

prevent breakdowns and eliminate superfluous maintenance 

of power transformers. 
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