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Abstract - With an emphasis on the Xilinx Artix XC7A200T FPGA, in this paper, a Convolutional Neural Network (CNN) tailored 

explicitly for FPGA deployment is designed and implemented. The method adapts the LeNet-1 model using a hardware 

description language; this choice is motivated by the model’s minimal size, making it suitable for edge computing devices. With 

its parameterized module structure, the architecture, known as ‘LeNet,’ offers significant flexibility and adaptability. The design 

focuses on the modular architecture and diversity of Processing Elements (PEs), crucial for parallel processing in 

computationally demanding CNN tasks. Convolutional, pooling, and fully connected layers are customized to leverage the 

FPGA’s capabilities. Multiple filter banks are utilized for effective input processing and feature extraction. The pooling layers 

are specifically designed to reduce feature dimensionality complexity, thereby improving data fluctuation handling and reducing 
computational demands. The architecture stands out for its scalability and efficiency, utilizing five different processing units. 

The parameterization of modules and their successful application on the MNIST dataset, a standard benchmark in Machine 

Learning for handwritten digit recognition, further illustrate how the architecture may be adapted to different datasets and 

applications. The implementation of the Xilinx Artix XC7A200T FPGA achieved a power consumption of 1.775 W at 100 MHz, 

indicating that the design is energy-efficient and suitable for high-demand applications in resource-limited environments. This 

paper details the module design, parameterization, and integration methodologies employed in the design process of adapting 

the LeNet-1 model for FPGA. 

Keywords - Convolutional Neural Networks, Edge computing, FPGA, LeNet-1, Performance analysis.

1. Introduction  
Many domains use Convolutional Neural Networks 

(CNNs), including semantic segmentation [1], object 

detection [2], and image classification [3]. Modern 

Convolutional Neural Nets (CNNs) include several layers and 

are more computationally complex, making them challenging 

to implement on embedded systems. In the domains of 

Automotive Driver Assistance (ADAS) and data center 

acceleration [4], using FPGA to speed CNN has garnered a lot 

of interest. FPGA’s flexibility and ease of development allow 
it to accommodate the continually evolving CNN models. 

In an attempt to attain high precision, CNNs have been 

trending toward layer additions, intricate architectures, and 

intricate operations [5-7]. The enormous volume of 

parameters and processes necessitates stringent memory 

management and computational power. First introduced in [9], 

a novel convolution design aimed to minimize the number of 

parameters and computing burden of standard convolutions. 

Xception [10], ShuffleNet [12], and MobileNetV2 [11] are 

examples of new CNNs that substitute depthwise separable 

convolution for traditional convolution. In order to retain a 
high degree of accuracy, this significantly reduces the number 

of processes and parameters required. 

CNN is a computationally demanding task that uses a lot 

of processing power. The target platform is chosen to be the 

Graphic Processing Units (GPUs) because of their sufficient 

performance. However, GPUs have a significant issue due to 

power consumption. The highly parallel, scalable, and energy-

efficient computing substrate of FPGAs is driving up their use 

for CNN acceleration [13]. 

There is still a significant difference between the CNN 

model and accelerator design, even with recent attempts to 
employ FPGAs to accelerate CNNs [14]. Large and 

ineffective standard CNN models like AlexNet [15], VGG16 

[5], GoogLeNet [16], and ResNet [8] are still targeted at some 
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FPGA accelerators. More computational and storage 

resources are needed for those inefficient models than for the 

compact, accurate models that are efficient. Getting high 

performance out of an accelerator based on these inadequate 

approaches is challenging. 

Modern CNN-based accelerators like MobileNets and 
ShuffleNets have only been able to reach respectable speeds 

on image recognition jobs. Depthwise separable convolution 

is usually used by these state-of-the-art CNNs in order to 

reduce parameters and operations.  

There are numerous types of systems available in the field 

of AI/ML accelerators, ranging from modest designs to large-

scale business solutions, all of which are customized to meet 

particular computing requirements.  

In [17], Google’s TPU project aimed to reduce profound 

neural network inference costs by 10x. It was developed as a 

CPU and GPU ASIC replacement between 2013 and 2015. 

This was done with systolic array-based hardware matrix 
multiplication units. The original TPU, known as TPU v1, 

used a 256 × 256 systolic array matrix multiplication unit for 

some workloads and provided 30-80× more performance per 

watt than current CPUs and GPUs.  

Since then, TPU v2 and v3 have been launched. The TPU 

versions 2 and 3 are designed for inference and training and 

perform better than their predecessors. Bfloat16, a new 

number format introduced in TPU v2, has the same dynamic 

range as fp32 but poorer accuracy. Many Google products use 

TPUs, including Search, Android, YouTube, and others [17]. 

Microsoft Project Brainwave [18] is a machine-learning 
accelerator. 

In contrast to Google TPU, Project Brainwave uses an 

FPGA-Project Brainwave benefits from being programmable 

and more agile than Google. In the study [22], Programmable 

Logic (PL) is employed for speed and power consumption, 

while a Processor System (PS) is used for process control. 

This method integrates streams of training and inference data 

by using High-Level Synthesis (HLS) tools to translate high-

level language descriptions into hardware Register Transfer 

Level (RTL) formats.  

Validation on the Xilinx HA device with the MNIST 

dataset showed remarkable processing speeds, low power 
consumption, and good accuracy, along with comparable 

convergence rates to GPU models in only 78.04% of the 

training period. For IoT edge computing, the B. Wang et al. 

“Shenjing” accelerator [19] is a low-power, compact device. 

By connecting a regular neural network to a spiking neural 

network, SNN energy efficiency is possible.  

This approach uses 1.26 mW, and MNIST inference 

errors are 4%. “FANN-on-MCU” is another small neural 

network accelerator [20] developed by X. Wang et al. for edge 

computing in the Internet of Things. They used PULP, a 

parallel ultralow-power RISC-V platform, to code their 

approach, unlike previous research. Their architecture is 22x 

quicker and 69% less energy-hungry than Cortex-M4.  

In [25], SparkNet, a lightweight neural network 
architecture, is created to decrease weight parameters and 

computing demands on MINIST, CIFAR-10, CIFAR-100, and 

SVHN datasets. Squeezenet’s minimal parameters and deep 

separable convolution’s reduced processing help SparkNet 

compress CNN 150x. SparkNOC, an FPGA-based accelerator 

architecture, maps each network layer to dedicated hardware 

units for pipelined operation.  

SparkNOC, implemented on the Intel Arria 10 GX1150 

FPGA platform, achieves high speed with convolutional layer 

parallelism, on-chip RAM for intermediate result access, and 

synchronized pipeline execution. In experiments, the 

accelerator earned 337.2 GOP/s with 44.48 GOP/s/W energy 
efficiency, beating GPU, CPU, and FPGA approaches.  

Developing an efficient SparkNet architecture for edge 

deployment, a parallelism allocation technique for FPGA-

based accelerators, and deploying SparkNet on FPGA with 

higher performance and power efficiency are the main 

contributions.” 

This study presents a new FPGA-based accelerator 

solution for the LeNet-1 Convolutional Neural Network, 

utilizing the Verilog hardware description language. This 

study aims to efficiently implement LeNet-1, a comparatively 

more straightforward CNN model crucial for edge computing 
applications.  

In contrast to earlier efforts focusing on large-scale 

solutions or specific architectures like Google’s TPU [17] and 

Microsoft Project Brainwave [18], this research introduces a 

parameterized LeNet module. This module features fully 

connected and convolutional layers that are meticulously 

instantiated, with adjustable filter sizes, channel counts, and 

pooling layer parameters.  

The uniqueness of this approach lies in the combination 

of Processing Element (PE) and PE array modules optimized 

for parallel processing. This results in a significant increase in 

computational performance quantified in nanoseconds per 
processing step.  

Suited for real-time image recognition in IoT edge 

computing environments, this approach not only addresses the 

challenges of implementing CNNs on FPGAs but also marks 

a notable improvement in executing computationally intensive 

tasks. By bridging the current gap in FPGA-based CNN 

accelerators, this work offers a scalable and energy-efficient 

solution applicable in various technological contexts. 
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2. Background  
2.1. CNN Foundations  

The 1980s and 1990s saw the start of Convolutional 

Neural Network research. The first convolutional neural 

networks were Lenet-5 and the time delay network. 

Convolutional Neural Networks were developed quickly 

around the turn of the 20th century, thanks to advancements in 

numerical computing hardware and deep learning theory. 

They are currently widely employed in several domains, 

including computer vision and natural language processing 

[15].  

Bionic creatures’ mechanisms for visual perception are 

built using Convolutional Neural Networks. The 
Convolutional Neural Network organizes the layer data with 

less processing, making feature extraction easier. The hidden 

layer’s convolution kernel parameters and the absence of links 

between network layers make this possible. The feedforward 

portion of convolutional neural networks is frequently 

employed for picture recognition and classification, and the 

feedback section is used for network training when they are 

utilized as supervised learning techniques. The majority of 

users employ Convolutional Neural Networks and training 

weight data to accomplish real-time jobs; hence, feedforward 

calculation speed is more crucial. This article’s primary focus 
is on the FPGA’s feedforward section acceleration in 

convolutional neural networks. 

The feature extractor and classifier are the two 

components that make up the conventional neural network 

architecture. The function of the feature extractor is to extract 

the features from the input image. Since the feature map was 

mapped to a different feature map, these images lack unique 

properties. This is primarily because of the convolution core 

sliding that contains most shapes.  

The weight of the convolution kernel should be mapped 

one-to-one between the input and output layers. A classifier is 

what is created when the feature layer is transformed into an 
output structure. Feature extractors frequently include 

convolution and downsampling layers, like with Lenet-1, as 

seen in Figure 1. One fully connected layer, two subsampling 

layers, and two convolutional layers make up LeNet-1. 

2.2. Acceleration of FPGA 

FPGA clocks typically operate at a few hundred MHz, 

although the core frequency of a general-purpose CPU can 

reach several GHz. However, the general-purpose CPU 

typically performs better than the FPGA. For specific tasks, 

including signal or image processing, a general-purpose CPU 

may need a lot of clock cycles. However, through 
programming, an FPGA may immediately build a specific 

circuit. During this process, the logic blocks and connections 

on the FPGA are configured to maximize pipelining and 

parallel processes.  

Furthermore, through memory use optimization, an 

FPGA speeds up reading and writing processes, resulting in a 

notable improvement in performance for particular tasks. 

 

 

 
 

 

 

 

 

 

 
 

Fig. 1 Architecture of LeNet-1 [21] 

Recent developments in FPGA optimization for faster 

processing rates have mainly concentrated on the creative 

creation and usage of practical algorithms and designs, as the 
LeNet model proposed in this work serves as an example. 

With skillful configuration, this Convolutional Neural 

Network takes advantage of FPGAs’ parallel processing 

capabilities. A modular design, which divides the model into 

convolutional, pooling, and fully connected layers, is one of 

the main optimization techniques.  

This allows for parallel processing while streamlining 

data flow and computation management. The model’s 

pipelined architecture, which enables the simultaneous 

execution of numerous calculation steps, dramatically reduces 

latency and increases throughput. The FPGA’s strategic 
memory management lets you get to weights and intermediate 

data quickly. It also cuts down on latency and speeds up 

convolutional processing by cutting down on data retrieval 

times.  

The LeNet model is characterized by its parameterization, 

which lets you change things like the number and size of filters 

and the number of neurons in fully linked layers. This makes 

it scalable and adaptable to different FPGA sizes and 

capabilities. By using the same hardware resources for many 

layers at other times, sharing mechanisms allow for resource 

optimization through optimal resource use and reduced 

hardware requirements. To speed up processing, the model 
also uses fixed-point arithmetic instead of floating-point, 

which makes calculations easier and saves resources. 

3. Accelerator Design  
An extensive design overview of a hardware-accelerated 

Convolutional Neural Network (CNN) aimed at practical and 

high-performance computing applications is presented in this 
research. The design features a stable architecture, as shown 

in Figure 2, which integrates all the essential components of a 

CNN onto an FPGA platform. This integration resolves 
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significant problems with real-time processing, power 

efficiency, and data management, making it practical for a 

variety of uses, including real-time image analysis and 

autonomous systems.   

3.1. Architectural Design 

The Processing Elements (PEs) are essential to the 
convolutional layer’s effectiveness. 

 

 

 

 

 

 

 

 

 
 

     
Fig. 2 Overview of accelerator design 

These PEs are essential to the architecture’s ability to 

process data in parallel. Fast matrix multiplication, a crucial 

process in convolutional computations, is a skill that each PE 

possesses. The solution allows for the simultaneous 
processing of several data streams by arranging a total of five 

PEs in an array. This arrangement offers a scalable and 

flexible design that supports many CNN models while also 

speeding up convolutional processes. For quick feature 

extraction in real-time applications, the PEs are tuned for low-

latency operations. Their modular architecture improves the 

reconfigurability and adaptability of the system to meet a 

range of computational needs. Significant gains in 

computational performance are achieved, along with the 

preservation of power economy, by integrating these 

Processing Elements (PEs)-a crucial feature for FPGA-based 

devices. 

By utilizing these PEs in a Processing Element Array, the 

convolutional layers improve matrix multiplication 

performance and data flow. After convolution, the 

Accumulation Block (AB), Figure 3, consists of an adder to 

add the incoming partial sum to its corresponding counterpart 

and a FIFO to store partial sums previously kept in that block. 

The time-synchronized addition process keeps on until every 

block contains the entire convolved result. When no pertinent 

data arrives from the systolic array, the contents of each block 

are frozen. The Pooling and Activation Block (PAB), Figure 

3, is made up of an activation unit, a memory element (FIFO), 
and a comparator block, then processes the data. The 

following inputs from the accumulation block are compared 

to the matching item already kept in this block’s residual 

FIFO, and the most significant value in the comparator block’s 

output is one of these values. PAB employs an enhanced 

Softmax Activation function alongside a specially designed 

pooling method tailored to meet the requirements of the 

application. This approach effectively reduces spatial 

dimensions and introduces non-linearity. This strengthens the 

network’s ability to identify complex patterns. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 3 (a) AB module, and (b) PAB module.  

 

 

 

 

 

 

 

 

 

 
 

 
 Fig. 4 (a) PE dataflow, and (b) PE architecture. 

The Fully Connected (FC) module in Figure 2 is essential 

for combining information and enabling classification. The 

FC serves as a point of convergence for the features retrieved 

by the convolutional and pooling layers that came before it, 

synthesizing the data into a format that makes sense for the 

decision-making process. Its primary function is to classify the 

input image by allocating it to one of the predefined classes 

(0-9), especially in digit recognition tasks. Multiply-

accumulate activities, in which each neuron evaluates its 

inputs against corresponding weights to produce a collection 
of outputs, are the fundamental operations of the FC module. 

A softmax function, which is common in classification 

problems, is then used to convert these outputs into 

probabilities, yielding an understandable and straightforward 

conclusion. To further enhance the layer’s effective and well-

organized operation, the code incorporates well-considered 

control logic that manages reset circumstances, regulates the 

sequence in which operations are carried out, and indicates 

when processing is complete. 
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3.2. Processing Element 

The critical element of the proposed FPGA-based 

Convolutional Neural Network (CNN) architecture is the 

Processing Element (PE) module, which is seen in Figure 4. 

The PE Array module (Figure 5) successfully complements 

the PE module in this design. The multiplier and adder blocks, 
which carry out the primary computational operations, are 

what define the PE module. Weights are applied to the input 

data (Ii) in the multiplier block in order to get the intermediate 

product (P). In the Adder Block, this product is joined with Pi, 

the previous output, to create a total, which effectively 

integrates the outcomes of the last and current processes. 

 
Fig. 5 PE array 

Two sets of registers are used in the PE module to control 

data flow and synchronization. The clk (clock) signal ensures 

timely processing, while the reset (rst) signal provides 

initialization. The first set, Registers (Po), records the output 

from the Adder Block. Po, the output from these registers, 

represents one significant computational outcome. Ii directly 

feeds a second set, Registers (Io), which is governed by clk 

and rst. The synchronized version of the input data that these 

registers output is called Io, and it is essential for further 
system activities as well as for maintaining data integrity and 

coherence with the module’s processing cycle. 

An essential part of the architecture is the “PE Array” 

module, which is a skillfully constructed array of Processing 

Elements (PEs) that are necessary for convolutional 

operations in neural networks. Each PE acts on a different set 

of input data and weights. A very straightforward diagram of 

this module (Figure 5) shows five connected rectangles with 

structured labels, PE0 through PE4. Every rectangle, which 

stands for a PE, is connected to provide smooth data flow, 

which is essential for activities requiring sequential 

processing. According to this architecture, each PE in the 
array processes the inputs in a certain way before passing the 

processed data to the next PE in line. This design, which is 

visible in the schematic as well as the practical 

implementation, illustrates a sequential data processing 

system. A series of processing steps is formed when the output 

of one PE is used as the input for the following. 

Moreover, the PE Array module can be customized to 

fulfill unique application requirements and accommodate 

different bit widths. The PEs’ interconnectedness, which 

results in one PE’s output becoming another’s input, creates a 

seamless data flow that is necessary for sequential processing. 

Intermediary wires help this flow, and the array’s general 
configuration guarantees effective data transfer between the 

PEs. The array’s embedded clock and reset signals allow for 

operation resetting and synchronization, which improves 

functionality overall. 

This ingenious approach, which is especially well-suited 

for the convolutional stages of neural networks, finds a 

balance between the parallel processing powers of FPGA 

structures and sequential data handling. The combination of 

the PE and PE Array modules in the architecture provides a 

high-performance computation technique for neural network 

applications by fully utilizing FPGA technology. Essentially, 

the PE Array module effectively communicates the concept of 
complex computing processes common to sophisticated 

digital systems, as well as serving as an example of a basic 

idea in the domains of digital signal processing and neural 

networks. Though it seems straightforward, this method 

captures the core of practical, step-by-step data processing, 

where each component builds on the work of the one before 

it. 

3.3. Memory Management 

As Figure 2 illustrates, on-chip memory is essential to 

improving system performance in the CNN accelerator. The 

WB is used to store the filter weights required for convolution 
operations. It is made to efficiently keep weights in a way that 

facilitates high-throughput access, which is crucial for quick 

convolution computations. The input feature maps, on the 

other hand, are either the original input data or the outputs of 

earlier layers and are stored in the IFMB. Taking into 

consideration that feature maps alter as processing moves 

forward, it is tuned for dynamic read/write operations. These 

two elements are essential for decreasing off-chip memory 

transfer delay and increasing data access speed. This is crucial 

for FPGA systems in particular because memory bandwidth is 

often a limiting factor. These buffers significantly improve 

system performance by localizing important data inside the 
FPGA, facilitating quick and effective computation that is 

essential for real-time processing applications. 

The Intermediate Data Buffer (IDB) is also integrated into 

the design, which improves the data processing flow even 

further. The IDB sequences data from the IFMB before 

sending it to the Processing Elements (PEs). To provide 

consistent data transport, each row of the IDB in this 

configuration corresponds to a row of the processing elements. 

The data traversal order, which essentially determines how the 

data is fed into the PEs, is carefully followed when organizing 

the data from the IFMB in the IDB.  
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This configuration improves the use of the processing 

elements and simplifies the data flow from IFMB to PEs, 

improving the effectiveness and performance of the CNN 

accelerator. The output Feature Map, or FM, is moved to off-

chip DRAM after first being kept in on-chip buffers. When 

using deep learning models, this approach is crucial because 
the network produces large volumes of data in these models. 

For processing or storing, effective data management is 

essential to avoiding overstuffing the device’s memory and 

bandwidth. 

Dynamic weight loading, efficient data compression, and 

selective input data tiling are incorporated to enhance the 

effectiveness of the concept further. These techniques are 

crucial for getting over the built-in restrictions on bandwidth 

and on-chip memory, guaranteeing that the architecture can 

balance throughput, latency, and power efficiency while 

meeting the demanding computational requirements of 

contemporary Deep Learning applications. Maintaining this 
equilibrium is essential for the accelerator’s incorporation into 

more extensive systems, as every one of these elements is 

critical to overall functionality. 

4. Results and Discussion  
This research utilized the Vivado software suite for the 

design and synthesis of an FPGA-based CNN accelerator. Key 
to the testing was the MNIST dataset, renowned in Machine 

Learning for handwritten digit recognition. This choice 

ensured the architecture’s applicability in real-world image 

processing and neural network applications. The design was 

rigorously tested using the high-performance Xilinx Artix 

XC7A200T FPGA, known for its adaptability and cost-

efficiency. This platform provided the necessary environment 

for reliable testing of functionality and performance. 

Figure 6 illustrates the implemented design within 

Vivado, highlighting the layout and configuration of various 

components. The design’s resource usage is broken down in 

Table 1. Notably, the total power consumption was measured 
at 1.775W at 100MHz, as shown in Figure 7. This 

consumption, comprising 1.638 W of dynamic power and 137 

mW of static energy, was estimated using the Xilinx Power 

Estimator (XPE). Remarkably, this represents a 55% 

reduction in power compared to previous LeNet CNN designs, 

which typically consumed around 3.22 W. 

The FPGA CNN accelerator’s output underwent rigorous 

verification against Python-based implementations, 

showcasing minor differences attributable to distinct precision 

handling and computing methods between the platforms, as 

illustrated in Figure 8. Despite these variances, the design 
demonstrated remarkable flexibility and resilience across a 

variety of processing scenarios. The comparative analysis 

evaluates the FPGA-based CNN accelerator against previous 

models [23, 24], which also focus on LeNet CNN 

architectures but employ different design strategies. A fixed-

point data format and numerous approximate accumulation 

units were used in the work [23] to propose an FPGA-based 

CNN accelerator. 

 
Fig. 6 Hardware implementation in Vivado 

 

 

 

 

 
 

Fig. 7 Power summary 

This design, developed using high-level synthesis tools 

on a Xilinx FPGA, optimized memory usage and network 

latency by 66% and 50%, respectively, compared to floating-

point designs. It optimized data types and loop parallelization 

and used FPGA logic resources for approximation operations 
to achieve this efficiency. Their approach included an 

approximate MAC operator and data size optimization by 

trimming unused bits post-activation, with performance tested 

across various bit widths. 

On the other hand, [24] developed a CNN accelerator for 

FPGA with the goal of identifying handwritten numbers in 

MNIST. Their system utilized deep pipeline processing to 

optimize parallelism at both coarse and fine granularity levels. 

The design featured a structured circuit approach for easy 

expansion of layers and neurons and improved classification 

throughput by efficient internal memory organization in the 
FPGA. This approach resulted in three times the acceleration 

at 50MHz compared to traditional CPUs, with power 

consumption taking up only 2% of CPU usage. They 

emphasized a flexible memory management system, standard 

interfaces for convolution and pooling layers, and a structured 

design enabling easy CNN reconstruction and scalability. 
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Fig. 8 Samples of contrasting XILINX and KERAS outputs 

Table 1. Comparison of the use of FPGA resources 

Model This Work [23] [24] 

FPGA Artix-7XC7A200T ZynqXCZU9EG Artix-7XC7A20 

Clock (MHz) 100 100 50 

LUT 72,886 61,713 88,756 

FF 36,252 27,863 42,038 

DSP 141 123 571 

IO 34 - - 

Power (W) 1.775 1.673 14.13 

 

The design, while not employing advanced techniques 

like deep pipeline processing or structured circuit design, still 

demonstrated superior performance compared to [24] and was 

nearly equivalent to [23]. As detailed in Table 1, the approach 

focused on effective resource utilization without the use of 

high-precision DSP blocks. It achieved notable improvements 

in memory usage, network latency, and power efficiency. This 

comparison highlights the design’s strength in delivering high 

performance and energy efficiency, validating it as a 

competitive solution in the FPGA-based CNN accelerator 

landscape.These comparisons and test results underscore the 

efficiency of the FPGA-based CNN accelerator design, 
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particularly in terms of power consumption and performance. 

The approach effectively combines optimized data formats 

and parallelization strategies, presenting a significant 

advancement in the field of FPGA-based neural network 

implementation, especially suited for applications where 

power efficiency and processing speed are paramount. 

5. Conclusion  
An FPGA-based CNN architecture accelerator designed 

especially for the LeNet-1 architecture is implemented in this 

work. The design is notable for using Vitis HLS in Vivado to 

construct the layers and overall structure of the CNN 

accelerator, achieving an accuracy of over 96%. Based on the 

FPGA Xilinx Artix-7 XC7A200T, the design has been tested. 
Amazingly, the accelerator achieves the needed throughput at 

100 MHz with just 1.775 W of power consumption. 

Accordingly, in terms of performance per watt, the suggested 

approach performs better than current LeNet FPGA 

implementations. Aside from these successes, the architecture 

has also been effectively used with the MNIST dataset, a 

standard benchmark for assessing Machine Learning models 

when it comes to handwritten digit recognition. This 

modification highlights the approach’s adaptability and 
potency even further. Future improvements to the 

performance assessment methodology will encompass the 

incorporation of parallel data transfer for both the Input 

Feature Map (IFM) and weights, permitting data accessibility 

within a single clock cycle, and providing internal storage to 

concurrently store the weights and biases.  This will reduce 

memory bottlenecks and improve the functionality of the 

solution in CNN-embedded real-time applications.   
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