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Abstract - Revealing a shift in energy management, this research introduces intelligent energy routing in a dynamic DC-grid 

integrated Photovoltaic (PV) system named Dynamic Energy Routing (DER). The system features a robust PV array, an 

enhanced DC-DC boost converter, and a Machine Learning-Support Vector Regression (ML-SVR) MPPT controller connected 

to a common DC grid. Complementing this setup is a standby battery with a 40AH capacity synchronized with an AC grid 

through a universal bridge rectifier controlled by an Artificial Neural Network (ANN). Integrating an Electric Vehicle (EV) 

charging station into the DC grid enhances the system’s versatility. This research explores the dynamic behaviour of a DC-grid 

integrated PV system under varying State of Charge (SOC) conditions of the standby battery. In scenarios where the standby 

battery’s SOC is high (≥70%), the system intelligently directs power from the PV system and standby battery to both the EV 

battery and the AC grid. This strategic routing is activated in response to adverse PV irradiance conditions by ensuring efficient 

energy utilization. In situations with moderate SOC levels (≤50%), the PV system and standby battery collaborate to supply 

power to the grid and EV batteries. However, the AC grid intervenes early to adapt to the moderate SOC and reduced irradiance 
conditions. In low standby battery SOC (<10%), the PV system takes charge by providing charging power to both the standby 

and EV batteries. In this scenario, the AC grid is promptly activated to contribute the necessary charging power by showing the 

system’s adaptive response to diverse SOC levels and ensuring reliable energy distribution. Notably, the AC grid activation has 

done at worst irradiances and lower SOC of standby battery power. This research provides valuable insights into the system’s 

adaptive and efficient energy routing strategies that contribute to understanding smart control mechanisms in DC-grid 

integrated PV systems with standby batteries and electric vehicle charging stations.  

Keywords - ANN, ANFIS, ML-SVR, PV, Efficiency, SOC, EV, MPPT, DC grid. 

1. Introduction 
In the next few years, a significant surge in global 

renewable electricity capacity is anticipated, with projections 

indicating a growth of over 60% compared to 2020 levels by 

2026. This surge is expected to reach an impressive total of 

over 4,800 gigawatts to match the existing combined power 

capacity of fossil fuels and nuclear energy worldwide. 

Renewable energy sources are poised to play a pivotal role in 

this expansion, contributing to almost 95% of the overall 

increase in global power capacity from now until 2026 [1]. 

Among these renewable sources, solar PV technology is 
expected to emerge as a frontrunner by contributing more than 

half of the total growth. This forecast underscores a notable 

shift towards cleaner and more sustainable energy alternatives 

by signifying a significant withdrawal from traditional fossil 

fuels and nuclear power [1]. In the transition to a more 

environmentally conscious energy landscape, the global 

power sector is poised for a significant redefinition in the 

coming years by increasing renewables’ dominance, 

especially solar PV [2]. 

Solar PV technology is fundamental in the global 

endeavour to shift towards more sustainable and 

environmentally friendly energy systems. This document 

delves into the crucial role of PV technology in mitigating 
greenhouse gas emissions and addressing the vital challenge 

of climate change. At the core of its effectiveness lies the 

performance of PV materials by governing the degree to 

which sunlight is converted into electrical power. Over the 

past decade, significant progress in PV efficiency has driven 

the widespread acceptance of solar PV technology worldwide 

[3]. The effectiveness of PV materials, particularly thin-film 

single junction Gallium Arsenide (GaAs) semiconductors, is a 

pivotal factor in determining how proficiently sunlight is 

converted into electrical energy. Considerable attention has 

been directed towards advancing thin-film solar cells due to 
their lightweight and flexible characteristics. Among these, 

the GaAs thin-film solar cell emerges as a leading entrant in 

the market because of its remarkable power conversion 

efficiency compared to other thin-film solar cell technologies 

[4].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The monocrystalline silicon (m-Si) thin-film solar cell 

underwent testing at the Sandia Test Centre in March 1999, 

which exhibits an efficiency of 25.0% with a tolerance of 

±0.5%. On the other hand, the GaAs thin-film solar cell 

underwent testing at Atla Devices in the USA/New York by 

demonstrating an efficiency of 29.1% with a tolerance of 
±0.6% [5]. 

Microgrids are environmentally sensible power systems 

harnessing renewable resources like solar and wind energy as 

their primary sources. However, the inherent unpredictability 

of wind and solar power poses a significant problem to the 

optimal functioning of microgrids [6].  

The reliability of microgrid operations depends on the 

unpredictable nature of renewable energy harvesting. To 

overcome these challenges, microgrids incorporate energy 

storage systems such as batteries, flywheels, and 

supercapacitors to mitigate the impact of the intermittent 

nature of renewable energy sources. Acknowledging the 
complexity of environmental challenges such as climate 

change and natural resource degradation will underline the 

need for intelligent and innovative solutions [7].  

There are several types of Maximum Power Point 

Tracking (MPPT) techniques were applied to increase energy 

harvesting including traditional (P&O, INC, FOCV, and HC) 

[8-11], intelligent (PI, and PID), AI (FLC, ANN, and ANFIS) 

[12-14] and recently ML techniques (linear regression, 

decision tree, random forest and naive bayes) [15].  

To address challenges posed by dynamic and non-linear 

weather conditions impacting PV systems, the application of 
Machine Learning (ML) methods is promoted for optimizing 

energy generation. ML offers adaptability and predictive 

capabilities crucial for navigating the complexities associated 

with non-linear data, promising improved efficiency and 

effectiveness in diverse environmental scenarios [16].  

The ML technique can effectively handle classification 

and regression tasks through recursive data partitioning, 

which holds promise for capturing the intricate and non-linear 

relationships within the PV system’s data. DER in integrated 

systems refers to the capability of efficiently managing and 

distributing energy based on demand, availability, and system 

conditions.  

Dynamic energy routing helps balance the fluctuations in 

supply and demand by intelligently routing energy to where it 

is needed most at any given time. Dynamically routing energy 

based on system conditions helps prevent overloads, reduce 

losses, and ensure a reliable power supply. The growing 

significance of standby batteries is attributed to their crucial 

role in providing backup power and ensuring uninterrupted 

operation under critical power requirements [17].  

Standby batteries are a reliable backup power source 

during electrical outages or disruptions in the PV power 

supply. This is particularly critical for applications with 

continuous power, like EV charging centres, 

telecommunications infrastructure, hospitals and emergency 

response systems. The integration of DC grid systems 
encounters challenges such as voltage stability and control in 

DC grids, AC grid synchronization, integration of energy 

storage, dynamics in behaviour and transient stability analysis 

and implementation of advanced control techniques for power 

converters [18]. 

The widespread adoption of EVs has led to a growing 

need for a comprehensive charging infrastructure. As more 

EVs hit the roads, integrating EV charging stations has 

become crucial to urban planning and energy management. 

This integration has multifaceted implications for energy 

demand and distribution systems [19].  

The interaction between EV charging stations and DC-
grid integrated PV systems presents an opportunity to enhance 

sustainability. Solar energy generated by PV systems can be 

directly utilized for EV charging by reducing dependency on 

conventional grid power. Peak demand periods might 

experience a surge due to simultaneous charging activities, 

leading to the integration of the PV system with the AC grid 

to handle the additional load [20].  

DC grid-integrated PV systems and EV charging stations 

create a localized and more resilient energy ecosystem. This 

reduces the reliance on centralized power generation and long-

distance distribution by contributing to energy independence 
and minimizing transmission losses.  

The authors Abraham D.S et al. present a grid-connected 

PV-powered EV charging station with a bidirectional 

converter, fuzzy logic control and a focus on decentralized 

power distribution and effective energy management. The 

authors considered the variability of PV power and different 

SOC levels in the energy storage unit under realistic scenarios, 

and the proposed system’s effectiveness was validated 

through simulations and experiments [28].  

The authors Alidrissi Y et al. were involved in developing 

and analysing a DC microgrid focusing on an energy 

management strategy. Their research includes the design of 
the microgrid, consideration of battery lifetime, simulation 

using Matlab/Simulink and validation of the proposed 

system’s performance and stability under various operational 

scenarios [29]. The existing studies do not extensively explore 

the adaptive control mechanisms implemented in DC-grid 

integrated PV systems with standby batteries and electric 

vehicle charging stations. A research gap exists in 

understanding the nuances of smart energy routing and control 

strategies, particularly under varying State of Charge (SOC) 

conditions. A research gap exists in comprehending how the 
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system efficiently adapts and activates the AC grid in 

challenging situations to ensure reliable energy distribution. 

Previous research might not adequately address the integration 

challenges of incorporating EV charging stations into DC 

grids. The research gap lies in understanding how the system’s 

versatility is affected by the addition of an EV charging station 
and how it dynamically allocates power resources in response 

to varying SOC levels. There is also a research gap in 

understanding the effectiveness and adaptability of the 

machine learning components in enhancing the system’s 

overall performance.  

The motivation of this work includes an efficient and 

dynamic energy routing to maximize the utilization of 

renewable energy generated by PV systems for EV charging. 

Optimizing energy flow from the solar panels to the charging 

stations involves developing smart (ML SVR) control 

strategies considering energy availability, demand patterns 

and storage capacity. The research seeks to minimize the 
environmental impact of EV charging by optimizing energy 

routing. By prioritizing using clean, renewable energy 

sources, reducing greenhouse gas emissions, and mitigating 

climate change, the research aims to develop a sustainable and 

resilient energy ecosystem that supports the widespread 

adoption of electric vehicles.  

Identifying the need for dynamic energy routing 

strategies addresses the gaps and forms the basis for focused 

investigation. The intermittent and variable solar power 

generation in PV systems introduces uncertainties in energy 

availability. Identifying dynamic energy routing strategies is 
crucial to efficiently handle fluctuations in energy inputs and 

ensure reliable charging for EVs. EV charging demand is 

dynamic and influenced by various factors such as time of day, 

day of the week and special events.  

Dynamic routing strategies are needed to align the energy 

supply with the dynamic charging demand, optimizing 

renewable energy and grid resource utilisation. ML-SVR-

based smart MPPT control, ANN control for inverter and PI 

control for bidirectional DC-DC controller for battery storage 

have been implemented to optimize energy routing within the 

integrated system. These controllers were implemented by 

considering solar power generation, EV charging demand and 
energy storage capacity to make dynamic decisions for 

efficient energy routing. ML-SVR model can learn from 

historical data to make predictions and decisions that improve 

system efficiency and responsiveness to changing conditions. 

This research addresses a critical problem in the need for 

sophisticated and adaptive energy routing strategies in DC-

grid integrated PV systems. The problem lies in the absence 

of comprehensive studies investigating the particulars of smart 

energy routing by incorporating robust PV arrays, enhanced 

DC-DC boost converters and machine learning-based 

controllers. Furthermore, integrating an EV charging station 

into the DC grid increases the system’s complexity by 

necessitating a nuanced understanding of how the system 

adapts and optimally distributes power in real-time. The 

problem statement encompasses the challenges of ensuring 

reliable energy distribution while maximizing energy 

utilisation efficiency, especially in situations where standby 
battery SOC levels vary widely. This research aims to bridge 

these gaps by investigating and proposing intelligent energy 

routing strategies that address the adaptive response of the 

system to diverse SOC conditions, adverse PV irradiance and 

the presence of an EV charging station. The study contributes 

to advancing DC-grid integrated PV systems and provides 

insights into the broader domain of smart control mechanisms 

in sustainable energy management.  

The work is structured into four interconnected sections, 

each addressing specific aspects of the comprehensive system 

design and control strategies for a sustainable energy 

framework. Section one explains the design considerations for 
pivotal components such as the PV system, DC-DC boost 

converter, standby battery, EV battery and Universal Bridge 

Inverter (UBI). Detailed specifications and functionalities of 

each element provide a comprehensive foundation for the 

subsequent sections.  

Section two explores the modelling of control strategies 

by highlighting the utilization of ANN and ML-SVR models. 

This section aims to provide insights into the workings of 

control mechanisms, explaining the parameters and structures 

employed for effective system regulation. Section three 

integrates all designed components and control strategies 
through the SIMULINK platform for simulation analysis. 

Finally, Section four serves as the conclusion by encapsulating 

a concise summary of findings, acknowledging limitations 

and proposing avenues for future research. The overall 

graphical outline of the proposed work is shown in Figure 1. 

           

 

 

 

 

 

 

 

 

Fig. 1 Graphical outline of proposed system 
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2. System Components 
2.1. Robust PV Array 

When sunlight strikes a PV cell, it triggers the formation 

of electron-hole pairs as the cell’s materials absorb photons 

with energy that exceeds the material’s band gap. These 

generated carriers undergo separation due to the internal 

electric fields within the cell [21].  

Connecting the cell to an external circuit allows these 

separated carriers to contribute to the overall current in a series 

of parallel connections. In recent years, significant research 

efforts have been dedicated to advancing thin-film solar cells 

because of the need for reduced weight and higher efficiency 

at variable temperature limits. Various structures of thin-film 
light-absorbing single junction semiconductor solar cells like 

Cadmium Telluride (CdTe), amorphous Silicon (a-Si), Copper 

Indium Di Selenide (CIS), and Gallium Arsenide (GaAs), 

have been explored [22].  

The rivalry between silicon and gallium arsenide has 

strengthened by focusing on lightweight design, flexibility 

and overall efficiency. The GaAs is a member of the III/V 

compound semiconductor family, which stands out in the 

global solar market due to its unmatched efficiency and open 

circuit voltage of 1.072V [5]. Alta Devices is a leader in high-

performance flexible solar cells, which is a groundbreaking 
achievement, setting a new world record with a remarkable 

29.1% conversion efficiency for its single-junction GaAs 

device [23].  

This research used single junction thin film GaAs solar 

cells to construct a PV array, developed on the basics of a 

single diode practical equivalent circuit model, as shown in 

Figure 2. 

 

 

 

 

 

Fig. 2 General equivalent circuit model of a solar cell 

Applying Kirchhoff’s current law to the node ‘a’, the PV 

cell current (I) will be given in Equation 1, 

I = Iph − Io (e
q(V+I∗Rs)

nkT − 1) −
V+(I∗Rs)

Rsh
  (1) 

The open circuit voltage of a solar cell at zero cell current 

is given in Equation 2, 

V = Voc =
nkT

q
ln (

IL

Io
+ 1) for Isc = 0 (2) 

In this research, a PV array has been developed for the 
specific requirements of this work, which can generate 2024W 

at Maximum Power Point (MPP), as given in Table 1. 

Table 1. PV array specifications 

S.No. PARAMETERS Range 

1 Open Circuit Voltage 1.072V 

2 Maximum Cell Voltage 0.964V 

3 Number of Cells per Module 72 

4 Open Circuit Voltage/Module (Voc) 77.18V 

5 Short Circuit Current/Module (Isc) 3.241A 

6 Voltage at MPP/Module (Vmpp) 69.40V 

7 Current at MPP/Module (Impp) 2.916A 

8 Number of Parallel Strings 10 

9 Number of Series Modules 1 

10 Array Open Circuit Voltage (Voc) 77.18V 

11 Array Short Circuit Current (Isc) 32.41A 

12 Array Voltage at MPP (Vmpp) 69.40V 

13 Array Current at MPP (Impp) 29.16A 

14 Array Power at MPP (Pmpp) 2024W 

 
2.2. Enhanced DC-DC Boost Converter 

The DC-DC boost converter plays a crucial role in 

renewable energy systems by elevating a low input voltage to 

a desired higher level. In this research, an optimal DC-DC 

boost converter is designed to address the challenges posed by 

unpredictable meteorological conditions. The aim is to 

minimize output ripples by incorporating an inductor and 

capacitance-based filter. The simulation model of the PV 

system integrated with an enhanced DC/DC boost converter 
and SVR model-based MPPT control is shown in Figure 3. 

 

 

 

 

 

 

 

 
 

Fig. 3 Simulation model of PV array with enhanced DC/DC boost 

converter 
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The design takes into account fluctuating irradiance 

levels, which is ranging from a maximum of 1000 W M2⁄   at 

Standard Test Conditions (STC) to a minimum of 50 W M2⁄  

(worst) with a constant temperature of 25°C. The converter is 

planned to efficiently adapt to these varying conditions by 

ensuring stable and reliable performance in renewable energy 

applications.  

The RMPP is calculated for both STC and worst conditions 

using the derivation 3. The converter uses a switching 

Frequency (FSW) of 10KHZ to ensure the effective voltage 

transformation from the lower input level to the desired higher 

output level. 

Internal Resistance of PV Array (RMPP) =  
VMPP

IMPP
 (3) 

Load Resistance (RO) = 2.5 × RMPP at worst (4) 

Duty Cycle (DMPP) at STC = 1 − √
RMPPat STC

RO
 (5) 

DMPP at Worst = 1 − √
RMPP at worst

RO
 (6) 

The converter output voltage (VOUT) and current (IOUT) 

are calculated for both STC and worst conditions using the 

Equations 7 and 8. 

VOUT  at STC, Worst =  
VIN

1−DMPPat STC,worst
 (7) 

IOUT at STC, Worst =  
VOUTat STC,worst

RO
 (8) 

The expression 9 illustrates the impact of reflected input 

resistance (RR) on the load resistance and the duty cycle. The 

RR is calculated by considering the duty cycle of STC and 

worst conditions. 

RR =  RL(1 − D)2 (9) 

The range of converter active elements was calculated 

using the above specific derivations in Equations 10 to 12. 

C1 =  
4VMPP(STC)DMPP(STC)

∆VIN(STC)RR(STC)FSW
 (10) 

L =  
VMPP(worst)DMPP(worst)

2∆IOUT(worst)FSW
 (11) 

C2 =  
2VOUT(STC)DMPP(STC)

∆VOUT(STC)RLFSW
 (12) 

2.3. Bi-Directional Converter Design for Standby Battery 
A standby battery system with a capacity of 40 ampere-

hours (40AH), 240V (20×12) Lithium-ion (Li-ion) battery 

with a switching frequency of 10KHZ has been equipped with 

a bi-directional converter, and an auto-tuned Proportional-

Integral (PI) controller represents an advanced energy storage 

and management solution.  

Incorporating the auto-tuned PI controller enhances the 

efficiency and responsiveness of the bi-directional converter 
by ensuring optimal performance during both charging and 

discharging operations. The combination of the bi-directional 

converter operates with the dc link reference voltage of 440V, 

and the auto-tuned PI controller enables efficient energy 

routing, maximizing the performance and lifespan of the 

battery. The unique model of bidirectional DC/DC converter 

is implemented in both standby and EV batteries, which are 

calculated using the Equations 13, 14, 15, 16 and 17, 

respectively, 

Ioutmax =
PPV

Vout
 (13) 

∆IL = 0.01 × Ioutmax × (
Vout

Vin
⁄ ) (14) 

∆Vout = 0.01 × Vout  (15) 

L =
(Vin×(Vout−Vin))

(∆IL×FSW×Vout)
= 0.1294H (16) 

C =
(Ioutmax×(1−(Vin Vout⁄ )))

(FSW×∆Vout)
= 47.5eµF (17) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Simulation model of standby battery with PI control 

The role of standby battery is very crucial in this work 

with three distinct operating modes, high standby (>75%), 

moderate standby (≤50%) and low standby (<10%). These 
operating modes and PV system performance will decide the 

power routing in EV charging and AC grid. The simulation 

diagram of the standby battery, including the DC/DC 

bidirectional converter with auto-tuned PI controller, is shown 

in Figure 4. 
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2.4. EV Charging Station 

The surge in Electric Vehicle adoption necessitates a 

robust and comprehensive charging infrastructure. EV 

charging stations are pivotal in supporting the growing fleet of 

electric vehicles, and their integration with DER systems 

provides a unique opportunity to optimize energy utilization 
and reduce dependence on traditional grid power. One of the 

key advantages of integrating EV charging stations with DER 

systems is the direct utilization of solar energy generated by 

PV systems.  

EVs can be charged with clean and renewable energy 

depending on the power generated from PV panels, thereby 

reducing the overall environmental impact of transportation. 

This direct connection minimizes dependency on 

conventional grid power during daylight hours by aligning 

with the wider goal of sustainable and eco-friendly mobility.  

The interaction between EV charging stations and DER 

systems is crucial in managing peak energy demand. 
Simultaneous charging activities during peak hours can strain 

the grid; the power can be efficiently directed to meet the 

dynamic charging demand with the help of intelligent energy 

routing. This optimises energy flow and contributes to grid 

stability and reliability. 

When comparing Li-ion, lead-acid, Nickel-Cadmium 

(NiCd) and Nickel-Metal Hydride (NiMH) batteries for EV 

charging, several factors must be considered. The choice of a 

compact type of battery depends on various factors such as 

energy density, cost, cycle life, weight, and environmental 

impact.  

Considering the current state of battery technology and 

the specific requirements for electric vehicles, Li-ion batteries 

are generally favoured for EV charging [24]. They offer a 

good balance of high energy density, relatively long cycle life 

and lower weight than lead-acid, nickel-cadmium and nickel-

metal hydride batteries. 

2.5. L-C-L Filter Design for UBI 

Integrating a UBI with an L-C-L filter is crucial for 

efficient power conversion and grid synchronization. The UBI 

is employed to convert DC power generated by the PV system 

and stored in batteries into AC power suitable for feeding into 

the grid or supplying EV charging stations. Including an L-C-
L filter enhances the performance of the inverter by mitigating 

harmonics and improving overall power quality [25].  

The UBI output is directly fed to the L-C-L filter to 

minimize harmonic distortions and enhance power quality. 

The AC power (S) is 2000W, and the DC link voltage (Vdc) is 

440V, the switching frequency FSW is 10KHZ, the peak AC 

voltage is 300V (Vac), Fres is the resonant frequency, Fss is 

the sampling frequency, and the fundamental frequency (f) is 

50HZ. ΔIL represents the peak-to-peak inductor current ripple 

in a converter. It is calculated as 0.2 times the ratio of the 

power to the peak AC voltage. The L-C-L filter consists of the 

primary inductor (LP), secondary or AC grid side inductor (LS) 

and a filter capacitance (C) integrated into the UBI system to 

address harmonic distortions and improve power quality. The 
sampling frequency is considered half of the switching 

frequency.  

The primary inductor, secondary inductor, secondary side 

filter capacitance and resonant frequency were calculated by 

using the derivations 18, 19, 20 and 21, respectively, 

LP =
Vdc

4FSW∆IL
= 0.0072H (18) 

LS =
0.1×V2

ac

S×2πf
− LP = 0.0012H (19) 

C =
0.05×S

V2
ac×2πf

= 6.0172µF (20) 

Fres =
1

2π
√

LP+LS

LP×LS×C
= 2.0008KHZ (21) 

This filter minimizes voltage and current distortions, 

ensuring that the AC output meets grid standards and 

regulations. It also aids in reducing electromagnetic 

interference by enhancing the reliability and efficiency of the 

power conversion process. The simulation diagram for UBI 

with an L-C-L filter integrated with an AC grid is shown in 

Figure 5. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5 UBI model with L-C-L filter integrated with AC grid 
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It is possible to improve the accuracy of fast settling time 

during the worst climate, reduce the error in output parameters 

and increase efficiency by implementing the ML-based SVR 

algorithm. The potential applications of SVR in MPPT lie in 

its capability to handle complex and non-linear relationships 

between input constraints (such as solar irradiance 
temperature) and the corresponding power output of a 

photovoltaic system. Traditional MPPT methods often rely on 

simplified models or heuristics that might not accurately 

capture the intricate relationships between various parameters.  

The SVR-based MPPT algorithm can capture these 

complex relationships and provide more accurate power 

output forecasts. This prediction can adjust the system’s 

operating point to maximize power, shading or partial cloud 

cover in rapidly changing conditions. 

The SVR basic equation is formed with a training dataset 

with input variable ‘X’ and the response ‘y’. The assignment 

of SVR is to find the regression function f(x), which predicts 
the y values continuously based on the input dataset X. the 

basic SVR equation is given in Equation 22, 

f(x) =  ∑ NαiK(x, xi) + bi=1  (22) 

Where, N is the number of training samples, αi are the 

Lagrange multipliers associated with each training sample, xi 

are the input features of the training samples, K(x, xi) is the 

kernel function that computes the similarity between the input 

features x and the training sample xi in a transformed space, 

and b is the biased term. The Lagrange multipliers αi are found 

by solving the dual optimization problem that involves 

maximizing a dual objective function subject to certain 

constraints, typically based on the margin and the epsilon-

insensitive loss [27].  

The choice of kernel function K(x, xi) depends on the 

problem and can be linear, polynomial, radial basis function, 

sigmoid, etc. The kernel function implicitly transforms the 

input features into a higher-dimensional space, allowing SVR 
to capture complex relationships between features and target 

values. 

The PPV
MPP always depends on the irradiance (G)and real 

temperature (T), and so the SVR uses G and T as input features 

‘x’ to guess the PV voltage at maximum power point (VPV
MPP) 

& PV current at maximum power point (IPV
MPP). The predicted 

values of VPV
MPP and IPV

MPP are used to calculate Reflected 

input resistance (RR), which is equal to resistance at MPP 

(RMPP)at optimized value of the DC-DC converter’s duty cycle 

(D). 

Data collection involves gathering information about the 

photovoltaic system’s performance under various 
environmental conditions. This data serves as the training, 

testing and validation dataset for the SVR algorithm. Raw data 

collected from the PV system may contain noise, outliers, and 

irregularities affecting the SVR model’s performance. 

Preprocessing steps are necessary to enhance data quality and 

model accuracy. They are data cleaning, feature selection, 

scaling, and data augmentation.  

Support Vector Regression is a supervised learning 

algorithm that aims to find a function that best represents the 

relationship between input features and continuous output 

values. The key components of SVR are the Kernal function, 

support vectors, Epsilon-tube and regularization constant (C). 

The steps to implement the SVR algorithm for MPPT control 

in the PV system are data preparation, Kernal selection, 

feature scaling, parameter tuning, model training, prediction 

and MPPT adjustment. 

Hyperparameter tuning is done to optimize the 

performance of the trained SVR model by adjusting the C, 

Epsilon and kernels. Random search or grid search methods 
are the methods available for this optimization. Random 

search is adopted in this work because it tries with all 

possibilities of combination. After training, the SVR model is 

evaluated using cross-validation, which generalizes the model 

to obtain unseen data.  

The trained SVR model provides crucial factors to assess 

its performance using appropriate metrics such as Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE) and 

R-squared. These metrics quantify the accuracy and reliability 

of the SVR predictions and their effectiveness as an MPPT 

controller. The workflow of the proposed ML-SVR model is 
shown in Figure 6. 

The reflected input resistance (RR) at MPP and duty cycle 

at maximum power point (DMPP) is calculated as given in 

Equations 23 and 24, which is routed as an input for an 

enhanced DC/DC boost converter. The RT value is calculated 

using the SVR-trained model’s output values (VPVMPP & 

IPVMPP). 

RT = RMPP =
VPV

MPP

IPV
MPP  (23) 

Dmpp = 1 − √
RT

RL
 (24) 

3.2. Neural Network Control for UBI 
A key modernization in this research lies in applying a 

function-fitting neural network for precise gate pulse control 

of the universal bridge inverter. This neural network is an 

intelligent intermediary in optimizing the inverter’s operation 

to ensure a consistent and stable grid voltage. The workflow 

diagram of the ANN controller model for UBI is shown in 

Figure 7. 
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Fig. 6 ML-SVR flow chart 

The neural network takes two crucial inputs: the 

photovoltaic power in the range of 0 to 2000W and the SOC 

of the standby battery in the range of 0 to 100%. The desired 

output is the grid voltage. Historical data on PV power and 

SOC of standby batteries for AC grid voltage has been 

collected. The obtained historical data is used to train, validate 

and test the function-fitting neural network.  

The training process involves adjusting the weights and 

biases of the network to minimize the difference between the 

predicted grid voltage and the reference grid voltage from the 

training data. The difference between the expected and 
reference grid voltage is calculated using a loss function. The 

loss function quantifies the error between the predicted and 

actual values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

Fig. 7 Work flow of Neural Network model  

The weights and biases were adjusted based on the 

gradient of the loss function with respect to these parameters. 

This step is performed using the Levenberg-Marquardt 

optimization method. The Levenberg-Marquardt algorithm is 

an optimization algorithm commonly used for solving 

nonlinear most minor squares problems.  

The training, validation and testing data for the ANN 

model are shown in Figure 8. R=0.99997 indicates the 

predicted data is closer to or the same as the actual data. 
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Fig. 8 R-fit comparison for trained and actual data 

 

 

 

 

 

 

 

 

 
Fig. 9 Simulation diagram for ANN control mechanism for UBI 

The output voltage from the neural network is then 

compared with the reference grid voltage of 300V AC. A 
comparator assesses the actual and reference voltage variance 

to generate an error signal that encapsulates the deviation. This 

error signal is a crucial metric for the subsequent control 

mechanisms by guiding the system towards maintaining the 

desired grid voltage. 

The error signal from the voltage comparator is then fed 

into a comparison process with the inverter line current. This 

stage ensures synchronization between the generated voltage 

and the corresponding current, essential for stable grid 

operation. The resulting signal is then processed through a PI 

controller. The PI controller refines the system’s response by 
considering both the instantaneous and cumulative errors over 

time.  

This dual feedback mechanism enhances the system’s 

precision and stability, ensuring an accurate correction of any 

deviations from the desired grid voltage. The output from the 

PI controller serves as the input to a Pulse Width Modulation 

(PWM) generator. The PWM generator converts the 

continuous error signal into discrete pulses by determining the 

duration and timing of the inverter gate pulses.  

Implementing a function-fitting neural network for gate 

pulse control underscores a sophisticated and adaptive 

strategy in managing the universal bridge inverter within the 
DC-grid integrated PV system.  

This approach not only ensures the stability of the grid 

voltage but also enhances the overall efficiency and 

responsiveness of the energy routing strategies employed in 

the DER system, as outlined in the earlier sections. The 

simulation diagram of ANN controlled mechanism for UBI is 

shown in Figure 9. 

4. Scenarios of Operation 
4.1. Higher Standby Battery SOC (>70%) 

The PV system performance has been observed for 

different irradiance levels ranging from 1000 W m2⁄   to 

100 W m2⁄  . The PV system consistently tracks the maximum 
voltage of 69V at all irradiance levels with the support of the 

ML-SVR model, as shown in Figure 10.  

For overall analysis, DC link voltage is maintained at 

constant level (440V). AC grid voltage (300V) was observed 

with the implementation of UBI using an L-C-L filter. The DC 
link and AC grid voltage consistently maintain stability 

throughout the analysis, as shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 PV voltage, current and power at MPP values 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11 DC link voltage and AC grid voltage 
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Both EV and standby battery voltage (240V) were 

maintained at stable levels throughout the analysis with the 

self-tuned PI controller, as shown in Figure 12. Different SOC 

levels (≥70%, ≤50% & <10%) were used for standby battery 

and EV battery SOC of 9%, as shown in Figure 13.  

Including real power routing information for different 
SOC levels and irradiance conditions adds valuable insights 

into the energy distribution strategies implemented in this 

work. The overall system’s response to different SOC levels 

with the interaction between the PV system, standby battery, 

EV battery, and AC grid has been well-documented in the 

discussions below. 

 

 

 

 

 

 

 

 

 
 

 
Fig. 12 EV battery voltage and standby battery voltage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 Different SOC levels of standby and EV batteries 

At G = 1000 W M2⁄   (t = 0 to 0.4 sec), the PV system 
generated power of 2kW, and the standby battery contributes 

with 70% SOC, resulting in a total power injection into the 

grid. The generated power is also used to charge the EV 

battery. Both grid current and inverter currents are monitored. 

At G = 500 W M2⁄   (t = 0.4 to 0.8 sec), power injected 
into the grid indicates the excess energy production from the 

PV system and standby battery. The surplus energy is routed 

to the grid while charging the EV battery. Inverter and Grid 

currents are measured to monitor the power flow, as shown in 
Figure 15. 

At G = 300 W M2⁄   (t = 0.8 to 1.2 sec), the EV battery 
starts drawing power from the grid with decreased solar 

irradiance. The EV battery utilizes grid power due to the lower 

availability of solar energy, demonstrating the dynamic 

response to varying environmental conditions. 

At G = 200 W M2⁄   (t = 1.2 to 1.6 sec), the grid supplies 
maximum power to meet the energy demand for EV charging 

by compensating for the impact of reduced solar irradiance. 

An increase in grid currents is observed as the system relies 

more on grid power under challenging irradiance conditions. 

 

 

 

 

 

 

 

 

 
 

Fig. 14 AC grid power flow for different SOC levels 

 

 

 

 

 

 

 

 

 
 

Fig. 15 Grid and Inverter currents for 70% SOC of standby battery  

At G = 100 W M2⁄  (t = 1.6 to 1.8 sec), The grid 
continuously provides power to sustain EV charging by 

adapting to the further decrease in solar irradiance. The 

proposed system efficiently manages energy flow to ensure 
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uninterrupted EV charging by emphasizing the importance of 

grid support during low irradiance periods. In this way, the AC 

grid acts as both an intake and supply source by contributing 

to the stability and reliability of the proposed energy system 

across different solar irradiance levels at different SOC levels 

of standby battery, as shown in Figure 14. 

4.2. Moderate Standby Battery SOC (<50%) 

The standby battery is in the discharging mode with a 

moderate SOC of 40%, indicating the active contribution to 

the power supply. 

At G = 1000 W M2⁄   (t = 0 to 0.4 sec), The PV system 
generates 2 kW, and the standby battery is discharging to the 

overall power supply. The PV system and standby battery 

charge the EV battery and supply power to the grid, as shown 

in Figure 14. Grid power is negative, which indicates the 

power injection into the grid. 

At G =  500 W M2⁄  (t = 0.4 to 0.8 sec), the AC grid 
intervenes early to supply power due to decreased solar 

irradiance and the moderate SOC of the standby battery. The 

EV battery receives power from the PV system, the standby 

battery (with a moderate SOC) and the AC grid to ensure an 
uninterrupted and reliable power supply. 

At G = 300 W M2⁄   (t = 0.8 to 1.2 sec), the AC grid’s 
contribution to supplying real power increases with a further 

reduction in PV power. The EV battery utilizes power from 

both the grid and standby battery to compensate for the 

diminishing availability of solar energy. At G = 200 W M2⁄  
(t = 1.2 to 1.6 sec), the AC grid supplies maximum power to 

meet the energy requirements for EV charging under 

challenging irradiance conditions. Grid currents increase 

accordingly, as shown in Figure 16. The system adapts to the 

worst irradiances by relying significantly on grid power to 

ensure sustained charging for the EV. But the situations like 

worst irradiances (below 400 W M2⁄ ) happens in the worst 
scenarios. 

At G = 100 W M2⁄  (t = 1.6 to 1.8 sec), AC grid continues 
to provide power to sustain EV charging during extremely low 

irradiance conditions. Grid currents increase as the system 

prioritizes grid support to meet energy demands. 

4.3. Low Standby Battery SOC (<10%) 

The PV system initially contributes its maximum power, 

and the grid provides power to charge both batteries. The EV 

and standby batteries are in setting mode with charging 

currents represented by negative values. 

At G = 1000 W M2⁄   (t = 0 to 0.4 sec), The PV system 
initially contributes its maximum power of 2 kW. The EV and 

standby batteries are charging by drawing power from the PV 

system and, at minimum, from the grid, as shown in Figure 17. 

Charging currents for both batteries are negative, 

indicating energy absorption, as shown in Figure 18. At G = 

500 W M2⁄  (t = 0.4 to 1.0 sec), due to variations in 
irradiances, the PV system reduces its power contribution. The 

AC grid contributes power for EVs and standby battery 

charging to compensate for the reduced solar power. Charging 

currents for both batteries remain negative as they absorb 

energy from the PV system and the grid. 

At G = 300 W M2⁄   (t = 1.0 to 1.4 sec), PV system 

continues to reduce its power contribution. The AC grid 
further increases its power contribution for charging both 

batteries. Grid power becomes crucial in maintaining the 

charging process, especially for standby batteries with low 

SOC. From G = 200 W M2⁄   to 100 W M2⁄  (t = 1.4 to 1.8 sec 
& 1.8 to 2.0 sec), the grid becomes the primary source for 

charging both batteries with the PV system’s power decrease. 

Negative charging currents persist for both batteries, 

indicating the ongoing charging process. Charging currents 

help improve the SOC of both batteries, especially the standby 

battery with its initial low SOC. 

The system intelligently manages power flow to ensure 

continuous EVs and standby batteries charging under various 

conditions. The system intelligently combines power from the 
PV system and the grid to meet energy demands. The dynamic 

energy routing likely assesses the available resources and 

adjusts the contribution from each source to ensure optimal 

charging, as shown in Table 2. 

 

 

 

 

 

 

 

 
 
 

Fig. 16. Grid and inverter currents for 40% SOC of standby battery  

 

 

 

 

 

 

 

 

 

 
Fig. 17 Grid and inverter currents for 10% SOC of standby battery  
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Table 2. Contribution of grid and PV power at various conditions 

SOC 

1000 W/m2 500 W/m2 300 W/m2 200 W/m2 100 W/m2 

Grid 

Power 

PV 

Power 

Grid 

Power 

PV 

Power 

Grid 

Power 

PV 
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Power 

PV 
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70% -1750w 
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982w 

700w 
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388w 
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188w 40% -940w -415w 1100w 2170w 2260w 

10% 620w 1113w 1490w 1740w 2078w 

 

 

 

 

 

 

 

 

 
 
 

Fig. 18 Standby and EV battery currents for different SOC levels 

5. Conclusion 
This research presents a new approach to energy 

management by implementing the DER concept in a DC-grid-

integrated PV system. Integrating a robust PV array with an 

enhanced DC-DC boost converter, an ML-SVR MPPT 

controller, and a standby battery synchronized with an AC grid 

through an ANN-controlled UBI validates a sophisticated and 

adaptive energy routing system.  

Including an EV charging station within the DC grid 

further enhances the system’s versatility and sustainability. 

The research delves into the system’s dynamic behaviour 
under varying SOC conditions of the standby battery, proving 

intelligent energy routing strategies. The system efficiently 

manages energy flow with a higher SOC by utilizing both PV 

and grid power. AC grid acts as both an intake and supply 

source by contributing to system stability across varying solar 

irradiance levels.  

Early intervention of the AC grid occurs with a moderate 

SOC to ensure adaptability to varying solar conditions. The 

system also adapts to low standby battery SOC by intelligently 

drawing power from PV and grid for charging both batteries. 

Dynamic adjustments ensure the efficient use of available 

resources to enhance the system’s performance under varying 

solar conditions.  

Grid support is dynamically managed by emphasizing its 

contribution to sustaining EV charging and overall system 

stability. The system adapts charging strategies based on SOC 
levels and solar irradiances. Charging currents are 

dynamically adjusted to show the system’s ability to respond 

to changing energy availability.  

This research contributes advanced features such as 

Dynamic Energy Routing, Machine Learning-based MPPT 

control and adaptive charging strategies based on SOC levels 

and solar irradiances. The findings underscore the system’s 

ability to dynamically respond to changing energy 

availability, ensuring efficient use of resources and enhancing 

overall performance compared to more straightforward 

approaches outlined in the literature.  
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