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Abstract - The current system for monitoring water quality is manual, monotonous, and time-consuming. This paper proposes a 

water quality monitoring system based on virtual reality and the digital twin. The goal of this research is to create a virtual 

reality platform with the Festo compact machine using digital twin technologies to monitor and control the growth of E. coli in 

the water. MPN is an approach used to determine the presence or absence of microorganisms in each repeat portion of the 

original sample. IIoT infrastructures are used for integration and establishing a two-way communication protocol. DT gathers 
information from sensors mounted on actual objects to assess operating conditions, changes over time, and object performance 

in real-time. This work provides a comprehensive solution for the real-time monitoring and management of E. coli growth in 

mineral water facilities. The study used previous material to examine and understand the controllable factors that contribute to 

the proliferation of Escherichia coli in mineral water. The Parameters such as time, temperature, and chlorine dosage are 

remotely monitored and controlled via the combined VR, IIoT, and DT platforms. VR is used for supervisory control, in which 

directives and commands are transmitted to the actual station for implementation. Data obtained allowed the creation of an 

empirical model for the modeling and control of the growth of E. coli in water production plants. 

Keywords - Escherichia coli, Digital Twin, IIOT, Virtual Reality, Chlorine disinfection.

1. Introduction 
The mineral water industry provides safe drinking water 

to people worldwide. Water is susceptible to contamination 

from microorganisms, which can cause severe health risks [1]. 

A lack of proper sanitation and groundwater quality 

contributed to 533,768 child deaths globally in 2018 [2]. 

Chlorine is a disinfectant commonly used in water treatment 

to remove bacteria and other contaminants.  

Chlorine is very effective at getting rid of many types of 

harmful microbes, such as viruses, bacteria, and protozoa, so 
it is usually added to water to kill bacteria. It is a sensible and 

adaptable option for water treatment plants because of its rapid 

action, wide range of effects, and stability in water. Chlorine 

is also reasonably priced and simple to use on a large scale. 

However, excessive use can lead to the production of 

potentially dangerous by-products, so concentrations need to 

be carefully controlled to reduce risks to the environment and 

public health.  

The method used to control the dosage of chlorine in the 

mineral water industry is through manual titration. This 

involves adding a chemical titrant solution, such as sodium 
thiosulfate, to the water sample until the chlorine is completely 

consumed. The amount of titrant used is then measured to 

determine the amount of residual chlorine remaining in the 

sample. This method is widely used in the industry due to its 

simplicity, accuracy, and low cost.  

Many techniques are used to detect microorganisms in 

drinking water, including Polymerase Chain Reactions (PCR) 

[3, 4]. Polymerase Chain Reaction (PCR) and Enzyme-Linked 

Immunosorbent Assay (ELISA) methods, although faster, still 

require transportation of samples to the laboratory, high-cost 

equipment, and complex procedures, while highly sensitive, 
require complex standardized protocols and skilled workers to 

operate; biosensor-based techniques offer portability, 

miniaturization, and on-site testing advantages, but may not 

compete with conventional methods in terms of accuracy [5].  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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The Most Probable Number (MPN) method is used to 

determine the microbiological quality of drinking water [6, 7].  

The MPN method is relatively simple and cost-effective 

compared to some other detection methods, making it 

accessible for routine testing in laboratories with limited 

resources.  

It can be used for large-scale testing, as multiple samples 

can be processed simultaneously, and it can detect low levels 

of E. coli bacteria in water samples, which is important for 

assessing the safety of drinking water [6]. It may not be 

suitable for high-throughput analysis due to the need for 

multiple tubes and the time required for incubation and 

interpretation of results [6]. 

The accuracy, reactivity, and optimization of traditional 

automatic systems used to regulate and monitor the 

temperature and chlorine dosage in water are frequently 

compromised. Their inability to perform advanced control 

real-time remote monitoring causes delays in problem 
detection.  

It makes it harder to maintain optimal performance while 

lowering risks to health; despite its proven influence on water 

quality, the temperature of water in the Drinking Water 

Distribution System (DWDS) is not regularly monitored [9]. 

Because of this, there is a need to develop a system that can 

remotely control and operate the system.  

That is why using a digital twin and virtual reality system 

for temperature management and monitoring offers a more 

sophisticated and flexible solution than a conventional 

automated system. Accurate process modeling, real-time data 
analysis, remote monitoring, and continuous improvement are 

made possible by digital twins, which improve responsiveness 

to change, reliability, and decision-making.  

Virtual reality offers employees more realistic and 

immersive training, enhancing their capabilities and reducing 

operational challenges. By integrating these technologies, 

companies can reduce expenditure and unplanned downtime 

by anticipating risks, optimizing efficiency, and ensuring 

better water quality.  

This paper seeks to identify a methodology for using 

virtual reality to monitor and control water parameters in 

mineral water production plants. Rono et al. [20] employed 
VR, DT and IIoT technologies to link the physical and digital 

realms for instantaneous manufacturing process monitoring 

and control.  

The understanding of how to combine VR, DT and IIoT 

in tandem to bridge the gap between actual machines and their 

corresponding virtual models has improved as a result of this 

research. It also offers insights on how to transfer data and 

information between these two worlds utilizing a bidirectional 

communication protocol, allowing for real-time monitoring 

and control over manufacturing processes.  

Flow Cytometry (FCM) is used to assess the efficacy of 

chlorine disinfection for both pure culture bacteria 

(Escherichia coli) and microorganisms in treated water from 

operational Water Treatment Works (WTWs) [8]. The 
limitation of this method is the inability to detect low levels of 

E. coli bacteria in water samples.  

Agudelo et al. [9] described the challenges of temperature 

to water quality. This lack of monitoring compromises the 

ability of water treatment infrastructure operators to maintain 

optimal conditions throughout the network. Temperature 

influences bacterial growth, the formation of disinfection by-

products, and the chemical stability of water, underscoring the 

crucial importance of continuous monitoring to ensure safety 

and compliance with drinking water quality standards. 

Using DNA extraction methods, molecular validation of 

presumed E. Coli test isolates was carried out; the study 
investigated the efficacy of various chlorine concentrations in 

removing Escherichia coli from wastewater effluents as well 

as the isolates’ resistance to chlorine [10].  

Stefan et al. [11] investigated the water treatment 

procedures used by 12 drinking water treatment facilities in 

Hungary, including the use of breakpoint chlorination. They 

found that the concentration of Disinfection By-Products 

(DBPs) increased during the water treatment process, 

particularly after the addition of chlorine reagent. 

Controlling these physicochemical parameters, such as 

turbidity, pH, conductivity, total dissolved substances, 
chloride, Free Residual Chlorine (FRC), calcium, magnesium, 

sulfate, nitrite, and nitrate, is essential to ensuring mineral 

water quality, particularly regarding microbial contamination.  

Mohammed et al. [12] analyzed physicochemical 

parameters, such as pH, turbidity, electrical conductivity, total 

dissolved solids, and microbial quality of groundwater. The 

study found that water pH significantly influenced the 

microbial quality of the mineral water, with pH levels below 

7.0 being associated with higher microbial populations. In 

addition, higher levels of total dissolved solids and electrical 

conductivity were also associated with increased microbial 

populations in the mineral water.  

An analytical cross-sectional study design was employed 

by Ondieki et al. [13] to examine the bacteriological and 

physicochemical quality of drinking water in Kisii town, 

Kenyan households. 422 samples of drinking water were 

collected at the point of consumption from the four zones of 

Kisii town using stratified random sampling. The samples 

were subjected to bacteriological analysis, which showed that 

39.3% of the samples had total coliform contamination and 
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17.5% had E. coli contamination, both of which were higher 

than the WHO and Kenya Bureau of Standards’ recommended 

limits. 

Samdeep et al. [14, 10] examined the major Gram-

Negative Bacteria’s (GNB) resistance to chlorine, as seen in 

sewage that has been secondary treated in Jaipur, India. It was 
discovered that although the isolates’ fatal doses varied from 

0.5 to 1.25 mg/L, substantially greater chlorine doses were 

needed to completely suppress regrowth., ranging from 0.75 

to 1.75 mg/L.  

However, pH, temperature, and chlorine dosage are 

important factors in maintaining water quality in the mineral 

water industry; they can be complex to manage and require 

further study for several reasons. Firstly, the interrelationship 

between these factors can make it difficult to optimize their 

use in water treatment. For example, the optimal pH range for 

chlorine disinfection is typically between 6.5 and 7.5 [1].  

However, pH can also affect the stability of chlorine, with 
lower pH levels causing faster depletion of free chlorine. 

Thus, it is necessary to balance the pH levels with the proper 

chlorine dosage to achieve effective disinfection. Secondly, 

the efficacy of chlorine disinfection is also influenced by 

temperature.  

Higher temperatures can accelerate the decomposition of 

chlorine, reducing its effectiveness in controlling 

microorganisms. The rate of microbial growth can also 

increase at higher temperatures, specifically 15°C, which is 

more optimal for E. coli reduction during ClO2 treatment, 

making it necessary to adjust chlorine dosages accordingly 
[15].  

The chemical interactions between chlorine and other 

compounds in water, such as organic matter, can also affect 

chlorine dosage requirements. The presence of organic matter 

can react with free chlorine to form chloramines, which are 

less effective at disinfection.  

This can increase the necessary chlorine dosage to 

achieve the desired level of disinfection [8]. Therefore, further 

studies are necessary to understand better the complex 

interplay between pH, temperature, and chlorine dosage in 

maintaining water quality in the mineral water industry. 

Efficient monitoring and control offer an opportunity for 
optimization of closely related parameters that impact water 

quality. In particular, Industry 4.0 offers new opportunities for 

real-time systems.  

Chowdhury et al. [16] proposed a sensor-based 

mechanism for detecting water quality using the Internet of 

Things and Wireless Sensor Networks technology, which 

enables real-time data access and remote water monitoring 

with high frequency, high mobility, and low power 

consumption, which can help raise awareness of contaminated 

water and prevent water pollution. It also highlighted the 

potential of IoT in environmental monitoring and underscored 

the need for efficient and cost-effective real-time water quality 

monitoring systems [17]. The study acknowledges the 

limitations of the project, such as the exclusion of parameters 
like the variables total residual solids, chemical oxygen 

demand, and soluble oxygen that could be measured with 

more funding and system enhancement.  

Lowe et al. [18] examined a range of AI and ML-enabled 

water-related applications, including automation and 

monitoring for aquaponics and hydroponics, adsorption, 

membrane filtration, water quality index monitoring, stream 

level monitoring, and chlorination. Some of the primary 

constraints observed were inadequate data management, 

limited explicability, and poor model replication.  

Pesantez et al. [19] developed a digital twin framework 

integrating a hydraulic model with data from the Advanced 

Metering Infrastructure (AMI) to evaluate the effects of 

variations in water consumption related to COVID-19 on 

infrastructure.  

The results show that this offers insightful analysis and 

guidance on optimizing operations and making sustainable 

plans for the management of water utilities.  The use of digital 

twins and virtual reality technology can also enhance the 
efficiency of the plant and reduce the need for manual 

intervention. The contribution of this research lies in the 

development of a virtual platform dedicated to the control and 

regulation of temperature and contact time during chlorine 

dosing. This platform aims to evaluate the growth of 

Escherichia coli in water.  

In addition, a mathematical model should be developed to 

understand and quantify the interaction between the various 

parameters influencing the proliferation of E. coli in water. 

These efforts are essential for making informed decisions and 
optimizing processes relating to water treatment and safety.  

2. Materials and Methods 
The Most Probable Number (MPN) method was 

employed to quantify the Colony-Forming Units (CFU) of E. 

coli in the water sample. Water samples collected from the 
Dedan Kimathi University (DKUT) pond were subjected to 

preparation in tubes containing Peptone water and 

MacConkey broth, shown in Figure 1(b).  

The tubes underwent a 24-hour incubation period at a 

temperature of 37°C to promote the development of E. coli 

[12]. After incubation, the examination was done for any 

observable changes in the color of the culture medium from a 

pink color to yellow, indicating the presence of microbial 

growth. Tubes with no discernible change remained clear, 
signifying the absence of E. coli, as depicted in Figure 1(a).  
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(a) (b) 

Fig. 1(a) Observation of result, and (b) Serial dilution. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Festo compact MPS 

 

 

 

 

 

 

 

Fig. 3 Block diagram

A setup for monitoring and control was done using the 

Festo compact MPS PA process control and monitoring 

system with the PLC S7 1200, as shown in Figure 2. It is a 

closed-loop control system that allows for the control of 

parameters such as level, temperature, flow, pressure, etc. The 

system was used to monitor and control the temperature and 

contact time of chlorine dosages that impact microbial growth. 

This allowed for the automated modification of these 

parameters to keep them continuously within the desired 

range. 

The control procedure is displayed in Figure 3. After 

taking a measurement, the sensor compares the actual water 

temperature to the set point. To maintain the water 

temperature at the specified level, the PID controller then 

computes the difference and modifies the incoming water 

temperature via the valve.  

The Design of Experiment (DoE) was used to determine 

the number of simulations, and the independent variables for 

each simulation (temperature, time, and chlorine dosage) were 

classified as independent variables, as shown in Table 1. 54 

experimental runs were conducted as shown in Table 2 shows 

the different experiments carried out. Multiple regression 

analysis was applied to generate relationships and the 

influence of temperature, time, chlorine dosage, and E. coli 

removal, using data Minitab software.    

Table 1. Design of experiment 

Independent Variables 
Level 

-1 0 1 

Time (min) 10 20 30 

Temperature (°C) 10 15 20 

Chlorine Dosage (mg/l) 2 3.5 5 

 

Siemens NX software was used to create the Festo 

machine 3D CAD model. As illustrated in Figure 4, Unity 

software was used to import the 3D CAD model and provide 

physics to the various components.  
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Fig. 4 CAD model in unity Software 

 
Fig. 5 User interface 

 
Fig. 6 S7 1214 PLC and virtual unity 

A realistic virtual environment and the integration of 

virtual reality platform devices were created using Unity3D. 

The temperature and contact time of chlorine dosage were 

programmed to conform to automatic machine operations. C-

sharp script was used to complete the physics, which aids in 

the creation of the machine’s digital counterpart. In the 

immersive environment, a user interface panel was created to 

monitor functions and facilitate user involvement. To create a 

Digital Twin, the control logic for the machine was written to 
simulate the PLC controller. The machine control logic was 

developed using Totally Integrated Automation (TIA). 

Software-in-the-Loop (SiL) setup was used to verify 

communication through the ProfiNET gateway. To test and 

evaluate the control logic of the machine, Unity software was 

used to simulate the behavior of the actuators, sensors, and 

controllers.  

The virtual machine’s temperature and chlorine dosage 

patterns were shown via the user interface shown in Figure 5 

within the immersive setting. To observe the machine in real-

time in a virtual world to navigate and interact with the scene’s 

components, a virtual reality site and handheld controllers 
were integrated. A continuous flow of information 

transferring between virtual and real models was ensured by 

the real virtual communication system shown in Figure 7. To 

interface with the S7 PLC, classes from the real virtual script 

were added to the unity project. A suitable, accessible IP 

address was chosen for use in establishing the connection with 

the S7 1214 PLC, as shown in Figure 6.  

 

 

 

 

 

 

 

 

 

Fig. 7 Physical–virtual system integration 

3. Results and Discussion 
The removal of E. Coli at times between 0 and 30 minutes 

was investigated in Figures 8, 9, and 10, with chlorine dosages 

ranging from 2 to 5 mg/L at 10°C to 20°C, respectively. At 5 

min, chlorine dosages 3.5 mg/L and 5 mg/L in Figures 8(b) 

and 8(c) show more appreciable efficacy than the lower 

dosage (2 mg/L) in Figure 8(a) at 5 min, the contact time of 

chlorine was not enough to eliminate the number of CFU in 
the water.  
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(c) 

Fig. 8 Elimination of E. coli at temperature of 10°C for (a) 2 mg/l 

chlorine dosage in 0 to 30-minute intervals, (b) 3.5 mg/l chlorine dosage 

in 0 to 30-minute intervals, and (c) 5 mg/l chlorine dosage in 0 to 30-

minute intervals. 
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(c) 

Fig. 9 Elimination of E. coli at temperature of 20°C for (a) 2 mg/l 

chlorine dosage in 0 to 30-minute intervals, (b) 3.5 mg/l chlorine dosage 

in 0 to 30-minute intervals, and (c) 5 mg/l chlorine dosage in 0 to 30-

minute intervals. 
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(c) 

Fig. 10 Elimination of E. coli at temperature of 15°C for (a) 2 mg/l 

chlorine dosage in 0 to 30-minute intervals, (b) 3.5 mg/l chlorine dosage 

in 0 to 30-minute intervals, and (c) 5 mg/l chlorine dosage in 0 to 30-

minute intervals. 
 

The E. coli is constantly completely inactivated after 15 

minutes, and at 10 minutes with greater dosage significantly 

reduces the number of bacterial colonies in comparison to 

lesser dosages shown in Figures 8(a) and 8(b).  

At 20°C and 2 mg/L in Figure 9(a), chlorine dose shows 

consistent efficacy, with a significant decrease at 10 minutes 
and total inactivation at 15 minutes. On increasing the chlorine 

dose to 3.5 mg/L, as shown in Figure 9(b), no decline is seen 

right away; however, after 5 minutes, there is a notable 

decrease that lasts until 10 minutes, at which point the chlorine 

is completely inactivated. Consistent efficacy is seen at 5 

mg/L in Figure 9(c); after 10 minutes there is total 

inactivation. 

This analysis indicates that higher chlorine dosages and 

higher temperatures contribute to faster inactivation of E. coli. 

E. Coli SAMRC-3 was exposed for 30 minutes, during which 

time chlorine decay and inactivation at a concentration of 1.5 

mg/L took place. Bacterial survival and chlorine decay were 
measured at intervals of 10 minutes.  

This agrees with the study of Balachandran et al. [21], 

who observed that chlorine showed higher inactivation of both 

multidrug-resistant E. coli efficient processes. The effect of 

chlorine doses (2 to 5 mg/L) on the removal of E. coli at a 

temperature of 15°C is illustrated in Figure 10. 

A significant decrease in E. Coli Colony-Forming Units 

(CFU) after 10 minutes and total inactivation by 15 minutes 

indicate consistent efficacy at 2 mg/L in Figure 10(a). at the 

3.5 mg/L shown in Figure 10(b) after 5 minutes, there is a 

notable decline achieved in total inactivation after 10 minutes. 
Comparably, with a dosage of 5 mg/L in Figure 10(c), at 5 

minutes full inactivation of CFU. Experience shows that 

different chlorine dosages are effective in eliminating E. coli 

at 15°C after 10 minutes, with variations in the time required 

for complete inactivation [10]. 

Niu et al. [22] showed that phages were effective at 37°C 

and 22°C. Temperature variations affected phage interactions, 

with some combinations showing increased efficacy at 

particular temperatures. Bacteriophage efficacy against 

Escherichia coli O157 varied according to incubation 

temperature. Temperature was a determining factor in the 

activity of Tequatrovirus T1 and Vequintavirus rV5, with the 
former being active at 22°C and the second more active at 

37°C. 

The regression model developed is shown in Equation 1. 

The regression results reveal the different coefficients of the 

linear equation, which represent the influence of the 

temperature and time of chlorine dosage on the elimination of 

E. coli from the water. 
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y = 4832 + 191.4x2 + 1167x3 − 46.7x2x3    (1) 

In this model, Escherichia coli (E. coli) concentration is 

the dependent variable, while time (x1), temperature (x2) and 

chlorine dosage (x3) are the independent variables. This 

empirical equation seeks to establish a quantitative 

relationship between these variables, enabling us to predict E. 

coli elimination as a function of contact time, water 
temperature, and the amount of chlorine used in the 

disinfection process. 

The relationship between the concentration of 

Escherichia coli (E. coli) and the independent variables 𝑥1  

time, 𝑥2 temperature, and 𝑥3 Chlorine dosage is expressed 

mathematically in Equation 1. While the parameters related to 

191.4, 1167, and 46.7 quantify the individual effects of time, 

water temperature, and chlorine dosage on the concentration 

of E. coli, 4832 represents the value of y when the independent 

variables are zero.  

Furthermore, the way in which 𝑥2 and 𝑥3 interact to affect 

E. coli eradication is demonstrated by the interaction term 

between these two variables. The efficacy of water 

disinfection may be predicted and optimized thanks to 

mathematical modeling, which offers useful quantitative 

insight into the process dynamics.  

This procedure is essential to the safety of drinking water. 

The R-squared in Figure 11 indicates the extent to which the 

data fit the regression model. The calculated R-squared value 

of 68.75% indicates the extent to which the variation in 
response elimination of E. coli can be explained by the time, 

temperature, and chlorine dosage in the regression model.  

 

 

Fig. 11 Model summary 

This agrees with the study of Gracia et al. [23], who used 

mathematical models and procedures to quantify the chlorine 

bulk decay coefficient and determine the reaction constant of 

chlorine with the mass of water. The model was validated by 

a comparative analysis of residual chlorine concentrations 
over time for different reaction orders (zero-order, first-order, 

and second-order).  

The coefficient of determination (R-squared) values 

obtained during the validation process are as follows: 0.8386 

for zero-order reaction kinetics, 0.9409 for first-order reaction 

kinetics, and 0.7715 for second-order reaction kinetics. These 

R-squared values served as indicators of the model’s 

performance and provided insight into its ability to represent 

experimental data in different reaction kinetic scenarios 

accurately.  

Khan et al. [24] proposed a Superposition-based Learning 

Algorithm (SLA) for observing ANN-based sensitivity 

analysis models to predict the presence of E. coli in 

groundwater. They used MATLAB software to evaluate 

model performance, calculating the Root Mean Square Error 

(RMSE) and coefficient of determination (R2) to validate its 
model with an R-squared of 0.90. 

A communication script was implemented to integrate the 

virtual and physical models in Unity for data interchange 

between the environments. Figure 12 illustrates how TIA and 

Unity are used to monitor and operate both the remote physical 

station and the virtual world.  

Once the virtual and physical models had been integrated, 

data and movement analysis in both systems was ensured by 
synchronization. Real-time monitoring of the system revealed 

that the sensor data’s output corresponded to the system’s 

actual values and that the virtual model updated instantly.  

 
Fig. 12 Physical and virtual system developed 

 
                        (a)                                                      (b)  

Fig. 13 (a) Temperature reading on a physical machine, and                          

(b) Temperature reading on a virtual machine. 

The temperature readings in the physical and virtual 

models are shown in Figure 13. The temperature values 

displayed in the virtual model’s user interface correspond to 

the temperature readings read by the sensors in the actual 

system, allowing process parameters to be modified.  

S            R-sq      R-sq(adj)     R-sq(pred) 

676.506        68.75%         12.50%           0.00% 
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The actuator status is also directly updated. Digital 

commands (start, stop) are implemented in the user to provide 

remote monitoring and control for the VR user of the device. 

Digital twins and virtual reality are used by [20] to remotely 

monitor and regulate the PH dosage of the silica scale 

manufacturing process. In [25], The study combined wearable 
sensor networks and virtual reality serious games to monitor 

the advancement of physical therapy and assess patient 

progression. 

By effectively integrating an accurate digital twin of the 

water treatment system and the use of virtual reality for real-

time monitoring, the study exceeded current state-of-the-art 

procedures. This novel method has made it possible to mimic 

and model various operating circumstances digitally and 

offers an immersive platform for proactive temperature and 

chlorine dosage monitoring.  

Combining these advanced technologies has enhanced 

our knowledge of water treatment procedures and optimized 
management tactics for more efficient E. Coli removal, 

creating new opportunities for the global security of drinking 

water sources. 

4. Conclusion 
This study offers important information, especially 

regarding the effects of temperature and contact time on the 
use of chlorine to remove E. coli from drinking water. E. Coli 

eradication was successful in about 15 minutes at a 

temperature of 15°C and a chlorine dosage of 3.5 mg/L. A 

significant transmission advancement in the monitoring and 

control of water quality has been made possible by the 

automatic incorporation of a Virtual Reality (VR) platform, 

which has made it possible to monitor and regulate the growth 
of E. coli in water.  

This study provides a strategic solution to the worldwide 

problems associated with the control of water by fusing 

innovative technologies such as digital twins and virtual 

reality. Its outcomes have far-reaching implications, acting as 

a model for creative fixes spanning the domains of science and 

the environment.  

They not only contribute to the capacity to monitor and 

control parameters such as temperature and chlorine dosage 

contact time to eradicate E. coli from water, but they also give 

vital information to the scientific community that is engaged 

in water-related research. Through solving the particulars of 
water management, this research establishes a standard for a 

more modern and environmentally conscious method of 

protecting water resources. 
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Appendix 
Table 2. Range of experimental 

Run Order Temperature (°c) Chlorine Dosage (mg/l) Time (min) 

1 10 2 5 

2 10 2 10 

3 10 2 15 

4 10 2 20 

5 10 2 25 

6 10 2 30 

7 10 3.5 5 

8 10 3.5 10 

9 10 3.5 15 

10 10 3.5 20 

11 10 3.5 25 

12 10 3.5 30 

13 10 5 5 

14 10 5 10 

15 10 5 15 
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16 10 5 20 

17 10 5 25 

18 10 5 30 

19 15 2 5 

20 15 2 10 

21 15 2 15 

22 15 2 20 

23 15 2 25 

24 15 2 30 

25 15 3.5 5 

26 15 3.5 10 

27 15 3.5 15 

28 15 3.5 20 

29 15 3.5 25 

30 15 3.5 30 

31 15 5 5 

32 15 5 10 

33 15 5 15 

34 15 5 20 

35 15 5 25 

36 15 5 30 

37 20 2 5 

38 20 2 10 

39 20 2 15 

40 20 2 20 

41 20 2 25 

42 20 2 30 

43 20 3.5 5 

44 20 3.5 10 

45 20 3.5 15 

46 20 3.5 20 

47 20 3.5 25 

48 20 3.5 30 

49 20 5 5 

50 20 5 10 

51 20 5 15 

52 20 5 20 

53 20 5 25 

54 20 5 30 

 


