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Abstract - This paper investigates the performance of three different methods of tuning a PID controller-MOMI, Harriot, and 

Good-Gain for a non-ideal synchronous buck converter. The mathematical model is derived through state space averaging and 

small signal modelling techniques for accurate and realistic assessment of the tuning methods. The Simscape tool of 

MATLAB/Simulink facilitates closed-loop simulation. The results indicate that the MOMI method outperforms in terms of 
transient response and steady-state error under significant input voltage variations (up to 50%), demonstrating minimal 

overshoot (16%), quick settling time (2.7ms), and zero steady-state error. Also, under dynamic load conditions, the MOMI 

approach consistently demonstrates decreased overshoot in the output voltage and faster convergence to the steady-state value, 

signifying improved transient performance. Furthermore, the MOMI method shows the lowest error signal in tracking output 

reference voltage changes, indicating its superior tracking capability and rapid adaptation. This research contributes to the 

field of control systems by advancing the understanding of PID controller performance under different variations. It highlights 

the effectiveness of the MOMI method in achieving optimal performance. The study validates the critical role of tuning methods 

in the design of optimized PID controllers that strike a delicate balance between efficiency and performance. 

Keywords - DC-DC converter, Damped oscillation method, Magnitude Optimum Multiple Integration method, Proportional 

Integral Derivative (PID) controller, Non-ideal synchronous buck DC-DC converter. 

1. Introduction  
The synchronous buck converter, a key component in 

power electronics, is a major element in managing and 

converting energy. Its adaptability and efficiency make it a 

common choice for various uses, from powering digital 

devices and electric vehicles to renewable energy systems. Its 

ability to deliver high currents while reducing power loss has 

made it an essential element in consumer electronics.  

The growing need for energy efficiency in DC/DC 

converters, especially in mass-produced consumer electronics, 

has spurred the development of cost-effective synchronous 

rectification solutions. These converters are thought to offer 

substantial efficiency improvements compared to their non-

synchronous counterparts [1].  

The importance of efficiency is further highlighted by 

strict energy regulations and green initiatives. In the present 

era, designers aim to enhance converter efficiency without 

increasing costs, particularly in high-volume applications, 

where saving even a single watt can result in substantial 
energy savings. 

However, despite the efficiency and versatility of 
synchronous buck converters, achieving optimal control for 

peak performance demands using a non-ideal model of the 

synchronous converter in the design and modelling of the 

controller due to the following reasons.  

Firstly, ideal models neglect voltage drops caused by real-

world components like switch and MOSFET resistances, 

inductor Equivalent Series Inductance (ESL), and capacitor 

Equivalent Series Resistance (ESR). This discrepancy 

between predicted and actual voltage becomes particularly 

evident under transient and load variations, leading to 

suboptimal performance [1, 2].  

Secondly, ideal models overlook the additional poles and 
zeros introduced by non-ideal components, which influence 

transient response and stability. This can result in a sluggish 

response, overshooting,  even instability under certain 

conditions, and issues ideal models would not predict.  

Thirdly, assuming perfect efficiency, ideal models fail to 

account for power losses due to conduction and switching, 
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hindering accurate evaluation of energy consumption and 

thermal management [3]. Therefore, due to the critical impact 

of model accuracy on controller effectiveness, non-ideal 

models become indispensable tools for achieving optimal 

performance in synchronous buck converters. 

In the research area of power electronics, the 
Proportional-Integral-Derivative (PID) controller plays a key 

role in maintaining system stability and performance. Its 

significance is particularly noticeable in the context of 

synchronous buck converters, where PID controllers are 

indispensable for achieving precise voltage mode control. 

However, the effectiveness of these controllers relies heavily 

on their tuning, i.e., a process that involves adjusting the 

integral gain, derivative gain and proportional gains to 

optimize system performance [4].  

While designing a PID controller for a synchronous buck 

converter is crucial, relying solely on a non-ideal model can 

limit its effectiveness. Effective tuning methods are essential 
to optimize the converter’s performance. The effectiveness of 

PID controllers extends beyond their design and is 

significantly influenced by their tuning. Much like a finely 

tuned instrument resonates with flawless harmony, a precisely 

tuned PID controller can enhance the performance of a non-

ideal synchronous buck converter with remarkable accuracy 

[5]. Therefore, meticulously tuning PID controllers unlocks 

the hidden potential of synchronous buck converters. 

This research paper addresses this gap by proposing a 

novel approach utilizing a Magnitude Optimum Multiple 

Integrations (MOMI) tuned PID controller for synchronous 
buck converter voltage mode control. MOMI tuning offers a 

systematic method for optimizing PID parameters, potentially 

leading to significant improvements compared to 

conventional tuning techniques.  

Unlike traditional methods that may struggle with non-

ideal models, MOMI tuning leverages a more accurate 

representation of the converter, enabling superior control 

performance. This can translate to benefits like faster transient 

response, enhanced disturbance rejection, and potentially even 

efficiency gains.  

The literature review of PID controller tuning is vast and 

diverse, with a multitude of methods developed and refined 
over the years. In this paper, the literature review is broadly 

classified into two categories for a more structured and 

comprehensive understanding. Firstly, the classical methods 

represent the traditional techniques that have been used since 

the inception of PID controllers, which include the following. 

The Ziegler-Nichols method is a simple and widely used 

tuning method based on open-loop step response analysis [6].  

While this method can be a helpful initial step in the 

tuning process, it may not be the most effective approach for 

systems exhibiting pronounced non-linear characteristics or 

behaviour that change over time. There are different variations 

of this method, such as closed-loop, Modified Ziegler-

Nichols, and tuning from frequency response, which offer 

more flexibility and can potentially handle non-idealities 

better. However, these methods may have higher 
computational complexity, making them less suitable for real-

time applications [7].  

The Cohen-Coon method offers direct design formulas 

based on desired closed-loop characteristics like rise time and 

settling time [8]. This makes it a good choice for systems 

where specific performance objectives are important. 

However, like the ZN method, it may struggle with 

nonlinearities and time-varying behaviour. The computational 

complexity of the Cohen-Coon method is comparable to that 

of the ZN method [5].  

The CHR method combines the ZN and Cohen-Coon 

methods for improved robustness and disturbance rejection 
[9]. This makes it a good choice for systems with significant 

non-idealities. However, the CHR method can be more 

computationally complex than the ZN or Cohen-Coon 

methods, which may make it less suitable for real-time 

applications [10]. 

Modern Methods: With the advent of new technologies 

and computational power, more sophisticated and efficient 

tuning methods have emerged. These modern methods often 

provide better performance and robustness compared to 

classical methods. Model Predictive Control (MPC) provides 

optimal control actions based on a system model and future 
predictions [11].  

It can handle nonlinearities and uncertainties effectively, 

making it a good choice for non-ideal synchronous buck 

converters. MPC can meet specific performance objectives 

like settling time, overshoot, and disturbance rejection. 

However, the computational complexity of MPC is high, 

especially for real-time applications, due to the need to resolve 

an optimization issue during a single iteration. Fuzzy Logic 

Control (FLC) introduces human-like decision-making 

capabilities to handle nonlinearities and uncertainties, 

achieving robust performance in complex systems [12].  

FLC can handle non-idealities in synchronous buck 
converters and can meet specific performance objectives. The 

computational complexity of FLC is relatively low compared 

to MPC, making it appropriate for practical applications. 

However, the design and tuning of FLC can be challenging 

due to the lack of systematic design methods [12].  

Adaptive PID Control automatically adjusts PID gains 

online based on system dynamics and operating conditions, 

enhancing performance and robustness [13]. It can handle 

non-idealities in synchronous buck converters and can meet 
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specific performance objectives. The computational 

complexity of Adaptive PID Control is comparable to 

traditional PID control, making it appropriate for Practical 

applications. However, the performance of Adaptive PID 

Control rests on the accuracy of the derived system model and 

the adaptation algorithm [13].  

The PID controller tuning method presented in this 

research paper is the Magnitude Optimum Multiple 

Integrations (MOMI) method, which has emerged as a recent 

advancement offering a compelling combination of 

performance, robustness, flexibility, and computational 

efficiency. It offers several key advantages over both classical 

and modern methods: Unlike some classical methods, MOMI 

ensures a non-oscillatory response for a wide range of 

systems, promoting stability in critical applications [14].  

MOMI effectively addresses nonlinearities and time-

varying behaviour, making it well-suited for non-ideal 

systems like synchronous buck converters, a common 
challenge in power electronics. The MOMI method optimizes 

the frequency response for superior disturbance rejection and 

set-point tracking, potentially surpassing the capabilities of 

classical methods. 

The rest of the research paper is structured as follows: the 

mathematical modeling of plant, i.e., synchronous buck 

converter with non-idealities, is derived in section 2. The 

significance of the Proportional Integral Derivative (PID) 

controller is represented in both time and frequency domains 

in section 3. The Magnitude Optimum Multiple Integration 

(MOMI) tuning method is thoroughly described in section 4, 
which also includes a comparison with the Harriot and Good-

Gain methods. The simulation results of the non-ideal 

synchronous buck converter subjected to dynamic changes in 

input, output, and reference are represented in section 5. 

Finally, a comprehensive interpretation of the complete paper 

is provided in section 6. 

2. Mathematical Modelling of Non-Ideal 

Synchronous Buck DC-DC Converter  
This section presents mathematical modelling of a typical 

synchronous buck converter, considering all parasitic losses 

due to the imperfect characteristics of physical components 

such as the inductor and capacitor [15]. The synchronous buck 

converter comprises a power stage and an output filter stage. 
In the power stage, two MOSFET switches, QH and QL, are 

connected in a half-bridge arrangement, as depicted in Figure 

1.  

Unlike traditional buck converters, this configuration 

utilizes a second MOSFET as the low-side switch instead of a 

power diode to enhance efficiency for low-power applications. 

In this configuration, MOSFETs QH and QL are switched 

alternately to each other, hence the name “synchronous buck 

converter”. This synchronous switching action connects the 

output filter stage to a square-wave-like input voltage signal 

having a frequency equal to the converter switching frequency 

fsw, with duty cycle D equal to the conduction time ton of 

MOSFET QH divided by the total switching period Tsw, i.e., D 

= ton/Tsw. 

 

 

 

 

 
 

 
 

 
 
 

 

Fig. 1 Simplified circuit diagram of a synchronous non-ideal buck 

converter with PID controller for voltage mode control 

The output stage of a synchronous buck converter 

includes energy storage elements like an inductor and 

capacitor. It acts as a low-pass filter of the second order, 

constructing a steady DC output voltage. The non-ideal 

synchronous buck converter mathematical model incorporates 

both rL, i.e., DC resistance of the inductor, and rC, i.e., 

Equivalent Series Resistance (ESR) of the capacitor, to 

enhance precision during the initial design phase and analyzes 

the effects of parasitic losses on stability and transient 

behavior of the synchronous buck DC-DC converter [15]. 

2.1. State Equations of Synchronous Buck DC-DC 

Converter with Non-Idealities  

The state equations mathematically represent how the 

state variables change over time in response to variations in 

the input voltage, output load, and control signals. These 

equations are of significant importance as they provide 

valuable insight into the performance characteristics of the 

converter, such as efficiency, transient response, and stability. 

2.1.1. During ton Sub-Interval (0 < t ≤ DT)  

In the ton period, the high side QH MOSFET switch is 

turned on, and the low side QL MOSFET switch is turned off, 

as shown in the linear subcircuit in Figure 2. The state 
equations are derived using fundamental methods of analyzing 

circuits, such as Kirchhoff’s voltage and current laws. These 

equations are formulated as a linear combination of the input 

voltage source and the state variables, as represented in 

Equation 1. Through this time interval, the resultant output 

voltage is expressed as a linear combination of the input 

voltage source and state variables themselves, as given by 

Equation 2. 
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𝑑𝑖𝐿(𝑜𝑛)

𝑑𝑡
= −(

𝑟𝐿

𝐿
+

𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
) 𝑖𝐿 − (

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
)𝑣𝑐 +

𝑉𝑖𝑛

𝐿

𝑑𝑣𝑐(𝑜𝑛)

𝑑𝑡
= (

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
) 𝑖𝐿 − (

1

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
)𝑣𝑐                        

} 

 (1) 

𝑉𝑜𝑢𝑡(𝑜𝑛) = (
𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
) 𝑖𝐿 + (

𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
) 𝑣𝑐 (2) 

2.1.2. During toff Sub-Interval (DT ≤ t < T)  

In the toff period, the high side QH MOSFET switch is 

turned off while the low side QL MOSFET switch is on, as 

illustrated in the equivalent linear subcircuit given in Figure 3. 

The state equations and output voltage through this toff time 

interval are expressed using Equations 3 and 4, respectively. 

𝑑𝑖𝐿(𝑜𝑓𝑓)

𝑑𝑡
= −(

𝑟𝐿

𝐿
+

𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
) 𝑖𝐿 − (

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
)𝑣𝑐

𝑑𝑣𝑐(𝑜𝑓𝑓)

𝑑𝑡
= (

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
) 𝑖𝐿 − (

1

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
)𝑣𝑐              

} (3) 

𝑉𝑜𝑢𝑡(𝑜𝑓𝑓) = (
𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
) 𝑖𝐿 + (

𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
)𝑣𝑐 (4) 

 

 

 

 

 

 

 

Fig. 2 Schematic of non-ideal synchronous buck converter during ton 

subinterval 

 

 

 

 

 

 

Fig. 3 Schematic of non-ideal synchronous buck converter during toff 

subinterval 

2.2. State-Space Averaging Method  

State-Space Averaging (SSA) offers a mathematical 

approach to studying the dynamic characteristics of physical 

systems, including DC-DC converters. This approach utilizes 

input, output, and state variables represented by first-order 

differential equations. By averaging the state equation over a 
single switching cycle, this method transforms the system into 

a time-invariant representation suitable for deriving small-

signal transfer functions and outputs [1, 16]. For DC-DC 

converters, state-space averaging generally relies on two 

fundamental equations as given by Equation 5. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐸𝑢(𝑡)
}    (5) 

According to the linear time-invariant system represented 

in [1, 16], the states with x vector, inputs with u vector, and 

outputs of the system with y vector are denoted. These vectors 

have dimensions of p×1, m×1, and, n×1 where p being the 

number of outputs, m being the number of inputs, and n being 

the number of states. Additionally, E, C, B, and A matrices 
having dimensions (p×m), (p×n), (n×m), and (n×n) 

respectively symbolize the input, output, dynamic, and direct-

transmission matrices. 

The structure of a plant, i.e., a non-ideal synchronous 

buck converter, is modified by switching actions of high-side 

and low-side MOSFETs. This alteration occurs because the 

circuit components are connected in different ways during 

each sub-interval of every switching cycle. Thus, the same 

circuit operates as two distinct linear circuits based on the 

specific switching action of the MOSFETs.  

The state equations and associated matrices that describe 
these dynamics also vary for each sub-interval of every 

switching cycle. For the ton time period, state matrices A1, B1, 

C1, and E1 representing the behavior of synchronous buck 

converter during (0<t≤DT) are obtained using Equations 1 and 

2 state equations that are given by Equation 6. 

𝐴1 = [
−(

𝑟𝐿

𝐿
+

𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
) −

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
−

1

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶

] 

𝐵1 = [
1
𝐿⁄

0
]                                                             

𝐶1 = [
𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)

𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
]                               

𝐸1 = [0 0]                                                           }
 
 
 
 

 
 
 
 

 (6) 

Similarly, the behaviour of a synchronous buck converter 

during (DT ≤ t < T) is represented by another set of state 

matrices A2, B2, C2, and E2. These matrices are obtained from 
Equations 3 and 4 state equations are given by Equation 7. 
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𝐴2 = [
−(

𝑟𝐿

𝐿
+

𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
) −

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
−

1

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶

] 

𝐵2 = [
0
0
]                                                                   

𝐶2 = [
𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)

𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
]                                 

𝐸2 = [0 0]                                                             }
 
 
 
 

 
 
 
 

 (7) 

Next, the averaged state matrices are obtained through 

multiplying the state matrices of two sub-interval states with 

their respective duty cycle values. This results in time-

weighted average matrices, representing time-invariant state 
variables, input and output represented by Equation 8 with 

bold capital letters. 

𝐴 = 𝐴1𝑑 + 𝐴2(1 − 𝑑) = [
− (

𝑟𝐿

𝐿
+

𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿
) −

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐿

𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶
−

1

(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))𝐶

]

𝐵 = 𝐵1𝑑 + 𝐵2(1 − 𝑑) = [
1
𝐿⁄

0
]                                                             

𝐶 = 𝐶1𝑑 + 𝐶2(1 − 𝑑) = [
𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)

𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
]                                  

𝐸 = 𝐸1𝑑 + 𝐸2(1 − 𝑑) = [0 0]                                                           }
 
 
 
 

 
 
 
 

  (8) 

2.3. Small Signal Modelling of the Non-Ideal Synchronous 

Buck DC-DC Converter 

In this subsection, a small signal model of the plant, i.e., 

the non-ideal synchronous buck converter, is obtained by 
linearizing state space equations around a quiescent operating 

point to understand the dynamic characteristics of the plant, 

i.e., non-ideal synchronous buck dc-dc converter in response 

to small signal excitations [1, 15].  The small signal excitations 

refer to small disturbances around the quiescent operating 

point [17], as given by Equation 9. 

𝑥(𝑡) = 𝑋 + 𝑥(𝑡)

𝑢(𝑡) = 𝑈 + �̂�(𝑡)

𝑦(𝑡) = 𝑌 + �̂�(𝑡)

𝑑(𝑡) = 𝐷 + �̂�(𝑡)}
 

 

 (9) 

The steady-state values are denoted by uppercase bold 

letters, and small perturbations are represented by hat symbols 

above lowercase letters. Substituting these perturbations given 

in Equation 9 into the state-space Equation 5 yields three 

categories of terms: DC terms, small-signal AC terms, and 
second-order nonlinear terms.  

On the presumption that the small-signal AC variations 

are significantly smaller than their steady-state counterparts 

(𝑥≪X, �̂�≪U, �̂�≪Y, and �̂�≪D), the non-linear terms of second 

order or degree are neglected. By collecting the DC 

components and rearranging the equations, the steady-state 

DC relationships are given by Equation 10. 

𝑋 = −(𝐴−1𝐵)𝑈

𝑌 = −[𝐶(𝐴−1𝐵) − 𝐸]𝑈
 } (10) 

The derivation of a small-signal AC representation of the 

plant, i.e., a non-ideal synchronous buck converter, is 

accomplished through recombining elements symbolized with 

hat terms. Following this, the Laplace transform is applied to 

the time-domain model, converting it into the frequency-

domain, i.e., s-domain.  

Following a tedious derivation, the small-signal transfer 

function between the control signal and output voltage is 

obtained for the plant, i.e., a non-ideal synchronous buck 

converter, incorporating the influence of non-idealities within 

the system. The equation is written explicitly to show how the 

input voltage and the system’s internal states affect the output 
[1], as given by Equation 11. 

�̂�(𝑠) = (𝐶[𝑠𝐼 − 𝐴]−1𝐵 + 𝐸)�̂�(𝑠) + (𝐶[𝑠𝐼 − 𝐴]−1𝑋𝑑 + 𝑌𝑑)�̂�(𝑠) 

𝑤𝑖𝑡ℎ { 
𝑋𝑑 = {(𝐴1 − 𝐴2)𝑋 + (𝐵1 − 𝐵2)𝑈}

𝑌𝑑 = {(𝐶1 − 𝐶2)𝑋 + (𝐸1 − 𝐸2)𝑈}

} (11) 

Where �̂�(s) and �̂�(𝑠) symbolize the output and input in 

the s-domain, respectively, with �̂�(𝑠) being the small variation 

in duty. The matrices denoted using bold capital letters like A, 
B, C, and E embody the system dynamics of steady state.  

In contrast, the first set of matrices A1, B1, E1, C1, and 

the second set of matrices A2, B2, E2, and C2 represent the 

small signal approximations of on and off states, respectively 

and letter I signifies the identity matrix. Thus, the output of 

the plant, i.e., a small signal averaged model of a non-ideal 

synchronous buck dc-dc converter, assuming that the only 

disturbance in the system is the change in duty cycle, can be 

expressed by Equation 11.  

Substituting all the matrices specified in the output from 

the previously computed values and simplification results in 

the generalized small signal output transfer function given by 
Equation 12. 

ŷ(s)

d̂(s)
= Vin (

RL(out)

rc+RL(out)
) ∗  

[
(1+𝑠𝐶𝑟𝑐)

1+(
𝐿+𝐶[𝑟𝑐𝑅𝐿(𝑜𝑢𝑡)+𝑟𝐿(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))]

𝑟𝐿+𝑅𝐿(𝑜𝑢𝑡)
)𝑠+(

𝐿𝐶(𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡))

𝑟𝐿+𝑅𝐿(𝑜𝑢𝑡)
)𝑠2

] (12) 

Equation 12 represents the derived output transfer 

function of the plant, i.e., a non-ideal synchronous buck 
converter. This function exhibits a second-order system 

structure [2], characterized by two poles situated at the output 

filter’s resonant frequency and a single zero due to the 

combined effect of the output Cout capacitor and its equivalent 

series resistance (rC) given by Equation 13. 
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𝐺𝑣𝑑(𝑠) = 𝐺𝑑𝑜 [
(1+

𝑠

𝑤𝒛
)

1+
𝑠

𝑄𝑤𝑜
+(

𝑠

𝑤𝑜
)
2] (13) 

Compare Equations 12 with 13 in order to obtain DC gain 

of the power stage Gdo represented using Equation 14, Wz, i.e., 

zero on s-plane in the left half due to esr resistance of output 

capacitor represented using Equation 15, W0 the undamped 

frequency of the resonant poles represented using Equation 
16, and Q the quality factor of the synchronous buck converter 

including all the non-idealities is given by Equation 17. 

𝐺𝑑𝑜 = 𝑉𝑖𝑛 (
𝑅𝐿(𝑜𝑢𝑡)

𝑟𝑐+𝑅𝐿(𝑜𝑢𝑡)
) (14) 

𝑤𝒛 =
1

𝐶𝑟𝑐
  (15) 

𝑤𝑜 = √
𝑟𝐿+𝑅𝐿(𝑜𝑢𝑡)

(𝑟𝐶+𝑅𝐿(𝑜𝑢𝑡))𝐿𝐶
 (16) 

𝑄 = √
𝐿𝐶(𝑟𝐿+𝑅𝐿(𝑜𝑢𝑡))(𝑟𝐶+𝑅𝐿(𝑜𝑢𝑡))

𝐿+𝐶[𝑟𝐶𝑅𝐿(𝑜𝑢𝑡)+𝑟𝐿(𝑟𝐶+𝑅𝐿(𝑜𝑢𝑡))]
 (17) 

𝐺𝑣𝑑(𝑠) =
1740(𝑠+2273.25×103)

𝑠2+9374𝑠+2.078×108
 (18) 

If the circuit parameters from Table 1 are substituted into 

the control-to-output non-ideal synchronous buck converter 

transfer function given in Equation 12, a numerical expression 

is obtained, as represented by Equation 18. This expression 
defines the plant, i.e., non-ideal synchronous buck converter 

under specified operating conditions of Vin=19V, Vout=5V, 

and duty cycle=0.42, i.e., subjected to open-loop frequency 

response analysis using a Bode plot. 

Table 1. Specifications of the synchronous buck converter  

Description Parameter Value 

Input Voltage VIN (14 -24) Volts 

Output Voltage VOUT 5 Volts 

Output Ripple Voltage ΔVOUT 2% (100 mV) 

Inductor Current Ripple ΔIL 215 mA 

Switching Frequency fsw 100 kHz 

Inductor L/rL 220µH/0.05Ω 

Capacitor C/rc 20µH/0.2Ω 

The Bode plot in Figure 4 displays the frequency response 

of an open-loop plant, i.e., a non-ideal synchronous buck dcc-

dc converter [1, 2], generated with the help of the transfer 

function given by Equation 18. This plot visually represents 

both the magnitude and phase changes of the converter’s 

output voltage response corresponding to varying input 

frequencies. The solid blue line represents the frequency 

response of an ideal buck converter, which assumes perfect 

components with no losses (rC=0, rL=0). In contrast, the 

dashed red line represents the frequency response of the open-
loop plant model, i.e., a non-ideal converter with included 

parasitic losses. Upon comparing both, it is evident that the 

non-ideal converter exhibits increased damping, particularly 

around the double pole frequency, and a reduced bandwidth 

due to the shift in the gain crossover frequency.  

At high frequencies, the zero due to the output capacitor 

and its ESR resistance causes a positive phase shift. It also 

indicates an unlimited Gain Margin (GM) and a Phase Margin 

(PM) of around 9 degrees at a crossover frequency of 63.82 

radians per second, which is approximately equivalent to 10.2 

kilohertz. The Bode plot clearly indicates that the non-ideal 

synchronous buck converter has a very small phase margin. In 
essence, a small phase margin typically results in a poor 

transient response with a large overshoot.  
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Fig. 4 Open-loop frequency response of non-ideal synchronous buck 

converter (a) Magnitude plot, and (b) Phase plot. 
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Furthermore, whether it is an ideal or non-ideal buck 

converter, there are no poles in the origin of the transfer 

function given an open-loop plant, classifying it as a type-0 

system. The implication of being a type-0 system is that a non-

ideal synchronous buck converter will exhibit a constant 

steady-state error in output voltage response to a step variation 
in input voltage or output load. 

Indeed, the small phase margin and non-zero steady-state 

error both pose significant challenges in controlling buck 

converters. These issues are typically addressed by employing 

feedback control approaches, such as PID control, which will 

be discussed in the following section. 

3. Controller Design for Voltage Mode Control 

of Non-Ideal Synchronous Buck Converter 
3.1. Design of PID Controller  

The feedback PID controller is a crucial component in the 

voltage mode control of the plant, i.e., a non-ideal 

synchronous buck dc-dc converter. Its primary objective is to 

adjust the conduction duration, i.e., the duty cycle of the 

MOSFET switches in a synchronous buck DC-DC converter 
to regulate the output response voltage.  

Basically, the feedback PID controller’s primary mission 

is to ensure the stability of the output response voltage. It 

achieves this by continuously monitoring the output voltage 

and comparing it to a predefined reference voltage. If a 

discrepancy is detected, the controller adjusts the operational 

periods of the device’s switches to align the output voltage 

with the target. [18].  

PID controller helps maintain system stability by 

minimizing the error over time, which is crucial in dynamic 

systems like a non-ideal synchronous buck converter where 
load conditions can change rapidly. Effectively managing 

these changes ensures that the output voltage remains within 

desired limits, thereby enhancing system performance. A 

typical PID controller’s time domain mathematical 

representation is given by Equation 19. 

𝑢(𝑡) = 𝐾𝑐 [𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏
𝜏

0
+

𝑑𝑒(𝑡)

𝑑𝑥
] (19) 

Where error signal e(t) feed as input to PID controller, i.e., 
the difference between response output of the plant and 

predefined reference input signal as provided by e(t) = r(t)-

y(t). The scaling factor Kc determines the PID controller’s 

immediate response to current error e(t), the integral time (Ti) 

defines the speed at which the controller reacts to the built-up 

or accumulated error, and the derivative time (Td) determines 

how fast or swiftly the controller responds to the deviation of 

the error signal. Now, let us take the Laplace transform of 

Equation 19 for s-domain representation of the PID controller 

output as represented by Equation 20. 

𝑈(𝑠) = [𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠]𝐸(𝑠) (20) 

Where, U(s) is the output signal of a PID controller that 

is expressed as a weighted sum of the products of error signal 

E(s) with three individual scaling factors Kc, Ti, and Td, 

resulting in the Kp=Kc (proportional gain), Ki=Kc⁄Ti (Integral 

gain), and Kd=Kc*Td (Derivative gain) respectively [18], the 

functionality of the feedback PID controller is solely 

influenced by its three gain parameters, each of which has a 

distinct and well-understood influence on its behavior.  

However, when the plant is like a DC-DC converter that 

is expected to encounter rapid changes in the error signal, 

derivative action can be beneficial as it provides a quicker 

response to changes in the error signal, thus allowing faster 
recovery from disturbances without excessive oscillations or 

instability compared to using only PI control. Therefore, for 

optimal performance in a non-ideal synchronous buck 

converter, including derivative gain becomes essential, as 

discussed in the next subsection. 

3.2. Significance of PID Controller with Derivative Filter 

In Voltage-Mode Control (VMC) of plant, i.e., non-ideal 

synchronous buck dc-dc converters, PID is critical in 

regulating the output response. However, the ripple in the 

output response due to the Equivalent Series Resistance (rC) 

of the capacitor can significantly impact the derivative term of 
the PID controller, especially during large-signal transients 

since the ripple in the output parameter can introduce 

significant noise into the closed-loop feedback system.  

This results in degraded closed-loop bandwidth and phase 

margin. A solution to address this noise issue is to utilize a 

PID controller with a dedicated derivative filter [18]. Figure 5 

shows a PID controller with the filtered derivative term in a 

closed-loop configuration along with a plant, i.e., a non-ideal 

synchronous buck converter.  

 

 
 

 

 

 

 

 

 

Fig. 5 Synchronous buck converter in the closed loop configuration with 
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The derivative filter functions as a first-order low-pass 

filter, attenuating the high-frequency elements and mitigating 

the impact of the output voltage fluctuations. The s-domain 

representation of a typical PID controller with a derivation 

filter is given by Equation 21. 

𝐆𝐩(𝐬) = 𝐊𝐩 +
𝐊𝐢

𝐬
+

𝐬𝐊𝐝

𝐬𝐓𝐟+𝟏
 (21) 

 

4. Magnitude Optimum Multiple Integration 

(MOMI) Tuning Method  
4.1. The Concept of Magnitude Optimum (MO) through the 

Multiple Integration (MI) Method 
The MOMI tuning method [14] uses a nonparametric time 

domain approach with multiple integrations of plant, i.e., non-

ideal synchronous buck converter input and output signals to 

calculate the PID controller’s three gain parameters in order to 

satisfy “Magnitude Optimum (MO)” criteria. The “Magnitude 

Optimum (MO)” criterion aims to attain a close unity gain 

characteristic over a desired frequency range for the given 

plant, i.e., a non-ideal synchronous buck converter.  

This is achieved by minimizing the deviation of the 

closed-loop magnitude frequency response of the converter 

output to the set point or reference input across a given 

bandwidth [19]. This technique is also called “Modulus 
Optimum” [19] or “Betragsoptimum” [7, 20].  

In other words, the MO criteria seek to achieve a closed-

loop system with a high bandwidth, zero phase shift, and unity 

gain at low frequencies. These characteristics are desirable for 

many control applications, as they allow the control system to 

track reference inputs and reject disturbances quickly and 

accurately. 

The original Magnitude Optimum (MO) criteria present 

significant challenges due to its requirement for estimating an 

extensive quantity of process parameters, even when it comes 

to PID controllers characterized by only three gain parameters. 

The MOMI method overcomes this limitation through the 

application of the “moments” concept, known from 

identification theory [21, 22] which are multiple integrals of 

the plant, i.e., DC-DC converter input as well as output time-

responses, to parameterize the given plant, i.e., non-ideal 

synchronous buck converter and calculate PID controller gain 

parameters.  

These moments provide valuable insights into the 

dynamic properties of plants without the need for an explicit 

physical plant model. In the context of the MOMI method, the 

moment determines the area under the curve of the output and 

input signals of a plant. When the plant is subjected to step 

change during its steady state operating conditions, this area, 

often referred to as the ‘characteristic area’, is determined by 

integrating the plant’s output over a period equal to the settling 

time after all transients have disappeared. 

 Alternatively, if the transfer function of the plant, i.e., 

non-ideal synchronous buck converter, is known, the moments 

can be calculated straight from the coefficients of the plant’s 

transfer function. This equality arises considering the fact that 

the transfer function encapsulates the connection of input with 

the output of a process or plant [23, 24]. 

4.1.1. Systematic PID Controllers Tuning Procedure: A 

MOMI Approach 

This section explains a well-organised procedure 

designed to identify three PID controller gain parameters 

using the MOMI method in four distinct stages. First, let us 

obtain the plant, i.e., non-ideal synchronous buck converter 

transfer function in a rational polynomial form as represented 

by Equation 22. 

𝐺𝑝(𝑠) = 𝐾𝑝𝑟 (
1+𝑏1𝑠+𝑏2𝑠

2+.........+𝑏𝑚𝑠
𝑚

1+𝑎1𝑠+𝑎2𝑠
2+.........+𝑎𝑛𝑠

𝑛
) 𝑒−𝑠𝑇𝑑   (22) 

In the second step, compute the moments directly using 

the co-efficient of the denominator as well as the numerator of 

the plant, i.e., non-ideal synchronous buck converter transfer 

function as given in Equation 18 according to the MOMI 

tuning procedure specified in [18, 23] as follows. 

𝐴0 = 𝐾𝑝𝑟
𝐴1 = 𝐾𝑝𝑟(−(𝑏1 − 𝑎1) + 𝑇𝑑)

𝐴2 = 𝐾𝑝𝑟 (−(𝑎2 − 𝑏2) − 𝑇𝑑𝑏1 +
𝑇𝑑
2

2!
) + 𝐴1𝑎1

𝐴𝑘=𝐾𝑝𝑟((−1)
𝑘+1(𝑎𝑘−𝑏𝑘)+(∑ (−1)𝑘+𝑖

𝑇𝑑
𝑖 ∗𝑏𝑘−𝑖
𝑖!

𝑘
𝑖=1 ))

+∑ (−1)𝑘+𝑖−1𝐴𝑖𝑎𝑘−𝑖
𝑘−1
𝑖=1 }

 
 
 

 
 
 

 (23) 

In the MOMI tuning method, initially, the PID 
controller’s gains are calculated with TF=0 substitution in the 

Equation 24, and then the moments obtained through this 

procedure are used to determine a PID controller without the 

derivative filter. Next, the second iteration focuses on refining 

the behavior of the first-order derivative filter through 

adjusting the time constant Tf as given in Equation 24 based 

on a numerical constant N, which typically ranges from 8 to 

20 [14]. 

𝑇𝐹 =
𝐾𝑑

(𝑁×𝐾𝑝)
  (24) 

In the third step, to simplify the subsequent mathematical 

analysis, the first-order filter within the PID controller is 
integrated into the plant model as per the MOMI tuning 

method.  

This allows for a more efficient calculation of the 

controller moments, which are subsequently re-evaluated 

using Equation 25, incorporating the previously determined 

filter time constant. 
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𝐴∗ = 𝐴0
𝐴1

∗ = 𝐴1 + 𝐴0𝑇𝐹
𝐴2

∗ = 𝐴2 + 𝐴1𝑇𝐹 + 𝐴0𝑇𝐹
2

} (25) 

Where 𝐴𝑖
∗ symbolize moments as stipulated in the MOMI 

tuning method with 1st order derivative filter as part of the 

plant transfer function. Finally, the moments computed in the 

last step are expressed in a compact matrix representation to 

determine the PID controller gain parameter as given by 

Equation 26. 

[
𝐾𝐼
𝐾𝑃
𝐾𝐷

] = [

−𝐴1
∗ 𝐴0

∗ 0

−𝐴3
∗ 𝐴2

∗ −𝐴1
∗

−𝐴5
∗ 𝐴4

∗ −𝐴3
∗
] [
−0.5
0
0
] (26) 

The transfer function of the plant, i.e., non-ideal 

synchronous buck converter, as represented numerically by 

Equation 18, is compared with Equation 22 to identify key 
parameters of the plant, i.e., non-ideal synchronous buck 

converter as required by the MOMI method [25].  

These parameters include DC gain (Kpr=1720), numerator 

(b1=2273.25×103), and denominator (a1=9374, a2=2.078×108) 

coefficients. The time delay Td is assumed to be zero to 

simplify computations, as it is negligibly small. The MOMI 

tuning method is then applied to calculate the first five 

moments (A0, A1, A2, A4, A5) incorporating Kpr, Td, and 

transfer function coefficients as defined by Equation 23.  

These moments serve as quantitative representations of 

the system’s dynamic behavior. With the time constant of 
derivative filter Tf made equal to zero, the initial values of the 

three PID controller gain (Kp, Ki, Kd) are estimated. In 

subsequent iterations, the Tf, i.e., the derivative filter time 

constant, is calculated using the parameters obtained during 

the first iteration, where N being a numerical constant 

typically ranging from 8 to 20 [14].  

Once the value of Tf is found, it is substituted in the 

Equation 26 to obtain Ki ≈ 1697, Kp ≈ 0.03933, Kd ≈ 2.848×10-

6 with Tf =1.216×10-5 for the design. The s-domain 

representation of the transfer function of the PID controller 

optimized using the MOMI tuning method is given by 

Equation 27. 

𝐺𝐶_𝑀𝑂𝑀𝐼(𝑠) =
2.848𝑒−06𝑠2+0.03833𝑠+1697

1.216𝑒−05𝑠2+𝑠
 (27) 

4.2. Damped Oscillation Method of PID Controller Tuning 

The classic PID controller tuning approach of Damped 

oscillation, as an alternative to the traditional Ziegler-Nichols 

tuning method [26], provides a safer technique by preventing 

systems from reaching marginally stable states, thereby 

avoiding potentially irreversible damage. In contrast, the 
damped oscillation method for tuning PID controllers begins 

by setting the controller to proportional mode, which means 

both integral and derivative gains are zero. The closed-loop 

with P-only (proportional) gain controller is incrementally 

decreased or increased until the system’s response exhibits a 

predetermined decay ratio between two consecutive peaks [6, 

26].  

At this moment, the proportional gain and period of the 

oscillation, which are damped in nature with respect to the 

original, are used to calculate the final PID parameters. This 

method represents PID controllers with Tf=0, in spite of which 

they ensure a balance between system responsiveness and 

stability [27]. 

4.2.1. The Harriot Method  

The Harriot method, introduced by P.R. Harriot in 1966, 

is one such method [10]. It starts by incrementally adjusting 

the proportional gain in a closed-loop with the plant, i.e., non-

ideal synchronous buck converter until a quarter decay ratio is 

achieved between consecutive peaks [28].  

That specific Kpd (proportional gain) and Tud (period of 

damped oscillation) between consecutive peaks are needed to 

compute the PID controller gain parameters. The proportional 

gain is calculated as Kp=Kpd, the integral time as Ti=Tud/1.5, 

and the derivative time as Td=Ti/6.  

The s-domain representation of the transfer function of 

the PID controller optimized using the Harriot tuning method 

[10] is expressed by Equation 28. 

𝐺𝐶_𝐻𝑎𝑟𝑟𝑖𝑜𝑡(𝑠) =
1.2237𝑒−06𝑠2+0.126𝑠+138.102

𝑠
 (28) 

4.2.2. The Good-Gain Method  

It is an alternative approach developed by Finn Haugen 

and falls within the category of damped oscillation techniques. 

[28]. It begins by incrementally adjusting the proportional 

gain until the response curve exhibits a simple overshoot and 

little observable undershoot [28].  

That specific KPGG (proportional gain) and Tud (period of 
damped oscillation) are needed to compute feedback PID 

controller gain values. The integral time, proportional gain, 

and derivative time are calculated according to the specified 

rule as follows: Kp=0.8×KPGG, Ti=1.5×Tud, and Td=0.25×Ti, 

respectively [29]. The s-domain representation of the transfer 

function of the PID controller optimized using the Good-Gain 

tuning method [29] is given by Equation 29.  

𝐺𝐶_𝐺𝑜𝑜𝑑𝐺𝑎𝑖𝑛(𝑠) =
2.4523𝑒−06𝑠2+0.1042𝑠+17.65

𝑠
 (29) 

The Bode plot in Figure 6 presents the open-loop as well 

as the closed-loop frequency response of the plant with a PID 

controller optimized using three distinct tuning methods.  
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Fig. 6 The closed-loop frequency response of non-ideal synchronous buck converter with PID controller optimized using different tuning methods          

(a) Magnitude response, and (b) Phase response. 

Table 2. Specifications of the synchronous buck converter  

Parameters Open-Loop Standalone System MOMI Method Harriot Method Good-Gain Method 

Rise Time 68.1 µsec 39.1 µsec 59.6.1 µsec 55.7.1µsec 

Settling Time 0.69 msec 0.40 msec 4.36 msec 31.2 msec 

Overshoot 33% 3.46% 3.97% 0 

GCF (Bandwidth) 14.2 kHz 6.32 kHz 5.59 kHz 6.57 kHz 

Phase Margin 9 degrees 115 degrees 74.9 degrees 53.9 degrees 

GM (Peak) 29.6 dB 1 dB 3.33 dB 3.86 dB 

PCF 2.82 kHz 5.19 kHz 4.37 kHz 5.25 kHz 

Stability Yes Yes Yes Yes 

Complexity NaN Medium Low Low 

 
The Bode plot comprises two components: the Magnitude 

Plot and the Phase Plot. The Magnitude Plot reveals how the 

controllers amplify or attenuate signals across various 

frequencies. Initially, all control methods exhibit similar gains 

at lower frequencies. However, as the frequency increases, a 

divergence in performance becomes evident. Notably, the 

MOMI-PID and Harriot-PID exhibit more attenuation at 

higher frequencies.  

The phase plot depicts the phase shift introduced by each 

controller measured at the gain crossover frequency. Among 

the methods, the MOMI-PID demonstrates the highest Phase 
margin. Table 2 provides numerical data extracted from both 

phase and magnitude plots of the Bode plot. This data serves 

as a valuable resource for further analysis and interpretation 

of the performance of each tuning method.  

The Table 2 provides a comprehensive analysis of three 

different tuning methods encapsulating closed-loop control 

performance: the MOMI Method, Harriot Method, and Good-

Gain Method, in contrast to the open-loop standalone system.  

The performance of these methods is evaluated based on 

several parameters, including rise time, settling time, 

overshoot, Gain Crossover Frequency (GCF), phase margin, 

Gain Margin (GM), Phase Crossover Frequency (PCF), 

stability, and the complexity of the tuning method. 

The Open-loop standalone system exhibits the largest 

values for rise time, settling time, overshoot, and GCF. 
Nevertheless, it also has the smallest values for phase margin 

and GM.
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Fig. 7 System-level model of a non-ideal synchronous buck converter with PID controller in the closed-loop 

These parameters act as the reference for comparing the 

performance of closed-loop systems optimized through 

different tuning methods. The MOMI method shows a 

significant enhancement in rise time as well as settling time 

compared to the standalone open-loop system. It also has a 

much lower overshoot and the highest phase margin. 

However, the GCF and GM are lower, and the method is 

confirmed to be stable. The complexity of the tuning method 

is medium. The Harriot method has improved rise time as well 

as settling time, compared to the Good-Gain method. The 
overshoot is slightly higher than the MOMI method, but the 

GCF is lower. The phase margin, GM, and PCF are all within 

acceptable ranges, and the method is confirmed to be stable. 

The complexity of the tuning method is low. 

The Good-Gain method has the highest values for rise 

time as well as settling time among the four methods. 

However, it is the only method that has achieved zero 

overshoot. The GCF, phase margin, GM, and PCF are all 

within acceptable ranges, and the method is confirmed to be 

stable. The complexity of the tuning method is low. This 

comparison allows design engineers to make knowledgeable 

decisions when selecting the most suitable tuning method for 
their specific control system requirements. 

5. Results and Discussions  
5.1. Simulation of Closed-Loop Non-Ideal Synchronous 

Buck Converter with PID Controller 

This section explores the feasibility and effectiveness of 

employing a Proportional-Integral-Derivative (PID) controller 

in closed-loop voltage mode control for regulating the output 

voltage response of the plant, i.e., a non-ideal synchronous 

buck converter. The discussion will include theoretical 

considerations validation through simulations.  

The significance lies in using Simscape Electrical for 

simulating the closed-loop system, which allows for 

modelling non-ideal behavior such as inherent DC resistance 

and ESR of components like inductors and capacitors, as well 

as finite on-resistance of MOSFET switches leading to voltage 

drops and power losses.  

The Simscape Electrical of the Simulink/MATLAB 

environment provides dedicated electrical component libraries 

to model these non-ideal effects. Simscape Electrical is 

a domain-specific language that provides a library of electrical 

components for modelling and simulating electrical systems 

[30, 31].  

Figure 7 illustrates a system-level model of a non-ideal 

synchronous buck converter employing a PID controller for 

voltage mode control in the closed-loop configuration within 
the Simulink environment. The simulation of plant, i.e., non-

ideal synchronous buck dc-dc converter under predefined 

designs specific operating conditions of Vin=19V, Vout=5V, 

and duty cycle d=0.42 meets the design specification as a 

standalone system in open-loop [32] as specified in Table 1.  

Figure 8 shows that the inductor ripple current is well 

within 215mA, which was the given design constraint initially. 

The output ripple voltage is also well within 2% (100mV), 

which was the major objective of the design, as shown 

in Figure 9. 
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After meeting the design specifications constraint 

provided in Table 1, the performance and robustness of the 

PID controller optimized through the MOMI, Harriot, and 

Good-Gain tuning methods are tested individually. The 

closed-loop system is subjected to three different conditions: 

input voltage variations, output load variations, and output 
voltage set-point/reference variations [33]. 

 

 

 

 

 

 

Fig. 8 Inductor current ripple ΔIL of standalone synchronous buck 

converter in the open-loop 

 

 

 

 

 

 

Fig. 9 Output voltage ΔVOUT of standalone synchronous buck converter 

in the open-loop 

5.2. Transient Response under Input Voltage Variations 

5.2.1. Output Response to 25% Step Increase in Input Voltage 

The performance of the PID controller was optimized 
with MOMI, Harriot, and Good-Gain tuning methods to 

achieve voltage mode control of the plant. .i.e., a non-ideal 

synchronous buck converter for 25% step input voltage 

variation is illustrated in Figure 10.  

The MOMI method shows a small overshoot of only 10%, 

a quick settling time of 1.8 milliseconds, and no steady-state 

error. The Harriot method shows a significant overshoot of 

26%, a longer settling time of over 20 milliseconds, and a 

steady-state error of 3%.  

The Good-Gain method shows a considerable overshoot 

of 26%, an extended settling time of over 20 milliseconds, and 

a non-negligible steady-state error of 4%. In summation, under 

a 25% source input voltage variation, the MOMI method 

appears to outperform the Harriot and Good-Gain methods in 

terms of steady-state error, settling time, and overshoot. 

5.2.2. Output Response to 33% Step Increase in Input Voltage 

In comparing three PID controller tuning methods - 

MOMI, Harriot, and Good-Gain under 33% step input voltage 

variation, the subsequent observations could be made with the 

closed-loop response as represented in Figure 11. The MOMI 

method showed a slight increase in overshoot to 14% but 

maintained the same settling time of 1.8 milliseconds and had 

no steady-state error. 

 

 

 

(a) 

 

 

 

(b) 

Fig. 10 Performance of PID controller tuning methods for 25% 

variation in the source input voltage (a) Input voltage, and                       

(b) Output voltage. 
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(b) 

Fig. 11 Performance of PID controller tuning methods for 33% 

variation in the source input voltage (a) Input voltage, and                            

(b) Output voltage. 
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The Harriot method had an increased overshoot of 34% 

but a reduced settling time of 7.7 milliseconds and no steady-

state error. The Good-Gain method had an increased 

overshoot of 36%, a reduced settling time of 14.3 

milliseconds, and no steady-state error.  

All three methods eliminate the steady-state error under 

33% step input voltage variation. However, under these 

circumstances, the MOMI method still has negligible 

overshoot and settling time. 

5.2.3. Output Response to a 50% Step Increase in Input 

Voltage 

Further evaluation of three PID controller tuning methods 

- MOMI, Harriot, and Good-Gain- is conducted under a 50% 

source input voltage variation for the plant. i.e., non-ideal 
synchronous buck converter, the subsequent observations 

could be made as given in Figure 12.  

The MOMI method experienced a minor increase in 

overshoot to 16%, while the settling time increased to 2.7 

milliseconds with zero steady-state error. Both Harriot and 

Good-Gain methods saw an extensive overshoot increase to 

50% and 54%, respectively, but achieved a substantial settling 

time of 11 milliseconds and 16.4 milliseconds with no steady-

state error.  

In conclusion, all three methods successfully eliminate 

the steady-state error under a 50% source input voltage 
variation. Still, the MOMI method demonstrated better 

overshoot and settling time under these extreme conditions. 

 

 

 

(a) 

 

 

 

(b) 

Fig. 12 Performance of PID controller tuning methods for 50% 

variation in the source input voltage (a) Input voltage, and                                                  

(b) Output voltage. 

5.3. Transient Response under Output Load Variations 

5.3.1. Output Response to 20% Step Increase in Output Load 

When evaluating three PID controller tuning methods - 

MOMI, Harriot, and Good-Gain under a 20% output load 

variation for the plant, i.e., non-ideal synchronous buck 

converter, the subsequent observations could be made as given 

in Figure 13.  

The MOMI Method had a slight overshoot of 10% and a 

minimal settling time of 0.5 milliseconds, with no steady-state 

errors. Both Harriot and Good-Gain methods experienced 
small undershoots of -1% and -2%, respectively, but with 

significant settling times of 6 and 10 milliseconds under zero 

steady-state error.  

In conclusion, all three methods removed the steady-state 

error under a 20% output load variation. Still, the MOMI 

method had the smallest overshoot and least settling time 

among all the methods.  
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(b) 

Fig. 13 Performance of PID controller tuning methods for 20% 

variation in the output load (a) Input voltage, and (b) Output voltage. 

5.3.2. Output Response to 33% Step Increase in Output Load 

When evaluating three PID controller tuning methods - 

MOMI, Harriot, and Good-Gain under a 33% output load 

variation for the plant, i.e., non-ideal synchronous buck 

converter, the subsequent observations shall be made as given 

in Figure 14.  

The MOMI method increased overshoot by 18% and 

maintained a very small settling time of 0.8 milliseconds, 

having zero steady-state error. Both Harriot and Good-Gain 

methods experienced a small increase in the undershoot of -

4% and -5%, respectively, but with a decreased settling time 

of 3 milliseconds and 4 milliseconds with no steady-state 
error.  

In conclusion, all three methods removed the steady-state 

error under a 33% output load variation. Still, the MOMI 

method had the smallest overshoot and least settling time 

among all the methods. 
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(a) 

 

 

 
(b) 

Fig. 14 Performance of PID controller tuning methods for 33% 

variation in the output load (a) Input voltage, and (b) Output voltage. 

5.3.3. Output Response to 50% Step Increase in Output Load 

Further evaluating three PID controller tuning methods - 

MOMI, Harriot, and Good-Gain under a 50% output load 

variation for the plant, i.e., non-ideal synchronous buck 

converter, the subsequent observations shall be made from 

Figure 15.  

The MOMI method had a small increase in overshoot of 

20% compared to the previous and maintained a very short 

settling time of 1 millisecond with no steady-state error. Both 

Harriot and Good-Gain methods experienced a significant 
increase in the undershoot of -34% and -38%, respectively, but 

with a decreased settling time of 2 milliseconds and 4 

milliseconds with no steady-state error.  In conclusion, all 

three methods removed the steady-state error under a 50% 

output load variation. Still, the MOMI method had the better 

overshoot and least settling time among all the methods. 

 

 

 

 (a) 

 

 

 

(b) 

Fig. 15 Performance of PID controller tuning methods for 50% 

variation in the output load (a) Input voltage, and (b) Output voltage. 

5.4. Tracking Performance under Output Reference 

Variations 

To analyze the PID controller’s closed-loop set-

point/reference voltage tracking performance, the output 

reference voltage signal fed as input to the PID controller is 

varied between 3.3V and 5V in a square wave pattern at a 
frequency of 25Hz.  

The lowest error signal is observed with the PID 

controller optimized with the MOMI tuning method, as 

illustrated in Figure 16. with minimal overshoot/undershoot 

and the fastest settling time.  

While the Harriot method shows moderate error, 

overshoot/undershoot, and settling time compared to the 

MOMI method, Good-Gain experiences significant 

overshoot/undershoot with the slowest settling time. This 

suggests that the MOMI method has superior tracking 
capability and rapid adaptation to reference changes, making 

it ideal for applications demanding tight voltage control and 

fast transient response. 

 

 

 

Fig. 16 Performance of PID controller tuning methods for output 

reference voltage variation between 3.3V and 5V 

6. Conclusion  
This research paper contributes to the field of control 

systems by providing a detailed comparative analysis of three 

PID controller tuning methods - MOMI, Harriot, and Good-

Gain in the context of plant, i.e., non-ideal synchronous buck 

dc-dc converter for achieving voltage mode control.  

The study utilizes a non-ideal model of the DC-DC 
synchronous buck converter, obtained through state space 

averaging and small signal modelling techniques, which 

provides a more accurate representation of the converter by 

accounting for non-idealities often overlooked in ideal 

models. The simulation of the plant, i.e., a non-ideal 

synchronous buck dc-dc converter in a closed-loop 

configuration with feedback PID controller, was conducted 

with the help of the Simscape tool in the MATLAB/Simulink 

environment.  

This tool’s ability to model physical systems and integrate 

them with control algorithms within a single environment was 
instrumental in accurately simulating the system’s response to 

various changes. The three tuning methods were evaluated 

under different input voltage, output load, and output 

reference voltage variation conditions.  
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The MOMI method consistently outperformed the Harriot 

and Good-Gain methods in terms of undershoot, overshoot, 

settling time, and steady-state error across all variations. This 

superior performance can be attributed to the MOMI method’s 

robustness to variations in both input voltage and output load, 

as well as its quick response times, making it highly effective 
in real-world applications where these variations are common 

and quick response times are crucial. In contrast, while the 

Harriot and Good-Gain methods were effective in eliminating 

the steady-state error, they exhibited significant overshoot and 

undershoot and longer settling times, especially under higher 

variations. These methods might be more suitable for 

applications where overshooting, undershooting, and settling 

time are less critical.   

Furthermore, the MOMI method demonstrated superior 

tracking capability and rapid adaptation to reference changes, 

making it ideal for applications demanding tight voltage 

control and fast transient response. This is a significant 

improvement over state-of-the-art techniques or those already 

reported in the literature, which often struggle with these 
challenges.   

Future research could explore the effectiveness of these 

tuning methods on other types of converters under different 

input voltage, output load, and output reference voltage 

variations. This could further validate the findings of this 

study and contribute to the development of more efficient and 

reliable control systems.
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