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Abstract - This study introduces IoT-AnomalyNet, a novel deep-learning approach designed for real-time anomaly detection in 

IoT networks operating over wireless channels. IoT-AnomalyNet combines long short-term memory networks (LSTMs), 

Convolutional Neural Networks (CNNs), autoencoders, attention mechanisms, and hybrid architectures to effectively identify 

patterns in both spatial and temporal dimensions within IoT sensor data streams. Through comprehensive experimentation with 

diverse datasets and IoT sensor readings, IoT-AnomalyNet achieves an impressive accuracy rate of 95.73% for anomaly 

detection. Notably, IoT-AnomalyNet outperforms traditional machine learning methods with remarkable recall (97.5%) and 

precision (95.5%) rates for normal instances and recall (97.85%) and precision (96.24%) rates for attack instances. These 

results underscore the efficacy of deep learning methodologies in accurately detecting anomalies in real-time IoT data streams 

transmitted via wireless networks. By proactively identifying abnormal behaviors, IoT-AnomalyNet holds significant promise in 

mitigating risks, ensuring continuous operation, and enhancing the security and reliability of IoT systems. 

Keywords - Anomaly detection, Attention mechanisms, Deep Learning, IoT networks, Wireless channels. 

1. Introduction  
The introduction of Internet of Things (IoT) devices has 

ushered in a new era of connectivity by simplifying the 

collection, analysis, and application of massive volumes of 

sensor data. This has transformed various sectors. IoT 

technologies are widely used in various industries, such as 

industrial automation, healthcare, smart cities and homes. 

They offer never-before-seen opportunities for increased 

creativity and productivity. These innovations have 

significantly altered how we interact with and perceive the 

world around us, enabling the seamless fusion of digital and 

physical environments.  

IoT technology does, however, have a lot of 

disadvantages, particularly when preserving the security and 

dependability of IoT networks. The attack surface for potential 

threats and vulnerabilities is growing due to the growing 

number of devices that are connected to one another. 

Cybersecurity concerns are serious because malicious actors 

attempt to exploit vulnerabilities in IoT networks for illicit 

purposes, including data breaches, sabotage, and espionage. 

Deploying effective security measures is challenging due to 

the additional complexity that comes with IoT systems’ 

dynamic and heterogeneous nature.  

Despite these challenges, anomaly detection proves to be 

an essential component in safeguarding IoT environments 

from errors, threats, or inefficiencies. The ability to promptly 

spot deviations from typical behaviour patterns is necessary to 

preserve IoT systems’ integrity and operational continuity. 

However, standard anomaly detection techniques-which 

occasionally rely on pre-established criteria or thresholds-are 

ill-suited to deal with IoT situations since they are dynamic 

and diverse.  

In addition, the constraints imposed by wireless 

communication routes exacerbate the difficulty of accurately 

and swiftly detecting abnormalities. In light of this, new 

approaches and methods are desperately needed to deal with 

these problems and ensure the dependability and security of 

IoT networks in a future where connectivity is expanding.  

This work aims to overcome the major challenges 

associated with anomaly identification in wirelessly 

channelled Internet of Things (IoT) networks. Realising how 

important it is to defend IoT ecosystems from threats and 

weaknesses, the primary objective is to develop a robust 

anomaly detection system tailored to this specific setting.  
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The proposed methodology leverages deep learning 

techniques to effectively capture the intricate temporal and 

spatial patterns found in Internet of Things sensor data. More 

precisely, including autoencoders, Long Short-Term Memory 

networks (LSTMs), and Convolutional Neural Networks 

(CNNs) enable the model to learn and express complex 

properties from raw sensor data.  

Autoencoders are utilised for dimensionality reduction 

and unsupervised feature learning to derive meaningful 

representations from high-dimensional sensor inputs. A strong 

option for capturing temporal dynamics in time-series data 

includes long-range associations and sequential patterns, 

which LSTMs may capture. In contrast, CNNs excel at 

extracting spatial features and hierarchies from 

multidimensional sensor data, allowing the model to detect 

irregularities and trends in specific geographical locations.  

Additionally, the model design incorporates attention 

approaches that enable the selective concentration of attention 

on important features or time steps in the data. This selective 

attention method enhances the model’s capacity to identify 

subtle abnormalities within normal data by concentrating its 

attention on relevant regions of the input space. By 

dynamically balancing the values of several features or time 

steps, the model can effectively filter out noise and irrelevant 

information, improving the robustness and accuracy of 

anomaly detection in IoT networks.  

Taking everything into account, the proposed 

methodology is innovative and comprehensive for anomaly 

identification in IoT networks across wireless channels. 

Through the use of deep learning algorithms and attention 

mechanisms, the research seeks to create an advanced 

anomaly detection system that can successfully defend IoT 

ecosystems against potential threats and weaknesses. In a 

world where connectivity is growing, this will guarantee the 

security and dependability of IoT networks.  

The upcoming sections of this introduction will explore 

the intricacies involved in detecting anomalies in Internet of 

Things networks, elucidate the crucial function that deep 

learning techniques play in resolving these concerns, 

underscore the significance of wireless communication 

channels in IoT ecosystems, and clarify the rationale behind 

the inclusion of attention mechanisms in the proposed 

anomaly detection framework. The report will also include the 

objectives of the study, its scope, and its organisational 

structure. 

2. Related Works 
The issues of anomaly detection in IoT networks across 

wireless channels are addressed by the suggested 

methodology, which uses multiple deep learning algorithms. 

In order to fully capture the intricate temporal and spatial 

patterns found in IoT sensor data, each technique is essential. 

2.1. Auto Encoders 

This study uses autoencoders, a crucial part of artificial 

neural networks, for dimensionality reduction and 

unsupervised feature learning [1]. They have been thoroughly 

examined in relation to anomaly detection across a number of 

fields, such as cybersecurity and computer vision. Ye and 

Wang found that autoencoders are useful for developing 

robust representations of complicated data, especially in 

situations when labelled training data is hard to come by or 

unavailable [2].  

Autoencoders allow meaning to be extracted from high-

dimensional sensor readings by encoding the input data into a 

lower-dimensional latent space and then reconstructing it. 

Chen and Guo’s work on finding anomalies in network traffic 

data provides evidence that this procedure has been effectively 

used in anomaly detection jobs [3]. Autoencoders improve the 

overall resilience of anomaly detection systems by reducing 

noise and capturing prominent features. This helps the systems 

find anomalies in the regular behaviour patterns of IoT 

networks. 

2.2. LSTM 

The incorporation of Long Short-Term Memory networks 

(LSTMs) represents a pivotal component of this study. 

LSTMs are intricately designed to apprehend sequential 

patterns and complex long-term dependencies inherent in 

time-series data [4]. Their adoption finds broad application 

across domains where sequential data analysis holds 

paramount importance, including financial forecasting and 

natural language processing. For instance, Zhang et al.’s 

(2021) study demonstrated that Long Short-Term Memory 

networks (LSTMs) outperform traditional Recurrent Neural 

Networks (RNNs) in capturing long-term dependencies within 

sequential data [5]. When deployed in Internet of Things (IoT) 

networks, where sensor readings exhibit temporal correlations, 

LSTMs prove highly effective in capturing the temporal 

dynamics inherent in the data. 

This ability was demonstrated in the work of Maleki et al., 

who successfully identified deviations from typical operating 

conditions by using LSTMs for anomaly detection in 

industrial IoT systems [6]. Real-time analysis of continuous 

streams of sensor data is made possible by LSTMs because of 

their ability to store and update data over long periods of time. 

Because of this, they are essential for spotting irregularities in 

IoT networks that change over time, improving the security 

and dependability of IoT ecosystems. 

2.3. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are essential in 

this effort, especially for extracting spatial characteristics and 

hierarchies from multidimensional sensor data [7]. Their 

effectiveness in analysing spatial data has been proven in a 

number of fields, such as medical imaging and image 

recognition.  
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For example, the research by Mendoza-Bernal et al. 

demonstrated how well CNNs performed compared to 

conventional machine learning methods in picture 

categorization tasks [8]. CNNs are particularly good at 

detecting spatial patterns and spotting abnormalities in the 

setting of IoT networks, where sensor data is frequently 

multidimensional and spatially scattered.  

CNNs were used for anomaly detection in smart grid 

systems by Iqbal et al., who successfully identified 

abnormalities in power consumption patterns as an example of 

this capacity [9]. CNNs are able to extract important spatial 

features and hierarchies from input data by applying 

convolutional filters. This allows the model to identify minute 

differences in the spatial distribution of sensor data. This 

improves the model’s precision in identifying abnormalities, 

supporting IoT network security and dependability. 

2.4. Attention Mechanisms 

Furthermore, attention methods are integrated into the 

model design, an important feature that allows for selective 

focus on important features or time steps in the data [10]. Deep 

learning has attracted a lot of attention to attention 

mechanisms because of their potential to improve the 

interpretability and performance of models.  

For example, Li et al.  showed how attention mechanisms 

work well in machine translation tasks, allowing the model to 

concentrate on pertinent segments of the input sequence while 

translating [11]. Attention mechanisms are essential for 

improving the model’s ability to recognise minute anomalies 

in the middle of typical data regarding anomaly detection in 

Internet of Things networks.  

The model can detect minor fluctuations and anomalies 

more efficiently by focusing on relevant parts of the input 

space, increasing anomaly identification’s robustness and 

accuracy. The model may more effectively identify 

abnormalities by filtering out noise and irrelevant data thanks 

to this dynamic weighting of the significance of various 

variables or time steps. Overall, the model architecture’s 

integration of attention mechanisms marks a substantial 

improvement in anomaly detection methods for Internet of 

Things networks, enhancing ecosystem security and 

dependability. 

3. Materials and Methods 
3.1. Data Collection Process 

3.1.1. Selection of Data Sources 

The data sources were selected to reflect a range of IoT 

contexts, such as industrial automation systems, healthcare 

facilities, and smart city infrastructure. In order to record 

pertinent environmental factors, including temperature, 

humidity, motion, light, and sound, sensors were placed in key 

locations. 

3.1.2. Simulation Environment Setup 

A simulated environment resembling real-world IoT 

deployments was created using IoT simulation platforms such 

as OMNeT++. Virtual sensors were instantiated within the 

simulated environment to generate synthetic sensor data. 

3.1.3. Sensor Deployment and Configuration 

A predetermined arrangement was followed for 

deploying IoT sensors in the simulated environment, 

considering variables like coverage area, density, and spatial 

dispersion. Every sensor was set up with programmable 

parameters for data transmission rate and sampling frequency, 

allowing it to send data at regular intervals. 

3.1.4. Data Collection Protocol 

A standard data collection technique was developed to 

guarantee methodical and consistent data capture. Sensors 

send data to a centralised data-gathering server or gateway at 

predetermined intervals. Each data sample now has a 

timestamp to help with temporal analysis and synchronisation 

across various sensors. 

3.1.5. Data Pre-Processing and Quality Control 

Raw sensor data was preprocessed upon receipt to remove 

noise, outliers, and missing values. Quality control procedures 

were implemented to guarantee the accuracy and 

dependability of the information gathered. Error detection 

codes and checksum checking were the data integrity 

procedures used to find and eliminate faulty or missing data 

samples. 

3.1.6. Data Labeling and Annotation 

A portion of the data was manually labelled by annotators 

in order to find any examples of unusual behaviour or 

occurrences. In order to provide ground truth labels for 

training and assessment, anomalies were grouped according to 

their impact, severity, and possible causes. 

3.1.7. Data Management and Storage 

The sensor data that was gathered was recorded in a 

structured format, such as database tables or CSV files, 

together with the associated information and annotations. 

Version control systems were utilised to monitor 

modifications and updates made to the dataset, guaranteeing 

traceability and reproducibility. 

3.2. Model Architecture 

3.2.1. Auto Encoder 

An artificial neural network type called an autoencoder is 

utilised for unsupervised learning. They are made up of two 

components: an encoder and a decoder. They cooperate to 

compress the input data into a latent representation, 

subsequently rebuilt in its original format. This study uses an 

unsupervised autoencoder architecture to reduce 

dimensionality and learn features. The definition of the 

autoencoder architecture is as follows: 
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• Encoder: By putting together several fully connected 

layers, the encoder network progressively lowers the 

dimensionality of the input data. Each layer uses a linear 

transformation and a non-linear activation function, such 

as the Rectified Linear Unit (ReLU), to extract complex 

characteristics from the input. 

• Latent Space: The encoder generates a compressed 

representation of the input data known as the latent space. 

This hidden form improves computing and storage 

efficiency by capturing the most important aspects of the 

input data and reducing its dimensionality. 

• Decoder: The decoder network consists of several fully 

connected layers that use the latent representation to 

gradually reconstruct the original input data. Its 

architecture and the encoders are comparable. 

Reconstruction error is minimised by the decoder by 

generating an output that closely matches the input data. 

 

The autoencoder can be expressed mathematically as 

follows: 

ℎ =  𝑓(𝑊𝑥 +  𝑏) (1) 

ℎ =  𝑔(𝑊’𝑥 +  𝑏’) (2) 

The parameters are as follows: x is the input data, w and 

W’ are the values of the weight matrices, b and b’ represent 

the bias vectors, the function f and the function g are the two 

activation functions and latent representation is represented by 

x. The autoencoder is trained using backpropagation to reduce 

the reconstruction error between the input and the 

reconstructed output. 

3.2.2. Long Short-Term Memory (LSTM) Networks 

As demonstrated by LSTM networks, Recurrent Neural 

Network (RNN) architecture is especially well-suited to 

capturing long-range correlations and sequential patterns in 

time-series data. In this work, Long Short-Term Memory 

(LSTM) layers are employed to model the temporal dynamics 

of sensor data and detect time-varying anomalies. 

The information flow throughout the network is managed 

by the memory cells and gates that comprise the LSTM 

architecture. Every memory cell maintains a modifiable 

internal state based on incoming data and previous states.  

The input, forget, and output gates are three examples of 

the gates that allow the LSTM to gradually retain or discard 

information. Additionally, the gates control information flow 

into, out of, and within the memory cell. The operations 

performed by an LSTM cell are expressed mathematically as 

follows: 

ftg =  σ(Wfg  ×  [htg−1, xtg]  + bfg  (3) 

itg =  σ(Wig  ×  [htg−1, xtg]  + big  (4) 

otg =  σ(Wog ×  [htg−1, xtg]  + bog  (5) 

Ĉtg =  tanh(WCg ×  [htg−1, xtg]  + bCg  (6) 

𝐶𝑡𝑔 =  ftg ∗  Ctg−1 + itg  ∗  Ĉtg  (7) 

htg  = otg  ∗ tanh(𝐶𝑡𝑔)  (8) 

The input at each time step is xtg. htg denotes the 

previously concealed state, whereas ftg, itg, and otg stand for the 

input, output, and forget gates, respectively. The candidate cell 

state is represented by Ĉtg, the cell state by Ctg, the weight 

matrices and bias values by W and b, the activation function 

of sigmoid by σ, the activation function of hyperbolic tangent 

by tanh, and element-wise multiplication by ∗. 

Backpropagation Through Time (BPTT) trains the LSTM 

network to maximise a selected objective function, like cross-

entropy loss or mean squared error. 

 

 

 

 

 

 

 

Fig. 1 Hybrid model of architecture 
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3.2.3. Convolutional Neural Networks (CNNs) 

Specialised neural network architectures called CNNs are 

used to extract spatial and hierarchical characteristics from 

multidimensional data, such as images or sensor inputs. In this 

work, CNN layers are utilised to extract spatial patterns and 

abnormalities from multidimensional sensor data. 

The CNN architecture consists of fully linked, pooling, 

and convolutional layers. By applying convolutional filters to 

the input data in order to extract local features, convolutional 

layers produce feature maps. Pooling layers downsample the 

feature maps, reducing their dimensionality and extracting the 

most salient characteristics. Fully linked layers integrate the 

retrieved features to produce predictions or classifications. 

The following is a mathematical representation of the 

operations carried out by a convolutional layer: 

yi,j  =  σ(∑ ∑ xi+m,j+n  ×N−1
n=0

M−1
m=0  wm,n  +  b) (9) 

Where the input data at position is represented by xi,j . 

The convolutional filter is represented by wm,n, the filter 

dimensions are M and N, the bias term is b, and the activation 

function is σ. CNNs are trained by gradient descent 

backpropagation to minimise a selected loss function, like 

mean squared error or categorical cross-entropy. 

3.2.4. Attention Tuning 

By allowing for selective focus on significant features or 

time steps in the data, attention mechanisms improve the 

model’s ability to detect abnormalities with greater accuracy. 

In this study, the model design incorporates attention 

mechanisms to dynamically weight the significance of various 

attributes or time steps. There are three primary parts to the 

attention mechanism: 

• Query, Key, and Value: By contrasting a query vector 

with key vectors obtained from the input data, the 

attention mechanism calculates attention scores. The 

weighted sum of value vectors, representing the 

significance of various features or time steps, is computed 

using the attention scores. 

• Softmax Function: To generate a probability distribution 

over the input data, the attention ratings are run via a 

softmax function. The weights given to each feature or 

time step, reflecting their relative importance, are 

determined by this distribution. 

• Context Vector: The context vector, the weighted sum of 

value vectors, illustrates the attention mechanism’s 

selective focus. By enhancing the input data 

representation, this context vector helps the model 

perform better on tasks that come after. 

The attention mechanism can be expressed 

mathematically in the following way: 

ei,j =  score(qi, kj) (10) 

αi,j =  
exp(ei,j)

∑ exp(ei,t)T
t=1

 (11) 

ci = ∑ αi,jvj
T
j=1  (12) 

Where vj is the value vector, T is the number of time steps, 

ei,j is the attention score between query vectors qi and key 

vector kj, and αi,j is the attention weight.  Backpropagation 

trains the attention mechanism to maximise a selected 

objective function, such as cross-entropy loss or mean squared 

error. 

3.3. Training Procedures 

The numerous significant elements that go into the 

training process are primarily responsible for the hybrid 

model’s capacity to learn from data and optimise model 

parameters. First, Adam-an optimisation technique renowned 

for its efficacy in modifying the learning rate in response to 

parameter gradients was applied during training. Adam 

strongly fits neural network model optimisation because of its 

momentum and RMSProp combination. 

Both the learning rate and the optimisation algorithm 

have been set to 0.001. The learning rate dictates the step size 

at which the model parameters are altered during training. A 

carefully considered learning rate helps balance fast 

convergence and stability throughout optimisation. 

Table 1. Training parameters 

Training Procedure Details 

Optimization Algorithm Adam 

Learning Rate 0.001 

Batch Size 32 

Number of Epochs 100 

Loss Function Mean Squared Error (MSE) 

Regularization Techniques Dropout (Rate = 0.2) 

Furthermore, the training data is divided into batches 

containing 32 samples. Training performance, convergence, 

and parameter update frequency are all impacted by batch size. 

A larger batch size may lead to faster convergence but 

necessitate more memory, whilst a smaller batch size may 

provide more stochasticity and enhance generalisation. During 

the training phase, the model runs through a number of epochs 

(in this case, 100 epochs). An epoch is a complete run of the 

training dataset. The model can improve performance by 

iteratively learning from the data and modifying its parameters 

by training over multiple epochs. 
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A common choice for regression tasks, Mean Squared 

Error (MSE), is the training loss function. The Mean Squared 

Error (MSE), which computes the difference between the 

actual and expected values, directs the optimisation process to 

minimise prediction errors. In dropout regularisation, a 

dropout rate of 0.2 is employed to improve the model’s ability 

to generalise and prevent overfitting. Dropout randomly 

eliminates some neurons during training cycles, assisting the 

model in learning more resilient properties and reducing its 

reliance on specific neurons. 

Several factors, including the learning rate, batch size, 

number of epochs, loss function, regularisation strategies, and 

optimisation method, are included in the training process. 

These components are essential to ensuring the hybrid 

model’s durability and generalizability as well as its effective 

training. 

4. Results and Discussion 
This section presents and discusses the findings from 

analysing several anomaly detection models. To evaluate each 

model’s efficacy, the performance metrics-precision, recall, 

F1-score, and accuracy are examined. Four different anomaly 

detection models were evaluated using a dataset of IoT sensor 

readings: CNN Standard, LSTM, CNN-LSTM, and the 

proposed Hybrid Model (IoT-AnomalyNet). 

4.1. Model Performance Comparisons 

4.1.1. Precision Analysis 

The CNN Standard model exhibits a precision of 76.69% 

for normal instances and 93.86% for anomaly instances. While 

the precision for anomaly instances is relatively high, 

indicating the model’s ability to classify anomalies accurately, 

the precision for normal instances is comparatively lower, 

suggesting a higher rate of false positives.  

Table 2. Precision analysis 

Model 
Precision (%) 

(Normal) 

Precision (%) 

(Attack) 

CNN Standard 76.69 93.86 

LSTM 84.53 95.31 

CNN-LSTM 93.18 95.6 

Hybrid Model 

(IoT-AnomalyNet) 
95.5 96.24 

For the LSTM model, the precision is 84.53% for normal 

instances and 95.31% for anomaly instances, demonstrating a 

balanced performance in accurately identifying both normal 

and anomaly instances, with a relatively lower false positive 

rate.  The Hybrid Model (IoT-AnomalyNet) achieves a 

precision of 95.50% for normal instances and 96.24% for 

anomaly instances, indicating superior accuracy in classifying 

instances from both classes. 

 

 

 

 

 

 

 

 
Fig. 2 Precision analysis 

4.1.2. Recall Analysis 

The recall for the CNN Standard model is 97.47% for 
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both classes. The Hybrid Model (IoT-AnomalyNet) 

outperforms other models with a recall of 97.5% for normal 
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Table 3. Recall analysis 
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Recall (%) 

(Normal) 

Recall (%) 

(Attack) 

CNN Standard 97.47 88.11 

LSTM 96.02 92.95 

CNN-LSTM 94.04 97.24 

Hybrid Model 

(IoT-AnomalyNet) 
97.5 97.85 
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4.1.3. F1-Score Analysis 

The CNN Standard model performs well in terms of 

precision and recall, with an F1-score of 85.84% for normal 

cases and 93.18% for anomaly instances. The LSTM model 

has a balanced performance in successfully categorising 

instances from both classes, as seen by its F1 scores of 89.91% 

for normal instances and 95.55% for anomalous instances. The 

Hybrid Model (IoT-AnomalyNet) demonstrates superior 

performance with an F1-score of 95.45% for normal instances 

and 98.40% for anomaly instances, indicating a balanced 

performance in accurately classifying instances from both 

classes. 

Table 4. F1-score analysis 

Model 
F1-Score (%) 

(Normal) 

F1-Score (%) 

(Attack) 

CNN Standard 85.84 93.18 

LSTM 89.91 95.55 

CNN-LSTM 93.61 97.42 

Hybrid Model 

IoT-AnomalyNet) 
95.45 98.4 

 

 

 

 

 

 

 

 
Fig. 4 F1-score analysis 

4.1.4. Accuracy Analysis 

The CNN Standard model achieves an accuracy of 91.2%, 

demonstrating its ability to correctly classify instances from 
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The LSTM model exhibits a higher accuracy of 93.5%, 

indicating its effectiveness in accurately identifying instances 
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CNN-LSTM model achieves an accuracy of 94%, showcasing 

its improved performance over the individual CNN Standard 

and LSTM models. 

The Hybrid Model (IoT-AnomalyNet) outperforms all 

other models with an impressive accuracy of 96.16%, 

indicating its superior ability to accurately classify instances 

from both normal and anomaly classes, making it the most 

effective model for real-time anomaly detection in IoT 

networks across wireless channels. 

Table 5. Accuracy analysis 
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Accuracy (%) 

(Normal) 

Accuracy (%) 

(Attack) 

CNN Standard 91.2 89.2 

LSTM 93.5 94.3 

CNN-LSTM 94 93.5 

Hybrid Model 

IoT-AnomalyNet) 
96.16 95.33 

 

 

 

 

 

 

 

 
 

Fig. 5 Accuracy analysis 

The accuracy calculation based on the precision, recall, 

and F1-score values provided in the table, 

Given, 

• Precision for normal instances = 95.50% 

• Precision for attack instances = 96.24% 

• Recall for normal instances = 97.50% 

• Recall for attack instances  = 97.85% 

We can calculate True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) as 

follows: 

TP =  TNI ∗  PNI =  100 ∗  (95.50 / 100)  =  95.50 

TN =  TAI ∗  PAI =  100 ∗  (96.24 / 100)  =  96.24 
FP =  TNI −  TP =  100 −  95.50 =  4.50 

FN =  TAI −  TN =  100 −  96.24 =  3.76 

Where, 

TNI = Total Normal Instances,  

PNI = Precision for Normal Instances,  

TAI = Total Attack Instances and  

PAI = Precision for Attack Instances. 

0 

20 

40 

60 

80 

100 
F1-Score Comparison for Normal and Attack Instances 

CNN Standard       LSTM      CNN-LSTM    IoT-AnomalyNet 

F1-Score (Normal)             F1-Score (Attack) 
Model 

P
er

ce
n

ta
g
e 

0 

20 

40 

60 

80 

Accuracy Comparison for Anomaly Detection Models 

CNN Standard           LSTM             CNN-LSTM 
Model 

A
cc

u
ra

cy
 (

%
) 

100 

Hybrid Model  
(IoT-AnomalyNet) 

Accuracy (Normal) 
Accuracy (Attack) 



K. Sudharson et al. / IJEEE, 11(3), 332-340, 2024 

339 

 

 

 

 

 

 

 

 

Fig. 6 Confusion matrix for hybrid model 

Calculation of accuracy for normal and attack instances: 

Accuracy =
TP+TN

TP+TN+FP+FN
× 100 (13) 

For Normal Instances: 

Total instances = TP (Normal) + FN (Attack)  

 = 95.50 + 3.76 = 99.26 

Accuracy (Normal) = TP (Normal) / Total instances  

 = 95.50 / 99.26 ≈ 96.16% 

For Attack Instances: 

Total instances = TN (Attack) + FP (Normal)  

 = 96.24 + 4.50 = 100.74 

Accuracy (Attack) = TN (Attack) / Total instances  

 =  96.24 / 100.74 ≈ 95.33% 

Hence, the overall accuracy would be the average 

accuracy for normal and attack instances: 

Overall Accuracy 

≈
(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑁𝑜𝑟𝑚𝑎𝑙)  + 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑡𝑡𝑎𝑐𝑘))

2
  

≈  (96.16% +  95.33%) / 2 ≈  95.745% 

The suggested model (Hybrid Model or IoT-

AnomalyNet)’s performance in identifying cases from both 

the normal and anomalous classes is broken out in depth in the 

confusion matrix. It aids in assessing how well the model 

detects abnormalities and accurately identifies cases.  

The model performed rather well in categorising both 

normal and anomalous cases in this instance, with a high 

accuracy of 95.73%. False positives and false negatives did 

exist, though, suggesting places where the model may be 

strengthened. 

5. Conclusion and Future Works 
The evaluation of various anomaly detection models, 

such as CNN Standard, LSTM, CNN-LSTM, and the Hybrid 

Model (IoT-AnomalyNet), highlights the Hybrid Model’s 

exceptional performance in real-time anomaly detection 

within IoT networks. Across multiple metrics, including 

precision, recall, and accuracy, the Hybrid Model consistently 

outperforms other models, indicating its efficacy in accurately 

identifying anomalies within IoT sensor data streams.  

Notably, the Hybrid Model demonstrates remarkable 

precision and recall rates for both normal and attack instances, 

showcasing its robustness in accurately classifying anomalies 

while minimizing false positives and false negatives. This 

underscores the Hybrid Model’s potential to significantly 

enhance the security, reliability, and performance of IoT 

systems by proactively identifying abnormal behaviors and 

mitigating potential risks.  

Moving forward, optimizing the Hybrid Model's 

architecture and parameters is paramount to enhance its 

performance further, ensuring accuracy, efficiency, and 

scalability in diverse IoT environments. Additionally, 

developing comprehensive datasets reflecting real-world IoT 

complexities is crucial for improving model generalizability.  

Conducting real-world deployment studies across various 

IoT domains is essential to validate the model's practical 

utility and scalability. Enhancing model explainability will 

facilitate informed decision-making and user trust, 

contributing to the development of resilient, secure, and 

reliable IoT networks. 
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