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Abstract - In this paper, we propose the application of the backstepping sliding mode control method for the Delta robot, aiming 

to achieve desired motion trajectories in a short time and maintain system stability, even in the presence of unknown external 

disturbances affecting joint torques. The stability of the system is rigorously demonstrated based on the Lyapunov stability 

theory. The performance of the controller is evaluated through numerical simulations using the Matlab&Simulink tool, with a 

figure-eight trajectory, and compared with two other control algorithms, including classical PD and Backstepping. The results 

show that the proposed controller exhibits excellent performance, allowing for precise control of the Delta robot’s motion along 

the desired trajectory with minimal error, short response time, and improved stability compared to both PD and backstepping 

controllers, especially when the system is subjected to unknown external disturbances. 
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1. Introduction 
The Delta 3-DOF (Degrees of Freedom) robot is a type of 

parallel robot with high rigidity, flexibility, speed, cost-

effectiveness, and precision. As of the current time, Delta 

robot systems have become popular and are being used in 

various fields such as medicine, education, and particularly in 

the manufacturing industry. Consequently, the Delta 3-DOF 

robot is attracting considerable attention from researchers, 
especially in the control, mechanical, and robotics fields. 

Currently, trajectory tracking control problems of Delta 

robots have been extensively studied worldwide, with various 

algorithms being applied to improve control quality. Some 

notable methods include the classical PID (Proportional-

Integral-Derivative) control mentioned in [1], nonlinear 

control methods such as Backstepping [2], sliding mode 

control [3], and intelligent control methods [4-7], as well as 

Hedge algebras method [8].  

In addition, for the field of industrial robot control in 
general, other advanced control methods such as optimization 

[9], Model Predictive Control (MPC) [10, 11], reinforcement 

learning [12], deep learning [13], and deep reinforcement 

learning [14] have also been applied. The classical PID control 

method [1] has advantages in terms of simple and flexible 

computation. However, tuning the control parameters in the 

PID controller can be relatively complex, especially for 
nonlinear objects like the Delta robot. Therefore, some studies 

[4, 5] have proposed the use of Recurrent Fuzzy Neural 

Networks (RFNN) to automatically adjust the PID controller 

parameters, thereby improving the trajectory tracking quality 

of the system.  

Another adaptive control approach [6] utilizes Radial 

Basis Function (RBF) neural networks with online learning 

capability to estimate unknown nonlinear components of the 

model, aiming to enhance control performance. In [7], the 

authors employed an adaptive Artificial B-Spline Neural 

Network (BSNN) to achieve online training and improve 
trajectory tracking of the Delta 3-DOF robot. However, in 

general, neural network-based methods require a deep 

understanding of network architectures.  

Control techniques based on Hedge Algebras [8] require 

experienced designers to provide parameter adjustment rule 

tables. Control methods based on optimization techniques [9], 

Model Predictive Control (MPC) [10, 11], and machine 

learning techniques [12, 14] for robot control design do not 

rely on a model but instead rely on machine learning 

techniques, enabling automatic adjustment and improvement 
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of control quality over time. However, these methods may 

require a large amount of training data, making them more 

complex to implement and tune compared to conventional 

control methods.  

Based on the above analysis, we propose applying the 

Backstepping sliding mode control method to the Delta robot 
to help achieve the desired motion trajectory in a short time 

and maintain system stability, even when influenced by 

unknown external disturbances affecting joint torques. This 

method stands out for its robustness due to the advantages of 

sliding mode control and simplicity in design through the use 

of the recursive Lyapunov function of the Backstepping 

technique. We have verified this method through simulation 

and found that our proposed method significantly outperforms 

pure Backstepping [2] and classic PD control with manually 

selected proportional and derivative parameters [4], especially 

in the presence of disturbances.  

Furthermore, this method requires fewer computations 
compared to optimization methods [9] and MPC [10, 11]. 

Moreover, it does not rely on the designer’s experience like 

Hedge algebras-based research [8]. Additionally, the 

Backstepping sliding mode controller does not rely on specific 

data or require the same level of complexity as machine 

learning-based methods [12-14] and neural networks [4-7]. 

The remaining parts of the study are organized as follows: 

Section 2 presents the mathematical model of the Delta 

parallel robot. Section 3 proposes the Backstepping sliding 

mode controller. Section 4 provides simulation results and 

discussions. Finally, Section 5 concludes and suggests future 
directions. 

2. The Mathematical Model of the Delta Parallel 

Robot 
The mathematical model of the 3-DOF industrial parallel 

Delta robot has been extensively presented in prior studies [1-

5]. The robot’s structure, as depicted in Figures 1 and 2, 

consists of a fixed base A, a moving platform B, three arms 

𝐴𝑖𝐵𝑖(𝑖 = 1,2,3) and three fore-arms 𝐵𝑖𝐸𝑖(𝑖 = 1,2,3), with 

each forearm having a parallelogram structure. To simplify the 

model, these structures are replaced by equivalent rigid bars 

with corresponding lengths. 

 

 
 

 

 

 

 

 

 
 

Fig. 1 3-DOF parallel delta robot [6] 

The two points 𝐵𝑖 and 𝐸𝑖, each with a mass of 𝑚𝑏 are 

considered in the dynamic model shown in Figure 2. The 

dynamic model consists of four rigid bodies, as follows: the 

link 𝐴𝑖𝐵𝑖 rotates around axes perpendicular to the 

𝑂𝐴𝑖𝐵𝑖 plane, a mass of 𝑚1 at point tại 𝐴𝑖𝐵𝑖, three-point 

masses 𝑚𝑏 = 0.5𝑚2  at point 𝐵𝑖 and the moving platform 

with a mass of 𝑚𝑝 + 3𝑚𝑏. Here, 𝑚𝑃 represents the mass of 

the moving platform. Additionally, moment forces 𝜏𝑖(𝑖 =
1,2,3) are applied on the link 𝐴𝑖𝐵𝑖, corresponding to the motor 
torques.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 
Fig. 2 Dynamic model of the parallel delta robot [4, 5] 

The selected state vector for establishing the motion 

equations of the Delta robot is: 

𝑠 = [𝑠𝑎
𝑇 𝑠𝑃

𝑇]𝑇 = [𝜃1 𝜃2 𝜃3 𝑥𝑃 𝑦𝑃 𝑧𝑃]𝑇   (1) 

Where: 

𝑠𝑎 = [𝜃1 𝜃2 𝜃3]
𝑇 denotes the coordinates of the active 

joints (angle of the arm of the robot).           

 𝑠𝑃 = [𝑥𝑃 𝑦𝑃 𝑧𝑃]𝑇 represents the coordinates of the 
center of the moving platform. 

 The system of kinematic equations for the parallel Delta 

robot is established according to the research [4, 5] as follows: 

𝑓1 = 𝐿2
2 − (𝑐𝑜𝑠𝛼1(𝑅 − 𝑟) + 𝐿1𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃1 − 𝑥𝑃)2 

− (𝑠𝑖𝑛𝛼1(𝑅 − 𝑟) + 𝐿1𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃1 − 𝑦𝑃)2 

−(𝐿1𝑠𝑖𝑛𝜃1 + 𝑧𝑃)2 =  0 

𝑓2 = 𝐿2
2 − (𝑐𝑜𝑠𝛼2(𝑅 − 𝑟) + 𝐿1𝑐𝑜𝑠𝛼2𝑐𝑜𝑠𝜃2 − 𝑥𝑃)2        

− (𝑠𝑖𝑛𝛼2(𝑅 − 𝑟) + 𝐿1𝑠𝑖𝑛𝛼2𝑐𝑜𝑠𝜃2 − 𝑦𝑃)2 (2) 

−(𝐿1𝑠𝑖𝑛𝜃2 + 𝑧𝑃)2 =  0 

𝑓3 = 𝐿2
2 − (𝑐𝑜𝑠𝛼3(𝑅 − 𝑟) + 𝐿1𝑐𝑜𝑠𝛼3𝑐𝑜𝑠𝜃3 − 𝑥𝑃)2 

− (𝑠𝑖𝑛𝛼3(𝑅 − 𝑟) + 𝐿1𝑠𝑖𝑛𝛼3𝑐𝑜𝑠𝜃3 − 𝑦𝑃)2 

−(𝐿1𝑠𝑖𝑛𝜃3 + 𝑧𝑃)2 =  0 
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The system of motion equations for the parallel Delta 

robot is established based on the research [4, 5]. 

(I𝐼𝑦+𝑚𝑏𝐿1
2)𝜃1̈ = 𝑔𝐿1 (

1

2
𝑚1 + 𝑚𝑏) 𝑐𝑜𝑠𝜃1 + 𝜏1 −

2𝜆1𝐿1(𝑠𝑖𝑛𝜃1(𝑅 − 𝑟) − 𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃1𝑥𝑃 − 𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃1𝑦𝑃 −
𝑐𝑜𝑠𝜃1𝑧𝑃)  (3) 

(I𝐼𝑦+𝑚𝑏𝐿1
2)𝜃2̈ = 𝑔𝐿1 (

1

2
𝑚1 + 𝑚𝑏) 𝑐𝑜𝑠𝜃2 + 𝜏2 

−2𝜆2𝐿1(𝑠𝑖𝑛𝜃2(𝑅 − 𝑟) − 𝑐𝑜𝑠𝛼2𝑠𝑖𝑛𝜃2𝑥𝑃  

−𝑠𝑖𝑛𝛼2𝑠𝑖𝑛𝜃2𝑦𝑃 − 𝑐𝑜𝑠𝜃2𝑧𝑃)  (4) 

(I𝐼𝑦+𝑚𝑏𝐿1
2)𝜃3̈ = 𝑔𝐿1 (

1

2
𝑚1 + 𝑚𝑏) 𝑐𝑜𝑠𝜃3 + 𝜏3        

−2𝜆3𝐿1(𝑠𝑖𝑛𝜃3(𝑅 − 𝑟) − 𝑐𝑜𝑠𝛼3𝑠𝑖𝑛𝜃3𝑥𝑃  

−𝑠𝑖𝑛𝛼3𝑠𝑖𝑛𝜃3𝑦𝑃 − 𝑐𝑜𝑠𝜃3𝑧𝑃)  (5) 

(𝑚𝑃 + 3𝑚𝑏)𝑥̈𝑃 = −2𝜆1 (
𝑐𝑜𝑠𝛼1(𝑅 − 𝑟)

+𝐿1𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃1 − 𝑥𝑃
) 

−2𝜆2(𝑐𝑜𝑠𝛼2(𝑅 − 𝑟) + 𝐿1𝑐𝑜𝑠𝛼2𝑐𝑜𝑠𝜃2 − 𝑥𝑃)                      
−2𝜆3(𝑐𝑜𝑠𝛼3(𝑅 − 𝑟) + 𝐿1𝑐𝑜𝑠𝛼3𝑐𝑜𝑠𝜃3 − 𝑥𝑃)  (6) 

(𝑚𝑃 + 3𝑚𝑏)𝑦̈𝑃 = −2𝜆1 (
𝑠𝑖𝑛𝛼1(𝑅 − 𝑟)

+𝐿1𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃1 − 𝑦𝑃
) 

−2𝜆2(𝑠𝑖𝑛𝛼2(𝑅 − 𝑟) + 𝐿1𝑠𝑖𝑛𝛼2𝑐𝑜𝑠𝜃2 − 𝑦𝑃)                      
−2𝜆3(𝑠𝑖𝑛𝛼3(𝑅 − 𝑟) + 𝐿1𝑠𝑖𝑛𝛼3𝑐𝑜𝑠𝜃3 − 𝑦𝑃)  (7) 

(𝑚𝑃 + 3𝑚𝑏)𝑧̈𝑃 = −(𝑚𝑃 + 3𝑚𝑏)𝑔 + 2𝜆1(𝑧𝑃 + 𝐿1𝑠𝑖𝑛𝜃1) 

+2𝜆2(𝑧𝑃 + 𝐿1𝑠𝑖𝑛𝜃2) + 2𝜆3(𝑧𝑃 + 𝐿1𝑠𝑖𝑛𝜃3)  (8) 

With 𝑅 as the upper disc radius, 𝑟 as the lower disc radius, 

𝐿1 as the upper arm length, 𝐿2 as the lower arm length and 

𝛼1, 𝛼2, 𝛼3 respectively equal to 0, 120, and 240 degrees. By 

combining Equations 3 to 8, we obtain the dynamic equation 

of the Delta robot in matrix form, expressed as follows: 

𝑀(𝑠)𝑠̈ + 𝐶(𝑠, 𝑠̇)𝑠̇ + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 + 𝑑(𝑠, 𝑠̇) = 𝜏 (9)  

𝑊ℎ𝑒𝑟𝑒, 𝜆 ∈ ℝ3×1 is the Lagrange multiplier vector, s is 

the system state vector, 𝑀(𝑠) ∈ ℝ6×6 is the positive definite 

symmetric generalized inertia matrix, 𝐶(𝑠) ∈ ℝ6×6 is the 

centrifugal and Coriolis matrix, 𝑔(𝑠) ∈ ℝ6×1 is the composite 
vector of the coupling, centrifugal, and gravity components. 

𝛷𝑠(𝑠) =
𝜕𝑓

𝜕𝑠
∈ ℝ3×6 is the Jacobian matrix of the 

kinematic equations, 𝑑(𝑠, 𝑠̇) ∈ ℝ6×1 is the vector containing 

the unknown force components, 𝜏 = [
𝜏𝑎

𝛩3×1
] ∈ ℝ6×1  is the 

control signal vector, with 𝜏𝑎 = [𝜏1, 𝜏2, 𝜏3]
𝑇 is the vector 

representing the moment forces generated by the three motors 

connected to the robot’s joints and 𝛩3×1 ∈ ℝ3×1 , is the vector 
containing all non-zero elements. Additionally, the symbol 

𝑓 = [𝑓1 𝑓2 𝑓3]
𝑇  represents the vector representing the 

motion coupling of the Delta robot, IIy is the inertia tensor in 

Equations 3 to 8.  

Specifically, in this case, the components in Equation (9) 

take the following values: 

𝑀(𝑠) = 𝑑𝑖𝑎𝑔 (
𝐼𝐼𝑦 + 𝑚𝑏𝐿1

2 , 𝐼𝐼𝑦 + 𝑚𝑏𝐿1
2 , 𝐼𝐼𝑦 + 𝑚𝑏𝐿1

2 ,

,𝑚𝑃 + 3𝑚𝑏 , 𝑚𝑃 + 3𝑚𝑏 , 𝑚𝑃 + 3𝑚𝑏

)  (10) 

𝐶(𝑠, 𝑠̇) = 𝛩6×6, 𝜆 = [𝜆1 𝜆2 𝜆3]
𝑇               (11) 

𝛷𝑠(𝑠) =
𝜕𝑓

𝜕𝑠
=

[
 
 
 
𝜕𝑓1

𝜕𝜃1
⋯

𝜕𝑓1

𝜕𝑧𝑃

⋮ ⋱ ⋮
𝜕𝑓3

𝜕𝜃1
⋯

𝜕𝑓3

𝜕𝑧𝑃]
 
 
 
,                (12) 

𝜏 = [𝜏1 𝜏2 𝜏3 0 0 0]𝑇  

g(𝑠) =  

[
 
 
 
 
 −𝑔𝐿1 (

𝑚1

2
+ 𝑚𝑏) 𝑐𝑜𝑠𝜃1,

−𝑔𝐿1 (
𝑚1

2
+ 𝑚𝑏) 𝑐𝑜𝑠𝜃2,

−𝑔𝐿1 (
𝑚1

2
+ 𝑚𝑏) 𝑐𝑜𝑠𝜃3,

0,0, (𝑚𝑃 + 3𝑚𝑏)𝑔 ]
 
 
 
 
 
𝑇

  (13) 

 

3. Backstepping Sliding Mode Controller 
In this study, we propose to apply the Backstepping 

sliding mode control method to the Delta robot to achieve the 

desired motion trajectory of the moving platform within a 

short time and maintain system stability. This method stands 

out for its robustness due to the advantages of Sliding Mode 

Control (SMC) and its simplicity in design by utilizing the 

recursive Lyapunov function approach of the Backstepping 

technique. To implement this method, firstly, in Section (3.1), 

we restructured the dynamic model of the Delta robot in 

Equation (2) into a strict-feedback canonical form. Then, in 
Section (3.2), by constructing feedback control laws for each 

subsystem, we establish a unified control signal for the entire 

system. The general structure diagram of the control system is 

illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 General structure diagram of the backstepping sliding mode 

control system 
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3.1. Restructuring the System Model of the Parallel Delta 

Robot 

Let Φa be the Jacobian matrix corresponding to sa =
[θ1 θ2 θ3]

T and ΦP be the Jacobian matrix corresponding 

to sP = [xP yP zP]T, from Equation (12), we have: 

Φα =

[
 
 
 
𝜕𝑓1

𝜕𝜃1
⋯

𝜕𝑓1

𝜕𝜃3

⋮ ⋱ ⋮
𝜕𝑓3

𝜕𝜃1
⋯

𝜕𝑓3

𝜕𝜃3]
 
 
 

 , Φα =

[
 
 
 
𝜕𝑓1

𝜕𝑥𝑃

𝜕𝑓1

𝜕𝑦𝑃

𝜕𝑓1

𝜕𝑧𝑃

⋮ ⋱ ⋮
𝜕𝑓3

𝜕𝑥𝑃
⋯

𝜕𝑓3

𝜕𝑧𝑃]
 
 
 
      (14)              

Let 𝑅 = [
Ι3

−Φp
−1Φa

] ∈ ℝ6×3 with Ι3 ∈ ℝ3×3 being the 

identity matrix. Multiplying 𝑅𝑇 both sides of Equation (9)  by, 
we obtain:  

𝑅𝑇(𝑀(𝑠)𝑠̈ + 𝐶(𝑠, 𝑠̇)𝑠̇ + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 + 𝑑(𝑠, 𝑠̇)) (15) 

= 𝑅𝑇𝜏 = 𝜏𝑎   

From the system of kinematic equations in (2) of the 

system, we have: 

𝑓̇ = 𝛷𝑎𝑠̇𝑎 + 𝛷𝑝𝑠̇𝑃 = 0                  (16) 

From (16), with ΦP the non-singular matrix, we have 

𝑠̇𝑝 = −𝛷𝑃
−1𝛷𝑎𝑠̇𝑎 . Therefore, we can deduce:  

𝑠̇ = 𝑅𝑠̇𝑎 and 𝑠̈ = 𝑅𝑠̈𝑎 + 𝑅̇𝑠̇𝑎                (17) 

Substituting (17) into (15), we obtain:  

𝑅𝑇(𝑀(𝑠)(𝑅𝑠̈𝑎 + 𝑅̇𝑠̇𝑎) + 𝐶(𝑠, 𝑠̇)𝑠̇ + 𝑔(𝑠) + 𝛷𝑠
𝑇(𝑠)𝜆 +

𝑑(𝑠, 𝑠̇)) = 𝜏𝑎 (18) 

We observe that 𝑅𝑇𝛷𝑠
𝑇(𝑠) = 0, so we introduce new 

variables: 

𝑀̄ = 𝑅𝑇𝑀(𝑠)𝑅, 𝐶̄ = 𝑅𝑇(𝑀(𝑠)𝑅̇ + 𝐶(𝑠, 𝑠̇)𝑅), 

, 𝑑̄ = 𝑅𝑇𝑑(𝑠, 𝑠̇), 𝑔̄ = 𝑅𝑇𝑔(𝑠)     (19) 

In this case, Equation 18 can be rewritten as: 

𝑀̄𝑠̈𝑎 + 𝐶̄𝑠̇𝑎 + 𝑔̄ + 𝑑̄ = 𝜏𝑎                 (20) 

From the dynamic model of the parallel Delta robot 

expressed in (20), we can deduce: 

𝑠̈𝑎 = 𝑀̄−1(−𝑔̄ − 𝑑̄ − 𝐶̄𝑠̇𝑎) + 𝑀̄−1𝜏𝑎           (21) 

Now, we proceed to introduce the following variables: 

𝑥1 = 𝑠𝑎 , 𝑥2 = 𝑠̇𝑎 , 𝐹 = 𝑀̄−1(−𝑔̄ − 𝑑̄ − 𝐶̄𝑠̇𝑎)    (22) 

From here, we can represent the system model in the form 

of strict-feedback as follows: 

{
𝑥̇1 = 𝑥2

𝑥̇2 = 𝐹 + 𝑀̄−1𝜏𝑎
                           (23) 

3.2. Designing the Backstepping Sliding Mode Controller 

Step 1: Constructing the virtual control law for the first 

subsystem 𝑥̇1 = 𝑥2. 

Firstly, we introduce new state variables: 

𝑒1 = 𝑥1 − 𝑥1𝑑                         (24) 

Where, 𝑥1𝑑 is a vector representing the desired 

coordinates of the active joints. By differentiating Equation 

(24) with respect to time, we obtain: 

𝑒̇1 = 𝑥̇1 − 𝑥̇1𝑑                               (25) 

Next, we select a Lyapunov function for the first 

subsystem as follows: 

 𝑉1 =
1

2
𝑒1

𝑇𝑒1                            (26)  

Taking the derivative of Equation (26) with respect to 
time and combining it with Equation (25), we have: 

𝑉̇1 = 𝑒1
𝑇 𝑒̇1 = 𝑒1

𝑇(𝑥̇1 − 𝑥̇1𝑑) = 𝑒1
𝑇(𝑥2 − 𝑥̇1𝑑)      (27) 

At this point, we introduce additional state variables: 

𝑒2 = 𝑥2 − 𝛼1           (28) 

Where 𝛼1 represents the virtual control signal for the first 

subsystem. Choosing the virtual control signal 𝛼1 such that:  

𝛼1 = −𝑐1𝑒1 + 𝑥̇1𝑑                        (29) 

Where 𝑐1 ∈ ℝ3×3 is a positive definite symmetric 
constant matrix. By differentiating Equation (28) with respect 

to time, we obtain: 

𝑒̇2 = 𝑥̇2 − 𝛼̇1           (30) 

Step 2: Design the control law for the second subsystem 

using the sliding mode control method. This control law is also 

applicable to the entire system (23). 

Defining the total sliding surface for the entire system as 

follows: 

 𝑆2 = 𝜇𝑒1 + 𝑒2                           (31) 
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Where 𝜇 ∈ ℝ3×3 is a positive definite constant matrix. 

By differentiating Equation 31 with respect to time, we 

obtain, we get: 

𝑆̇2 = 𝜇𝑒̇1 + 𝑒̇2                         (32) 

Choosing a Lyapunov function for the entire system that 

satisfies: 

𝑉2 = 𝑉1 +
1

2
𝑆2

𝑇𝑆2                         (33) 

Taking the derivative of Equation (33) with respect to 

time and combining it with Equation (27), we have: 

 𝑉̇2 = 𝑒1
𝑇 𝑒̇1 + 𝑆2

𝑇𝑆̇2                         (34) 

Substituting (30), (32) into (34) and combining (23) and 

(31), we obtain: 

𝑉̇2 = −𝑒1
𝑇𝑐1𝑒1 + 𝑒1

𝑇𝑒2 + 𝑆2
𝑇(𝜇𝑒̇1 + 𝐹 + 𝑀̄−1𝜏𝑎 −

𝛼̇1)  (35) 

The control signal for the entire system is designed to 

satisfy: 

𝜏𝑎 = 𝑀̄(−𝑆2(𝑒1
𝑇𝑒2 + 𝑒2

𝑇𝑐2𝑒2) − 𝜂𝑠𝑔𝑛(𝑆2) +
𝛼̇1 − 𝜇𝑒̇1 − 𝐹)    (36) 

To mitigate the chattering phenomenon, the function 

𝑠𝑔𝑛(𝑆2) in (36) is replaced by sat(S2). In this case, Equation 
(36) can be rewritten as: 

𝜏𝑎 = 𝑀̄(−𝑆2(𝑒1
𝑇𝑒2 + 𝑒2

𝑇𝑐2𝑒2) − 𝜂𝑠𝑎𝑡(𝑆2) + 𝛼̇1 −
𝜇𝑒̇1 − 𝐹)   

With the unified control signal for the entire system (36), 

the derivative of the Lyapunov function now satisfies: 

𝑉̇2 = −𝑒1
𝑇𝑐1𝑒1 − 𝑒2

𝑇𝑐2𝑒2 − 𝑆2
𝑇𝜂𝑠𝑔𝑛(𝑆2)  ≤ 0  (37) 

Where 𝑐2 ∈ ℝ3×3 is a positive definite symmetric 
constant matrix. From Equation (37), the system satisfies 

stability according to the Lyapunov principle. 

4. The Simulation Results 
In this study, we present numerical simulation results 

using the Matlab/Simulink tool to validate the effectiveness of 

the proposed Backstepping sliding mode control applied to the 

trajectory tracking problem of a parallel Delta robot. The 

algorithm has been verified and compared with other control 

methods, including Backstepping control in [2] and the classic 
Proportional Derivative (PD) control with gain parameters 

selected according to [4]. We conducted these simulations 

with two different scenarios using an 8-shaped trajectory. The 

specific simulation scenarios are presented as follows: 

Scenario 1: This scenario is regarded as the simplest, 

assuming that the dynamic parameters of the robot are 

accurately known and that the system is not affected by any 

external disturbances. 

Scenario 2: In this scenario, the system had to face 

significant challenges as it was subjected to unknown external 

disturbances that affected the joint torques of the system. 

These disturbances varied over time and are depicted in Figure 

4. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 4 Unknown external disturbances impacting the joint torques of the 

system 

In order to ensure objectivity in evaluating and comparing 

the results between control methods, the dynamic model 

parameters of the Delta robot are taken from the study [6], 

which include: 

𝛼1 = 0(𝑟𝑎𝑑), 𝛼2 = 2𝜋/3(𝑟𝑎𝑑), 𝛼3 = 4𝜋/3(𝑟𝑎𝑑), 
𝑔 = 9.81(𝑚/𝑠2),𝑚1 = 0.416(𝑘𝑔),𝑚𝑏 = 0.195(𝑘𝑔), 
𝑚𝑝 = 0.3(𝑘𝑔), 𝑅 = 0.266(𝑚), 𝑟 = 0.04(𝑚), 

𝐿1 = 0.3(𝑚), 𝐿2 = 0.8(𝑚), 𝑚2 = 2 × 0.195(𝑘𝑔) 

The controller parameters are selected as follows:  

𝜇 = diag([10,4,4]);  𝜂 = diag([850,150,150]);  

𝑐1 = diag([40,5,5]); 𝑐2 = diag([5,0.7,0.7])   

In addition, the trajectory equation for the 8-shaped 

motion is given by: 

𝑥𝑑 = 0.1 + 0.2cos(2𝑡) ; 𝑦𝑑 = 0.1 + 0.2cos(2𝑡) sin(2𝑡) ; 

𝑧𝑑 = −0.7  
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4.1. Simulation Results for Scenario 1 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Trajectory response of the delta robot without disturbances 

The simulation results in the case where the system model 

is not affected by disturbances are shown in Figure 5, Figure 

6(a), Figure 6(b), Figure 6(c) and Figure 7(a), Figure 7(b), 

Figure 7(c). The results demonstrate that the proposed 

Backstepping Sliding Mode Control algorithm (BSP-SMC) 

exhibits superior control performance compared to the other 

two control methods, Backstepping (BSP) and PD.  

Specifically, concerning the convergence time for joints 

2 and 3, the Backstepping control takes approximately 0.6 

seconds. In comparison, the Backstepping sliding mode 

control achieves a faster response of about 0.1 seconds for 

joint 1 instead of around 0.3 seconds for Backstepping. The 

performance of the PD control is also good, but the system’s 

response time is longer, approximately 0.9 seconds for all 

three joints. It can be observed that the Backstepping sliding 

mode control not only provides a shorter response time but 

also exhibits better stability compared to the other two control 

methods. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6(a) Joint 1 angle error of the delta robot without disturbances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6(b) Joint 2 angle error of the delta robot without disturbances 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6(c) Joint 3 angle error of the delta robot without disturbances 

 
 

 

 

 

 

 

 

 

Fig. 7(a) Joint 1 angle trajectory response of the delta robot without 

disturbances 
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Fig. 7(b) Joint 2 angle trajectory response of the delta robot without 

disturbances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7(c) Joint 3 angle trajectory response of the delta robot without 

disturbances 

4.2. Simulation Results for Scenario 2 

The simulation results depicted in Figure 8, Figure 9(a), 

Figure 9(b), Figure 9(c), and Figure 10(a), Figure 10(b), and 

Figure 10(c) demonstrate the impressive control quality of the 

Backstepping Sliding Mode Control Algorithm (BSP-SMC) 

when facing unknown and random disturbances as described 

in Figure 4, affecting the joint torques. In this case, both 

Backstepping control and PD control struggle to bring the 

errors of all three joint angles of the Delta robot to zero, 

making it challenging to track the desired trajectory.  

On the contrary, the proposed Backstepping sliding mode 

control algorithm exhibits good trajectory tracking capability, 

with short convergence time maintained at around 0.6 seconds 

for joints 2 and 3 and approximately 0.1 seconds for joint 1, 

similar to the simulation results in Scenario 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Trajectory response of the delta robot with unknown external 

disturbances 

 

 

 

 

 

 

 

 

 

Fig. 9(a) Joint 1 angle error of the delta robot with unknown external 

disturbances 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9(b) Joint 2 angle error of the delta robot with unknown external 

disturbances 
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Fig. 9(c) Joint 3 angle error of the delta robot with unknown external 

disturbances 

 

 

 

 

 

 

 

 

 

Fig. 10(a) Joint 1 angle trajectory response of the delta robot with 

unknown external disturbances 

 

 

 

 

 

 

 

 

 

Fig. 10(b) Joint 2 angle trajectory response of the delta robot with 

unknown external disturbances 

 

 

 

 

 

 

 

 

 

Fig. 10(c) Joint 3 angle trajectory response of the delta robot with 

unknown external disturbances 

However, the Backstepping sliding mode control 

algorithm still exhibits small oscillations during operation due 

to the continuous impact of uncertain disturbances on the joint 

torques of the system. 

5. Conclusion 
The study proposes the application of the Backstepping 

sliding mode control method for the Delta robot, enabling the 

robot to achieve the desired motion trajectory in a short time 

while maintaining system stability, even in the presence of 

unknown external disturbances impacting the joint torques. 

The results demonstrate excellent control performance, as the 

control algorithm can effectively track the desired motion of 

the Delta robot and maintain stability with a fast settling time 

of around 0.6 seconds for joints 2 and 3, approximately 0.1 

seconds for joints 1, even with disturbances. The stability and 

reliability of the Backstepping sliding mode control algorithm 

provide a solid foundation for further development and real-

world applications for Delta robots. In the future, the authors 

plan to implement the Backstepping sliding mode control 

algorithm on an experimental model and continue research to 

improve the algorithm’s performance and extend its 
application to various models of industrial robots. 
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