
SSRG International Journal of Electrical and Electronics Engineering  Volume 11 Issue 4, 226-233, April 2024 
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I4P124    © 2024 Seventh Sense Research Group® 
          

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Machine Learning-Based Structure Prediction for QM9 

Quantum Datasets 

Nahla K1, Maimoona Ansari2, Salah Eldeen F. Hegazi3, Anjali Appukuttan4, Bincy Vincent5, Huda Fatima6 

1School of Data Analytics, Convergence Complex Building, Mahatma Gandhi University, Kerala, India. 
2CIT Technology, Hayalmatar, Jazan, SaudiArabia. 

3Department of Chemical Engineering, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia. 
4Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia. 

5Department of Nursing, Darb College of Nursing, Jazan University, Jazan, Kingdom of Saudi Arabia. 
6Department of Information Technology and Security, College of Engineering and Computer Science, Jazan University, 

Jazan, Saudi Arabia. 

6Corresponding Author : hsaadullah@jazanu.edu.sa 

Received: 15 February 2024 Revised: 15 March 2024 Accepted: 16 April 2024  Published: 30 April 2024

Abstract - The inner arrangement of the quantum mechanics dataset QM9 is investigated in this study. The dataset contains 

1000 organic molecules as well as being defined in terms of electronic properties. To estimate the atomic composition using 

inverse molecular design attributes, one must understand the structure and properties of such data. The study used methods for 

detecting outliers, clustering, and intrinsic dimension analysis. The dataset was found to have descriptive dimensions far higher 

than their intrinsic dimensionality. Inliner items make up the majority of the inner core area of the QM9 data, whereas outliers 
dominate the outside region. The atom count in a molecule is strongly related to its outlier or inner character. Despite structural 

differences, important variables for inverse molecular design are very predictable. The molecular representation was estimated 

using Graph Neural Network (GNN), a modern Machine Learning (ML) algorithm. This study also did feature extraction and 

preprocessing before this algorithm. This proposed technique works for the outcomes. 

Keywords - Feature generation, Feature selection, Machine Learning, Outlier analysis, QM9 data.

1. Introduction  
Computers may discover useful associations from 

unstructured data without any previous information thanks to 

ML techniques, which include complex algorithms. Feature 

extraction in traditional ML models has long relied on 

extensive domain knowledge and meticulous engineering to 

convert rare data into a usable illustration or feature vector, 

from which the learning subsystem could identify input 

patterns. By analysing raw data, representation learning may 

automatically find the representations needed for 

classification or detection [1].  

Many branches of chemistry, including physical 

chemistry, drug discovery, and material science, are starting 

to rely on ML techniques. Aiming to computationally 

inexpensively and accurately forecast the governing atomic 

system properties, including energies along with forces, dipole 

moments, wave functions, and electron densities, Quantum-

based ML (QML) approaches have made substantial strides in 

the last few years [2].  Assigning reactivity ratings to atoms 

and molecules may help shed light on the processes of 
chemical reactions in several fields, such as materials 

research, medicinal design, atmospheric chemistry, and 

chemical synthesis. Although measuring reaction rates 

experimentally has been done for quite some time, it is usually 

a laborious procedure that becomes more expensive as one 

attempts to investigate the most difficult processes.  

Furthermore, the rates of molecular diffusion limit the 
actual reaction rates in the solution phase, making it more 

difficult to measure the extremes of reactivity. The third big, 

high-quality data set is the foundation of molecular ML 

models, which are essential for their success and widespread 

use. New molecular ML models may now be built with the 

help of the wider community of ML researchers, thanks to 

easily accessible and machine-actionable datasets. [4].  

Some of the most significant advances in ML for 

molecular property prediction have come from building 

databases of small-molecule characteristics for use in 

prototyping and benchmarking new ML architectures. The 
most recent models have been tested on the QM9 dataset, 

which is one of several similar datasets [5]. In most MI 

techniques, there are three main components. The first 

http://www.internationaljournalssrg.org/
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component consists of data sets comprising information on the 

assembly of the materials, measurement outcomes linked to 

these arrangements, and physical attributes pertinent to the 

material development objectives. Representing the data 

instances from the first component, the second part gathers a 

basic report of materials for use in identification as well as 
analogous extrapolation and then quantitatively characterises 

them.  

The last component is a system that makes use of 

component algorithms or data mining algorithms to abstract 

data from the material data sets for particular drives, such as 

predicting properties or identifying novel material 

compositions as well as structures [6].  

Generating massive volumes of data from electronic 

structure computations is the first step in applying quantum 

ML approaches to real-world situations. Therefore, data 

creation requires a lot of computer resources. Learning how to 

build appropriate databases to maximise the accuracy and 
transferability of the models is a crucial problem for 

expanding the use of ML approaches in chemistry. This stage 

relies on the human’s level of understanding and trust in the 

link between the cause (the initial database and model) and the 

outcome (the model’s application to a new assignment). This 

method, which has another name, “interpretability,” helps to 

decipher the connections found in the model’s training data or 

the model’s learned associations.  

An important aspect of this research is the attempt to 

establish a correlation between the original chemical 

databases used to train ML models and the model’s ability to 
forecast a target attribute (tautomerization energy) on a set of 

samples that have never been seen before. [7] Due to their 

great mistake sensitivity, very short coherence durations, and 

overall complexity of manufacture, quantum computers are 

not yet in a commercially usable condition. When both 

classical and quantum algorithms fail to address an issue, a 

hybrid approach called hybrid quantum ML is used. [8]  

The goal of achieving quantum dominance in quantum 

chemistry issues has led to the meticulous development of 

quantum or hybrid paradigms. The current methods rely 

heavily on molecular energy quantum simulation for accurate 

rate prediction in chemical reactions. Rather than 
demonstrating superiority over classical molecule learning 

methods, the goal of this work is to construct a complete 

quantum algorithm and illuminate quantum ML techniques for 

addressing molecular issues. 

 Unitary Coupled Cluster (UCC), a popular unsupervised 

learning technique with a specially constructed circuit for each 

molecule, is completely different from the proposed method 

in the quantum world. Graph learning can learn thousands of 

molecules and predict the characteristics of more complicated 

molecules, but it is not as accurate as molecular simulation 

methods for property prediction [9]. Although these methods 

make use of molecule datasets, research focusing on their 

structure is lacking. Inverse molecule design and related fields 

might benefit from understanding the information underlying 

structure and the properties of the data. This work aims to 

begin bridging that hole by means of unsupervised ML 
techniques that have been recycled in inverse molecular 

design research and that connect quantum mechanical features 

to atomic composition.  

 This study formulates the issue from the perspective of 

inverse molecule design, builds upon prior research in 

several ways, and employs a huge dataset.  

 Considering that the amount of an element’s atoms in a 

molecule is a ratio variable as discrete values, it generates 

a multi-target forecast of the entire molecular 

composition.  

 At the same time, taking advantage of the interplay 
between the chemical elements introduces methods for 

feature engineering. 

This is the remaining structure of the paper: Part 2 

explains the sources of the data used in the research, Part 3 

details the set of ML techniques that were employed, Part 4 

displays the outcomes, and Section 5 draws the final findings. 

2. Literature Review  
The article makes use of QM9 molecule datasets. They 

are a component of a bigger set of tools that can be used to 

speed up the process of creating accurate first-principles 

simulations of quantum-chemical systems.  

Masahiro Sato, Hajime Shimakawa, and Akiko Kumada 

[10] described the use of ML methods as well as domain 

knowledge about materials. Data-driven material research has 

achieved a model shift. Nevertheless, when working with 
small-scale experimental datasets, ML-based studies have 

repeatedly disregarded the intrinsic constraint of extrapolative 

performance-the ability to forecast unknown data. This work 

provides a full-scale standard for measuring extrapolative 

performance on twelve different organic molecular 

characteristics.  

When it comes to small-data properties in particular, an 

important level shows that traditional ML models degrade 

presentation significantly past the training distribution of 
property ranges as well as molecular structures. In order to 

tackle this problem, it provides QMex, a dataset of Quantum-

Mechanical (QM) descriptors, and ILR, an interactive linear 

regression model that uses interaction details among QM 

descriptors along with statistical data about molecular 

structures.  

The QMex-rooted ILR maintained its interpretability 

while achieving its existing extrapolative performance. To 
improve extrapolative predictions with short experimental 
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datasets as well as to uncover new materials or molecules that 

outperform current candidates, benchmark results, the QMex 

dataset, as well as the proposed model are useful possessions.  

Arghya Bhowmik, Tejs Vegge, Surajit Nandi, and Nandi 

[4] discussed that in the latest years, there has been a surge in 

the development of molecular ML methods, which has 
attracted more and more non-chemists to join the effort. This 

surge in activity is mostly due to the availability of well-

curated, large datasets. Among the large databases of small 

molecules with B3LYP functional molecular energies, the 

QM9 dataset stands out.  

The energies of these molecules, which were based on 

G4MP2, were subsequently reported. In order to facilitate a 

broad range of ML tasks involving QM9 molecules, such as 

transfer learning, multitask learning, delta learning, etc., a 

dataset containing QM9 molecule energies is expected using 

76 distinct DFT functionals as well as 3 distinct basis sets, 

resulting in 228 energy numbers per molecule. The reaction 
energies were given based on these 76 functionals along with 

basis sets and further included all potential A ↔ B 

monomolecular interconversions in the QM9 dataset. Finally, 

it includes the bond modifications for each of the 162 million 

reactions so that ML-based reaction energy prediction 

algorithms may take structure and bond information into 

account.  

Alain B. Tchagang and Julio J. Valdés [11] implemented 

the QM7b and QM9 molecule datasets, which have very 

distinct overall data structures, as shown via unsupervised 

analysis. In contrast to the former, which has a distinct two-
cluster structure, the latter is divided into an outside area that 

mostly contains outliers and an inner core region where 

clusters of inliner items are concentrated. For QM9, the 

outlier/inliner nature of a molecule is strongly related to its 

atomic number; thus, molecules with very few or very many 

atoms tend to be outliers, while molecules with an average 

number of atoms tend to be inliners and clustered.  

When creating predictive models for the de-novo 

molecules inverse design, it is important to consider these 

properties. There is a lot of duplication as the intrinsic 

dimension is much less than the dimension of the descriptor in 

both datasets. Even though they vary structurally, their 
qualities provide substantial predictive information on the 

molecular composition; for example, the original properties 

allow one to anticipate the atom count in the molecule 

properly. The predictive powers of embedding spaces with 

tiny dimensions are preserved.  

Gaul, Christopher, and Santiago Cuesta-Lopez [12] 

highlighted an ML model trained to efficiently along with 

precisely estimate the energies of a Molecular Structure’s 

Highest Occupied (HOMO) and Lowest Unoccupied (LUMO) 

orbitals. It incorporates a “Set2Set” readout module and is 

based on the SchNet model. When dealing with complicated 

values, the Set2Set module is superior to sum and average 

aggregation in terms of expressive capacity.  

A large majority of the earlier models have been trained 

and tested on relatively tiny molecules. As a result, the second 

contribution is to create a consistent train/validation/test split 
and to broaden the scope of ML algorithms to include bigger 

molecules from other sources. A multitask approach is 

developed as a third contribution to address the issue of 

sources originating from distinct theoretical levels.  

With the combined efforts of all three, the model’s 

precision approaches that of a chemical model. Because it is 

trained using the precise molecular geometries derived via 

DFT geometry optimisations, employing the existing model 

for such applications presents a problem. The structures 

produced by the generating algorithm will not have precise 

geometries, which might lead to the model making inaccurate 

predictions. Research on how the model’s accuracy is affected 
by noise in the input coordinates is therefore necessary. 

Improving the model’s training process by introducing 

random noise into the input geometries should fix the issue.  

Pande, Vijay S., Sinitskiy, and Anton V. [13] developed 

two methods for molecular system modelling that are quite 

efficient in practice. A physical technique for estimating the 

energies and electron densities of molecules is Density 

Functional Theory (DFT), the commonly employed quantum 

chemistry technique. The ML of molecular characteristics has 

also seen a flurry of recent publication activity.  

When compared to DFT, ML models have much lower 
computing costs and may achieve similar accuracy; 

nevertheless, their lack of physicality, which is a direct 

connection to quantum physics, restricts their use. The 

physicality and cheap computing costs of DFT and ML are 

combined in the proposed method. The generic equations for 

accurate electron densities and energies may be used to 

naturally direct ML applications in quantum chemistry. This 

is achieved by generalising the well-known Hohenberg-Kohn 

theorems.  

Utilising these equations as a foundation, a deep neural 

network is capable of outperforming existing DFT 

implementations in terms of speed and accuracy when it 
comes to computing the electron densities and energies of 

various organic molecules. Specifically, the average absolute 

error in the molecules energies containing eight non-hydrogen 

atoms was as little as 0.9 kcal/mol compared to the values 

obtained using CCSD (T). This is much lower than the errors 

seen when using DFT (down to around 3 kcal/mol on the 

matching molecule set) as well as ML (down to about 1.5 

kcal/mol). The proposed method outperforms past DFT 

functionals created by “human learning” in terms of the 

prediction of electron densities and energies. As a result, ML 
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grounded in physics has promising prospects for the 

impending modelling of far bigger molecular systems than is 

already achievable, with a degree of quantum chemical 

precision consistent with high-level theoretical predictions.  

S. Heinen, A. O. von Lilienfeld, and von Rudorff [14] 

discussed the optimisation of geometry, searching for 
transition states using legacy optimizers and using energies as 

well as forces anticipated in response Operator-based 

Quantum ML (OQML). Relaxation routes up to 5,500 

constitutional isomers with the sum formula C7H10O2 from 

the QM9 dataset for geometry optimisations.  

Reproducing the lowest geometry with an RMSD of 0.14 

Å is achieved by employing the obtained OQML models along 

with an LBFGS optimizer. On average, the findings from the 

MP2 reference differ by 14 cm for the convergent equilibrium 

geometries and 26 cm−1 for the transition state geometries, as 

determined by the following vibrational normal mode 

frequency analysis. An Amon-based extension might also be 
applied to OQML to make it more portable and adaptable to 

bigger reactants. The production of bigger and more reliable 

data sets in quantum chemistry, particularly for reaction 

studies, might benefit from OQML as well.   

Hoja et al. [15] described the QM7-X dataset, which 

comprises 42 physicochemical attributes for about 4.2 million 

non-equilibriums as well as equilibrium structures of minor 

organic molecules, including up to seven non-hydrogen atoms 

(C, O, N, S, and Cl). The global (molecular) as well as local 

(atom-in-a-molecule) QM7-X properties, which were 

calculated at the strictly convergent quantum mechanical 
PBE0+MBD level of theory, range from ground state 

quantities to response quantities. QM7-X will be an essential 

component of next-generation ML models for exploring larger 

areas of CCS and designing molecules with desired properties 

through the provision of a comprehensive, organised, along 

tightly converged dataset of physicochemical properties 

computed by quantum mechanics.  

Dominik Lemm, O. Anatole von Lilienfeld, and Mario 

Falk von Rudorff [16] describe the long-standing issue in 

physics, biology, chemistry, as well as materials science with 

the computer prediction of atomic structure. The traditional 

approach to structure determination, using force fields or ab 
initio approaches, involves energy reduction, which may be 

computationally intensive or yield approximations.  

Synthetic large data sets that account for chemical space 

with atomic resolution cannot be generated due to this 

accuracy/cost trade-off. The Graph-to-Structure (G2S) ML 

model uses implied correlations between calm structures in 

training data sets to generalise across compound space and 

infer interatomic distances for out-of-sample compounds. This 

allows us to reconstruct coordinates directly, avoiding the 

traditional energy optimisation problem. Successful 

predictions for systems that normally need human 

intervention, enhanced initial estimates for future 

conventional ab initio-based relaxing, along input creation for 

the usage of structure-routed quantum ML models are all 

examples of testing G2S’s applicability. 

3. Proposed Methodology 
Figure 1 shows the system architecture that the study 

employed for this procedure. Before entering the model search 

phase, the data undergoes preprocessing and specialised 

feature engineering. In order to perform feature engineering 

activities, robust feature selection and generation methods 

were pre-selected, and the search algorithm did not have to 

include the simple standardisation that was necessary for 
preprocessing the QM9 data. Consequently, GNN is used for 

the prediction of molecular characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1 Proposed model search process architecture 

3.1. Data 
The chemical formulas for the compounds (QM9) include 

133,885 organic molecules, with each molecule containing Nt 

= 5 of the subsequent elements: Carbon (C), Oxygen (O), 

Nitrogen (N), Hydrogen (H), as well as Chlorine (Cl). They 
stand in for the goals of the model in inverse design methods. 

The molecules are defined by Nv =19 electronic attributes that 

are calculated using quantum chemistry methods and include 

geometric, energy, electronic, and thermodynamic properties. 

In contrast to the QM7b data, which does not include any 

constitutional isomers, QM9 has 6095 of them out of 134k 

molecules. Results for a related, consistent, as well as 

exhaustive chemical space of tiny organic molecules are 

shown in Table 1 and are believed to be provided by this 

dataset in terms of highly precise quantum chemical 

characteristics. 
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Table 1. QM9: molecules properties 

Index 
Molecular 

Property 
Explanation 

1 g298_atom 
298.15K Free Atomisation 

Energy 

2 u298_atom 298.15k Atomization Enthalpy 

3 u0_atom Atomization Energy at 0K 

4 cv Heat Capacity 

5 g298 298.15K Free Energy 

6 h298 298.15K Enthalpy 

7 u298 298.15K Internal Energy 

8 u0 Internal Energy at 0K 

9 zpve Zero-Point Vibrational Energy 

10 r2 Electronic Spatial Extent 

11 Gap 
Difference among HOMO as 

Well as LUMO 

12 LUMO 
Lowest Unoccupied Molecular 

Orbital 

13 HOMO 
Highest Unoccupied Molecular 

Orbital 

14 Alpha Norm of Static Polarizability 

15 Mu Norm of Dipole Moment 

16 C Rotational Constant 

17 B Rotational Constant 

18 A Rotational Constant 

3.2. Preprocessing 

QM9 dataset uses different units of measure to convey the 

original features of the data. A wide range of statistical and 

ML approaches are susceptible to biases introduced by 

variables evaluated at various scales, which do not contribute 

equally to the study. This research preprocessed all datasets by 

transforming the unique property values into z-scores to 

ensure the values were similar and to remove any potential 

bias. This is completed before applying the ML algorithms 

defined in the next section. By stating all attributes in the same 

measure unit (variance), eliminate the source of bias by giving 
the new variables a unit variance and a zero mean. Then, 

randomly split the 133,885 items from the QM9 dataset into a 

training set of 90,120,496 objects and a testing set of 13,389 

objects to create predictive models using supervised ML 

techniques. 

3.3. Feature Selection 

A plethora of descriptive properties characterize the 

datasets under consideration here, as is true with many real-

world datasets. Unexpectedly, many of them are either 

unrelated to the task at hand (regression or classification) or 

too noisy. Many ML algorithms are known to show a drop in 

accuracy when dealing with feature sets that are too big, 

especially when the number of variables is far larger than what 

is considered ideal. Not to mention the more mundane 

concerns of making algorithms slower and consuming more 

processing resources.  

Markov chain-based approaches have successfully solved 
the rank aggregation issue. The provided (partial) lists form 

the basis of their transition probabilities, while the chain states 

signify the candidates requiring ranking. The feature space is 

the amalgamation of state sets ordered by different selection 

methods, as well as the method searches for a stable delivery 

of transition probabilities. When the chain’s current state is 

feature P, the MC4 Markov version employs the following 

procedure to select the next state:  

1. Choose a feature Q uniformly from the amalgamation of 

every list ranked by the assortment methods;  

2. If τ(Q)<τ(P) for the lists majority that rank both P along 

with Q, then move to Q; otherwise, remain in P.  

Copeland proposed selecting candidates according to 

their win rate in pairwise majority contests; this chain expands 

on that idea. In addition to improving previously proposed 

algorithms, the Markov chain technique can handle 

incomplete lists of candidates (features). It also beats other 

classical rank aggregation methods on the most popular 

criteria while being computationally efficient. This article 

employs the MC4 rank aggregation approach. 

3.4. Prediction 

GNNs and other new methods have recently made it 

possible to automatically extract useful characteristics from 
molecular networks, doing away with the need for the time-

consuming and error-prone process of manually creating 

descriptors. Generally, ML algorithms have been used for this 

process so far. However, this work makes use of the GNN 

technique, which effectively predicts the structure.  

Beyond simply the end-to-end learning of a data-driven 

molecular representation, a GNN technique has further 

advantages. Expand the model to incorporate atomic pairwise 

distances and other minuscule information. Here, construct a 

more accurate and reliable molecular predictor. GNNs 

generally adhere to a recursive neighborhood aggregation 

approach.  

In forward propagation, the hidden states of neighboring 

nodes are aggregated and transformed iteratively to update the 

node state. In the forward propagation step of Graph 

Convolutional Networks (GCN), for instance, a hidden state 

is updated in Equation (1). 

ℎ𝑣
(𝑙+1)

= 𝜎 (∑
1

𝐶𝑣𝑤
𝑤𝜀𝑁𝑉

𝑊1
(𝑙)

ℎ𝑤
(𝑙)

+ 𝑊0
(𝑙)

ℎ𝑣
(𝑙)

)       (1) 
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In this context, ℎ𝑣
(𝑙)

 represents the hidden state of node 𝑣 

at the 𝑙-th layer, 𝑊(𝑙)stands for trainable weight, 𝜎 suggests 

an activation function like ReLU, 𝑐𝑣𝑤  is a normalization 

constant like 𝑐𝑣𝑤 = √𝑑𝑒𝑔(𝑣)𝑑𝑒𝑔(𝑢) and 𝑑𝑒𝑔(𝑣) is the 

degree of node 𝑣 . A lot of work has gone into making GNNs 

more expressive inside the recursive aggregation framework 

[17]. 

4. Results and Analysis  
In order to assess how well the proposed strategy works, 

this part does an analysis along with some comparisons. Table 

2 and Figure 2 provide the findings for the QM9 testing sets. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 2 Relationship among the predicted as well as actual atoms counted 

in the data for the molecule set with every feature in the QM9 testing set 

Table 2. The atom count in a molecule is predicted using regression tree 

models for QM7b 

Features MSE MAE RMSE R 
No. of 

Rules 

Original 19 0.0061 0.0315 0.0781 0.9997 46 

Generated 2 0.8917 0.3382 0.9443 0.9475 358 

Table 3 demonstrates that the molecular weight 

predictability is quite good when incorporating all original 

features. Anticipate the models derived from embedding 

spaces to be more intricate than those derived from the original 

features based on the feature space values. 

Table 3. Evaluation of the molecular weight’s predictability using both 

the original qualities and the derived features 

No. of Features Gradient Gamma Vratio 

2 5.7763 8.9940 0.1571 

5 136.8410 0.0918 0.0016 

10 122.7370 0.0836 0.0015 

19 Original 0.1140 0.1160 0.0020 

Table 4 includes metrics including the Mean Absolute 

Error (MAE), coefficient of determination (R2), Root Mean 

Squared Error (RMSE), as well as Mean Squared Error (MSE) 

to guarantee compatibility with the proposed technique. 

Table 4. Performance metrics with 19 properties 

 Metrics (19 Properties) 

MSE RMSE MAE Molecule R2 Time (h) 

0.0032 0.0571 0.0065 97.81% 0.9941 23.50 

 Acc (19 Properties) 

Carbon Hydrogen Nitrogen Oxygen Fluoride Time (h) 

99.72% 98.47% 99.38% 99.79% 95.75% 23.50 

Table 5 shows the testing set results for forecasting 

atomic composition employing all 19 original attributes. The 

model shows extremely excellent quality since all error 

measures were tiny, as well as the R2 value in particular. In 

addition, there was no overfitting, as the testing and training 
mistakes were almost identical. It calculated the specific 

accuracies of the chemical elements. All of the element-wise 

accuracies are quite high; the bottom one is for fluoride 

(95.75%), which is already very high. This model also obtains 

very high accuracy (97.81%) for predicting the complete 

molecule composition. Using the electronic characteristics of 

molecules as inputs, this method enables highly precise 

composition calculations. 

Table 5. Testing set performance for forecasting atomic composition 

with 10 characteristics 

 Metrics 

MSE RMSE MAE Molecule R2 Time (h) 

0.0025 0.0520 0.0052 99.52% 0.9939 23.40 

 Acc 

Carbon Hydrogen Nitrogen Oxygen Fluoride Time (h) 

99.80% 98.52% 99.48% 99.86% 95.45% 23.40 

Table 6 provides the results obtained from the finest 

discovered model and also illustrates the model search 

procedure based on the 10 specified features. There are 

irrelevant properties, noise, and detrimental interactions in the 

initial collection of properties because the model quality 

metrics are healthier than the ones produced when considering 

entire features. There is a statistically significant difference 

between utilizing all features and using 10 features for most 
targets, suggesting that employing 10 features improves 

prediction accuracy. Due to the similarity between the training 

and testing errors, the improvement achieved while utilizing 

the specified features cannot be attributed to overfitting. 
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Table 6. Comparison table 

Methods MSE RMSE Acc (%) 

Proposed 0.0025 0.0520 99.52 

Valdés et al. [18] 0.0027 0.0522 99.49 

GNN 0.0030 0.0528 98.04 

Various approaches’ performance parameters are 

compared in Table 6. Compared to other models like GNN and 

the ensemble method in [18], the proposed model seems to 
perform better across all parameters. On the QM9 dataset, the 

proposed model has an accuracy of about 99.52%. With a 

performance gap of 0.03%, this model beats GNN by 1.50% 

[18].  

The MSE of the proposed model is 0.0025, which is 8% 

better than the model in [18] and 20% better than the GNN 

model. The RMSE of the proposed model is 0.0520, which is 

0.38% better than the model in [18] and 1.53% better than the 
GNN model. This improvement in the proposed model is due 

to the use of a feature engineering section along with the 

prediction model. 

5. Conclusion 
For QM9, the outlier/inliner nature of a molecule is 

strongly related to its atomic number; thus, molecules with 

very few or very many atoms tend to be outliers, while 

molecules with an average number of atoms tend to be inliners 

and clustered. When creating predictive models for the inverse 

design of denovomolecules, it is important to consider these 

features. There is a lot of duplication as the intrinsic dimension 

is much less than the descriptor dimension. Even though they 

vary structurally, their qualities provide substantial predictive 

information on the molecular composition; for example, the 

original properties allow one to anticipate the number of atoms 

in the molecule properly. Predictive powers are preserved 
even in embedding environments of low dimension.  

Supporting the proposed method, models that predicted 

the atomic composition of molecules for the QM9 dataset 

utilizing all electronic attributes as predictors performed very 

well per all major model quality criteria. Hence, the proposed 

GNN approach with feature selection and preprocessing 

proved to be better than the other existing approaches. 
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