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Abstract - Ensuring the reliability and safety of electrical systems necessitates constant inspections. However, manual 

inspections pose risks, are time-consuming, and are impractical for real-time monitoring. This paper presents a novel, non-

invasive, and efficient approach for automated electrical system anomaly detection using deep learning and thermal image 

processing. We have proposed a Convolutional Neural Network (CNN) based framework utilizing the well-established 
GoogLeNet and other deep learning-based architecture to classify thermal images of electrical systems as “normal” or 

“abnormal.” This framework achieves a high accuracy of 99% in anomaly detection, surpassing traditional methods and paving 

the way for real-time monitoring and early fault identification. 
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1. Introduction: Prologue to IRT Imaging 
Ensuring the uninterrupted operation and safety of 

electrical systems is important. To achieve this, regular 

inspections are an absolute necessity. However, the 

traditional method of relying solely on manual inspections 

comes with significant drawbacks.  Firstly, these inspections 

can be inherently risky to the personnel conducting them, as 

electrical systems can pose hazards of shock, arc flash, and 

other dangers [1]. Secondly, manual inspections are 

inherently time-consuming, requiring technicians to visit and 

meticulously examine each component within a system 

physically. This can lead to delays in identifying potential 

problems and hinder overall maintenance efficiency [2].  

Finally, the very nature of manual inspections makes 
them impractical for achieving real-time monitoring of 

electrical systems.  Continuous monitoring is crucial for 

catching problems early on and preventing catastrophic 

failures, but traditional methods simply cannot provide this 

level of vigilance. These limitations of manual inspections 

highlight the need for innovative and more efficient solutions 

addressed in this paper.  

1.1. Emergence of Manual IRT Image Analysis Techniques 

Advancements in technology offer a promising solution 

to the limitations of manual visual inspections. Infrared 

thermal (IRT) imaging has emerged as a powerful, non-
invasive alternative for inspecting electrical systems. Unlike 

manual inspections that require physical contact, IRT uses 

specialized cameras to capture the temperature distribution of 

electrical components [3]. This thermal fingerprint can reveal 

hidden problems invisible to the naked eye. Hotspots, often 

indicative of loose connections, overloaded circuits, or failing 

components, become readily apparent in IRT images [4]. By 

detecting these thermal anomalies early on, IRT imaging 
offers a proactive approach to preventing electrical fires and 

ensuring system uptime.  

Figure 1 illustrates the visual depiction of the electrical 

system’s bus bar, while Figure 2 presents its corresponding 

thermal image. Notably, Figure 2 reveals the presence of 

conspicuous hotspots, suggestive of irregularities within the 

system. These anomalies, commonly attributed to loosened 

connections, demand prompt investigation and remedial 

actions to uphold operational efficiency and safety standards. 
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1.2. Limitations in Traditional Manual IRT Image Analysis 

Techniques 

In Traditional manual IRT Techniques, engineers 

painstakingly identified specific characteristics like statistical 

properties or texture patterns that could potentially indicate 

anomalies. Thus, there remained a crucial hurdle in effectively 
analyzing the wealth of data captured in IRT images.  

While skilled inspectors utilized their experience to 

interpret thermal patterns, this approach was inherently 

subjective and prone to errors.  Factors like fatigue or limited 

experience can lead to missed anomalies or misinterpretations, 

potentially delaying critical maintenance actions [5]. This 

underscores the need for a more objective and automated 

approach to analyzing IRT data, paving the way for a new era 

of electrical systems in inspection and maintenance.  

1.3. Emergence of Automation in IRT Image Analysis 

Technique 

There aroused a critical need for an automated and 
reliable technique that can analyze IRT images and accurately 

detect abnormalities within electrical systems.  

1.4. Initial Automation-Based Method Used in IRT Image 

Analysis Technique  

The traditional automation method used for the analysis 

of IRT images was the method of detecting hotspots directly. 

Hotspot extraction from HSV images involved converting the 

thermal image to the HSV format and then concentrating on 

the hue matrix. Each pixel value in the hue matrix represents 

a color value, enabling engineers to segment hotspots from 

the image based on color indexing. At the same time, this 
method served as a conventional means of feature extraction. 

Another technique utilized for extracting hotspots from 

thermal images involves leveraging the Hue Concentration 

values in terms of the HSV color model. In the HSV 

modeling, colors are represented by three components: Hue, 

Saturation, & and brightness value. Hue maps to the type of 

color (e.g., green, yellow), saturation indicates color gravity, 

and value determines the brightness.  

By utilizing the HSV model, particularly the hue 

component, engineers can focus specifically on color 

information without being affected by variations in brightness 

or saturation. This approach is beneficial for various image 
processing tasks, including color-based object detection, 

image segmentation, and analysis of color patterns within an 

image.  

Figure 3 and Figure 4 depict the RGB coordinates s-

model and the HSV coordinates s-model, respectively, 

showcasing the transition from one color space to another for 

image analysis purposes. The RGB or HSV values pixel by 

pixel clearly depict the hotspot areas. 

 

 

 

 

 

 
 

 

 

1.5. Limitations in the Initial Automation Based Method 

Used in the IRT Image Analysis Technique  

HSV-related approaches are time-consuming, labor-

intensive, and heavily reliant on the expertise of the engineers 

involved. Hand-crafted feature extraction was involved.  

Moreover, these methods often struggled to capture the 

intricate and nuanced relationships between thermal patterns 

and underlying electrical issues, leading to limitations in 

accuracy and effectiveness. 

1.6. Novelty Proposed in this Research Paper 

Considering all these gaps and shortfalls of both 

traditionally used manual and automated methods in IRT 

image analysis. It necessitates a solution that goes beyond the 

limitations of both-a solution in which machine intervention 

is a must. Thus A novel deep learning-CNN method has been 

proposed in this paper for overcoming these challenges and 

implementing the same for automatic anomaly detection in 

IRT images.   

1st section of the article justifies the requirement of IRT 

image analysis techniques and its prologue of image 
processing so far. 2nd section elaborates on the Emergence of 

the proposed deep learning CNN method and its concepts. 3rd 

part of this paper reflects the research methodology 

implemented by us. 4th phase of the paper depicts the 

experimental results, and finally, 5th section concludes the 

proposal, leaving an insight for the researcher to work upon. 

It promises to be more objective and consistent than human 

analysis, reducing the risk of errors. 

Additionally, it has the potential to be significantly faster 

and more scalable, enabling real-time monitoring of electrical 

systems. By automating the analysis process using machine 

learning techniques, especially with this CNN-based 
framework, offers several advantages. Ultimately, this 

research aims to pave the way for improved safety, efficiency, 

and predictive maintenance practices in the critical domain of 

electrical systems by incorporating strategies to mitigate the 

influence of environmental factors, enhancing the robustness 

of this approach. This research holds the potential to improve 

the effectiveness remarkably and faith-fullness of IRT-based 

anomaly detection in electrical systems, paving the way for 

improved safety, efficiency, and predictive maintenance 

practices. 

Hue 

Saturation 

1 

Value 

0 

0 
1 

G 

B 
R 

Fig. 3 RGB color space model Fig. 4 HSV color space model 



Sajid Patel et al. / IJEEE, 11(4), 240-253, 2024 

242 

2. Emergence of CNN 
Contemporary advancements in deep learning, 

particularly Convolutional Neural Networks (CNNs), have 

opened doors for more robust, automated and less time-

consuming solutions.  

Several studies have explored this potential: In the field 

of deep learning for IRT image analysis, relevant research is 

already underway. For example, Kim et al. (2021) represented 

a promising strategy for sustainable fault detection in 

electrical facilities [6]. Their method leverages object 

detection algorithms specifically trained on a large collection 

of IRT images. This training empowers the algorithms to 

identify specific objects within the images, potentially 
corresponding to electrical components. By analyzing the 

presence, absence, or condition of these objects, their 

approach aims to detect faults within the electrical system. 

The success of Kim et al.’s work exemplifies the potential of 

deep learning for automated anomaly detection in IRT 

images. 

Building on the promise of Kim et al.’s (2021) research, 

Ukiwe et al. (2023) conducted a substantial recapitulations of 

Infrared waves dependent Thermography imaging, i.e. IRT 

images based electrical equipment supervisions [7]. Their 

review serves to underline the growing importance of IRT as 
a valuable tool and underscores the emerging trend of deep 

learning-based approaches within this field. This surge in 

deep learning applications signifies a growing recognition of 

its potential to revolutionize the way to analyze IRT data and 

automate anomaly detection in electrical systems. 

While Kim et al. (2021) explored object detection and 

Ukiwe et al. (2023) highlighted the rise of deep learning, it is 

important to acknowledge earlier efforts that paved the way 

for these advancements. Chellamuthu and Sekaran (2019) 

employed a machine-learning approach for fault diagnosis in 

electrical systems using IRT images [8]. Their work involved 

a two-step process: first, manually extracting relevant features 
from the images, such as temperature variations or spatial 

patterns. These features were then subjected to a Support 

Vector based Machine (SVM) algorithm for categorization or 

classification, allowing them to differentiate between normal 

and abnormal conditions.  This research, while relying on 

traditional machine learning techniques, demonstrates the 

potential of automated approaches for analyzing IRT data and 

lays the groundwork for the more sophisticated deep learning 

methods explored in recent years. 

Continuing the trend towards automation, Yuan et al. 

(2019) took a significant step by introducing Convolutional 
Neural Networks (CNNs) for state detection in electrical 

equipment using IRT images [9]. Unlike Chellamuthu and 

Sekaran’s (2019) method that relied on manual feature 

extraction, CNNs possess the remarkable capability to learn 

these features in automated mode from the data itself. In their 

study, Yuan et al. achieved high accuracy on a limited dataset, 

showcasing the power of CNNs for anomaly detection in IRT 

images. However, their work also emphasizes the need for 

further exploration, particularly in expanding the dataset size 

to enhance the generalizability and robustness of the CNN 
model. This paves the way for this research, which builds 

upon these advancements by proposing a CNN-based 

framework for anomaly detection in IRT images and 

addressing the limitations of dataset size. 

Despite the promising advancements in IRT-based 

anomaly detection, several challenges remain. As highlighted 

by studies like Ukiwe et al. (2023) [7] and Chellamuthu and 

Sekaran (2019) [8], limitations exist in both traditional 

machine learning and deep learning approaches. All these 

approaches leverage the immense capability of CNNs to learn 

complex patterns from large datasets of thermal images.  

 2.1. Challenges Posed by Deep Learning-Based CNN  
 2.1.1. Feature Extraction Challenges 

Extracting meaningful features from Infrared 

Thermography (IRT) images poses a significant challenge 

due to various inherent characteristics. One such challenge 

arises from the tendency of temperature data to cluster around 

the center of the images, which can obscure subtle variations 

and anomalies present in the peripheral areas. Additionally, 

IRT images often exhibit low contrast, further complicating 

the identification and extraction of relevant features. These 

complexities compound the difficulties in performing tasks 

such as image segmentation and feature engineering, which 
are crucial for anomaly detection.  

Moreover, traditional machine learning methods face 

limitations in handling these challenges, as they often require 

large training datasets and may struggle with generalizing to 

unseen data. Furthermore, these methods heavily rely on 

hand-crafted features, which may not encompass the full 

spectrum of anomalies present in the data, thus diminishing 

their effectiveness. Figure 5 illustrates this contrast by 

showcasing an original thermal image alongside a contrast-

enhanced thermal image, highlighting the challenges posed 

by low contrast in feature extraction and analysis processes. 

 
 

 

 

 

 

 

 

 

 
Fig. 5 Original thermal image vs Contrast thermal image 
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2.1.2. Environmental Sensitivity   

Infrared Thermography (IRT) measurements, while 

valuable for anomaly detection, are vulnerable to a range of 

environmental factors that can distort the data. Factors such 

as ambient temperature fluctuations, humidity levels, wind 

speed, and solar radiation exposure all contribute to 
introducing noise and inconsistencies into the thermal images 

captured. These environmental variables can obscure genuine 

anomalies within the data and affect the accuracy and 

reliability of anomaly detection algorithms. Researchers face 

a continual challenge in mitigating the influence of these 

external factors to develop robust IRT-based anomaly 

detection systems capable of providing accurate assessments.  

Figure 6 provides a visual representation of this 

challenge, depicting a comparison between a noisy thermal 

image and a filtered thermal image, highlighting the impact 

of noise reduction techniques in enhancing the clarity and 

reliability of the data for more effective anomaly detection. 
These limitations underscore the need for innovative 

solutions that can overcome the feature extraction challenges 

and environmental sensitivity issues inherent to IRT-based 

anomaly detection in electrical systems.  

 

 

 

 

 

 

 
 

 

 

 
Fig. 6 Noisy thermal image vs. Filtered thermal image obtained from 

laboratory setup 

As highlighted by Ukiwe et al. (2023) [7], the inherent 

characteristics of IRT images, such as the over-centralized 

temperature distribution and low-contrast nature, often pose 

significant challenges in traditional feature engineering 

processes. Deep learning circumvents this hurdle by 

automatically learning the most discriminative features from 
the data, potentially leading to more robust and generalizable 

anomaly detection models. 

2.2. Related Existing Work 

Extensive research has been conducted on anomaly 

detection in electrical systems using infrared thermography 

(IRT) images. This section reviews relevant studies, 

highlighting existing approaches, limitations, and potential 

areas for advancement. 

2.2.1. Traditional Machine Learning 

Several studies have explored techniques like Support 

Vector Machines (SVMs) and feature extraction algorithms 

for IRT anomaly detection [6-8]. While these methods offer a 

foundation for automation, they often rely on hand-crafted 

features, which can be labour-intensive to design and may not 

capture the full complexity of IRT data. 

2.2.2. Object Detection Methods 

Recent works have investigated the application of object 

detection algorithms like Faster R-CNN and YOLOv3, 

Machine Learning for identifying anomalies in IRT images 

[6]. While promising, these methods might require large 

training datasets and potentially struggle with the specific 

challenges of IRT images, such as low-intensity contrast and 

over-centralized temperature distribution. Faster RCNN & 
Yolo V3 uses CNN; accuracies are reduced and affected by 

Environmental sensitivity and feature extraction. Novel deep 

learning-based methods like simple deep learning, Ras-net, 

and Google paper have applied deep learning-based 

methodologies like Simple Deep learning, Google net and 

Ras-net to improve accuracy and training time reductions, 

overcoming the previously discussed limitations of CNN.

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 7 Process flow diagram of the proposed abnormality detection system 
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3. Research Methodology  
Figure 7 presents a comprehensive flow diagram 

outlining the key stages of the concept at large. This portion 

provides a detailed overview of the research technique 

employed to develop and evaluate the proposed deep learning-

based framework for IRT anomaly detection in electrical 

systems, through the same. 

3.1. Data Acquisition 

IRT images are gathered from various sources, 

encompassing diverse electrical components like 

transformers, wires and solar panels. These images depict both 

normal and abnormal conditions, ensuring a balanced dataset 

for model training. 

3.1.1. Selection of Electrical Equipment 

This study focuses on the development of a deep learning 

framework for anomaly detection in electrical systems using 

Infrared Thermography (IRT) images. Three prominent 

electrical components were chosen for analysis: 

Current-Carrying Conductors 

These conductors are essential for transmitting electrical 

current within a system and are susceptible to overheating due 

to high resistance or loose connections, potentially leading to 

safety hazards. 

Transformer Porcelain Insulators 
 These insulators provide electrical isolation between 

various components within a transformer and can develop 

cracks or delamination due to ageing or environmental factors, 

compromising their insulating properties and posing a risk of 

electrical breakdown. 

Solar Panels 

Solar panels are subject to various potential defects, such 

as hot spots caused by micro-cracks or faulty connections, 

which can significantly impact their energy conversion 

efficiency. These diverse components represent commonly 

encountered electrical equipment with varying failure modes, 

allowing for a comprehensive evaluation of the proposed 
framework’s generalizability. 

3.1.2. Setup for IRT Image Acquisition of Selected Equipment  

  For each chosen electrical component type, a dataset of 

100 to 100.0 IRT images must be captured, with 50% of 

images depicting normal conditions and 50% representing 

abnormal conditions. The image acquisition process involves 

the following steps: 

3.2. Image Preprocessing 

Format of captured images should be saved in JPEG 

format for efficient storage and subsequent processing. Figure 

8, Figure 10, and Figure 12 showcase the sum of sample 

normal or Non IRT images of various electrical system 

components like current-carrying conductors, Transformer 

insulators, and solar panels.  Figure 9, Figure 11, and Figure 

13 are the thermal image samples in abnormal conditions, 

corresponding to the Electrical Conductor, Transformer 

Insulator, and Solar Panel, respectively, used in 

experimentation. These images provide a visual representation 

of the anomalies which the proposed technique aims to detect 
within IRT images of electrical components. 

3.2.1. Transfer and Storage 

Images were transferred to a computer for further 

processing and analysis. Essential preprocessing steps are 

applied to the acquired IRT images to enhance their quality, 

consistency, and suitability for model training.  

These steps aim to standardize image dimensions: All 

images are resized to a uniform resolution to ensure.consistent 

input size for the deep learning model. This facilitates efficient 

processing and reduces computational complexity during 

training. 

 

 

 

 

 

       

        

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 
 
 
 
 

 
 

 
 

          

3.3. Feature Extraction 

It includes the following processing stages on IRT 
images.          

~32.7 °C 33.7 

27.5 FLIR 

Fig. 8 Live current-wire Fig. 9 Transformer 

Fig. 10 Solar panel Fig. 11 Test-thermal image of 

wire 

Fig. 12 Thermal image of 

insulator 
Fig. 13 Test-thermal image of 

panel 



Sajid Patel et al. / IJEEE, 11(4), 240-253, 2024 

245 

3.3.1. Normalize Pixel Values 

Pixel values within the images are often scaled to a limit 

of 0-1 or -1 to 1) to refine the convergence factor as well as 

stabilize the training process. This normalization step helps 

mitigate the impact of varying pixel intensity levels across 

different images. 

3.3.2. Data Augmentation (Optional) 

To artificially expand the dataset and enhance model 

generalizability, data augmentation techniques may be 

employed. This involves introducing controlled variations to 

the existing images, such as random cropping, flipping, or 

adding noise. These variations create new “virtual” examples 

that the model can learn from, improving its ability to handle 

unseen data during prediction. 

3.4. Model Development and Training 

This section details the process of developing and training 

the deep learning model for IRT anomaly detection 

3.4.1. Model Selection and Architecture 
GoogLeNet, a well-established CNN architecture known 

for its performance in image classification tasks, was chosen 

as the basis for the proposed framework. 

3.4.2. Training Configuration 

This subsection describes the essential hyperparameters 

and settings used for training the deep learning model in     

Table 1: 

Table 1. Training configuration 

Epoch 6 

Iteration 252 

Frequency 42 Iteration per epoch 

Hardware System Single C.P.U. 

Learning-Rate-Schedule Constant 

Learning-Rate 0.0003 

 

Minibatch Size 

This parameter defines the number of images processed by 

the model during each training iteration. Choosing an 
appropriate minibatch size balances computational efficiency 

and gradient estimation accuracy. 

Number of Epochs 

An epoch idealizes one full pass through the total dataset 

used for training. The epoch’s number reflects the number of 

times the learning model iterates through the total training data 

and its influence on the learning process. 

Learning Rate 

This value controls the magnitude of updates applied to the 

weights of the model and biases amidst training. A suitable 

learning rate helps the model converge effectively and avoid 

getting stuck in local minima. 

Validation Parameters 
These parameters specify the frequency and data source 

used for validation during training. Supervising the Behaviour 

of the model with respect to its performance parameters on a 

dedicated validating set helps prevent overfitting and ensures 

generalizability to unseen data. Figure 14 depicts the training 

progress of the Convolutional Neural Network (CNN) model 

implemented in MATLAB software. This plot typically 

visualizes two key metrics: training accuracy and training loss 

across training epochs.  

Training Accuracy 

This metric reflects the percentage of true projections 

made by the model on training data during each epoch. Ideally, 
the training accuracy should increase steadily as the model 

learns and refines its parameter labels during the training 

process. Lower training loss signifies the model’s increasing 

capability to learn and fit the data of training. The specific 

values chosen for these hyperparameters were carefully 

selected based on the following: 

Network Architecture 

The chosen GoogLeNet architecture has inherent 

characteristics that inform appropriate hyperparameter 

selection. 

Training Loss 
This metric represents the divergence between the 

model’s projected outputs and ground truth.  

Dataset Size and Complexity 

The size and complexity of the IRT dataset influence the 

optimal hyperparameter settings. 

Network Architecture 

The chosen GoogLeNet architecture has inherent 

characteristics that inform appropriate hyperparameter 

selection. 

Desired Training Time and Accuracy 

Balancing training speed and achieving the desired 

accuracy involves careful selection of hyperparameters. 

3.4.3. Training Process 

The pre-trained GoogLeNet model was employed as a 

starting point for the training process. This practice, known as 

transfer learning, leverages existing knowledge acquired from 

a vast dataset and adapts it to the specific critical task of IRT 

anomaly detection. 
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Fig. 14 Plot of CNN training progress in MATLAB software        

The training process involves the following steps: 

Fine-Tuning 
The pre-trained model’s final layers, specifically those 

responsible for classification, are fine-tuned on the prepared 

IRT dataset. This fine-tuning process adjusts the weights and 

biases of these layers to learn the specific patterns and features 

relevant to the anomaly detection task. 

Optimization 

An appropriate optimization algorithm, such as 

Stochastic Gradient Descent (SGD), is used to upgrade the 

model’s parameters, including weights and biases, while 

training. This optimization process targets to alleviate the loss 

function, which computes the model’s prediction error on the 

training data. 

Hyperparameter Tuning 

Hyperparameters, such as the learning rate and batch size, 

are crucial for effective training. These hyperparameters are 

carefully selected or tuned using techniques like grid search or 

random search to achieve optimal model performance. Upon 

completion, the trained model was saved for further analysis 

and evaluation. 

3.4.4. Performance Evaluation 

Following the training process, the model’s performance 

was rigorously evaluated on an unseen validation set. This set 

consisted of 90 IRT images (15 per category: normal and 

abnormal) not used during training. This evaluation aims to 

assess the model’s capability to standardize unseen data and 

avoid overfitting the training data. 

3.5. Model Testing 

The trained model, loaded from the 

“Retrained_GooglenetCNN.mat” file, was used to predict 
labels (normal or abnormal) for the validation set images. 

These predicted labels were stored for further analysis. 

3.5.1. Performance Metrics 

The evaluation process involved calculating various 

performance metrics to quantify the model’s effectiveness: 

Accuracy 

This metric represents the overall proportion of correctly 

classified images across both normal and abnormal categories. 

It is evaluated as the ratio of the sum of TP and TN to the total 

number of test images: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
( 𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒𝑠
  

 

Precision 

This metric quantifies the proportion of correctly 

recognized anomalies among the images predicted as 
abnormal by the model. It is evaluated mathematically by  

ratio of TP to the sum of TP and FP: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  

 

Recall  
This metric reflects the model’s capability to detect all 

real-time anomalies within the test set. It is evaluated as the 

ratio of TP to the sum of TP and False Negatives (FN): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  

F1-Score 
This parameter reflects a harmonic mean of both 

achieving precision and recalling rate, offering a 

proportionated view of the model’s performance. It is realized 

as: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
  

These metrics provide crucial insights into the model’s 

strengths and weaknesses, enabling a comprehensive and 

objective evaluation of its suitability for IRT anomaly 

detection. 

3.5.2. Confusion Matrix 

A confusion matrix is employed to visualize the model’s 

performance by presenting the distribution of correct and 

incorrect predictions across different categories. 

True-Positives (TP): These indicate correctly classified 

abnormal images. 

True-Negatives (TN): These indicate correctly classified 

normal images. 

False-Positives (FP): These indicate normal images 

incorrectly classified as abnormal. 

False-Negatives (FN): These indicate abnormal images 

incorrectly classified as normal. 

Table 2 presents a confusion matrix of a simple deep 

learning method, one of the result tables obtained during the 

comparative analysis of our proposed methods, which is a 

valuable tool for evaluating the performance of a classification 

model. The model classifies thermal images of electrical 

system components as either “normal” or “abnormal.” The 

confusion matrix organizes the results of this classification 

process into a table format. 

Understanding the Confusion Matrix 
Rows: The row reflects the actual ground truth or 

class/category labels of images (“Normal” and “Abnormal”). 

Columns: The column reflects classes or categories 

predicted by the model. i.e. “Normal” and “Abnormal”. 

Table 2. Confusion matrix for simple deep learning 
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Accuracy:33.33%, Precision:66.67%, Recall:16.67%, F1 Score:10.00% 
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Diagonal Elements 

Ideally, the highest values should appear on the diagonal 

elements (e.g., “True Normal” classified as “Predicted 

Normal” and “True Abnormal” classified as “Predicted 

Abnormal”). These values represent correct classifications. 

Off-Diagonal Elements 
Off-diagonal elements indicate errors made by the model. 

For example, a value in the “True Normal” row and “Predicted 

Abnormal” column signifies an image with a normal condition 

being incorrectly classified as abnormal (false positive). 

Conversely, a value in the “True Abnormal” row and 

“Predicted Normal” column represents an abnormal image 

being misclassified as normal (false negative). 

Benefits of Confusion Matrix 

Visualization of Classification Performance: The 

confusion matrix provides a clear visual representation of the 

model’s ability to classify both normal and abnormal images 

correctly.  

Identification of Errors: By analyzing the off-diagonal 

elements, researchers can identify the types of errors the 

model makes (false positives or false negatives) and prioritize 

potential areas for improvement. 

3.6. Anomaly Detection and Classification 

This section describes the final stage of the research, 

where the trained neural network is utilized to detect and 

classify anomalies within unseen IRT images of electrical 

system components. 

3.6.1. Image Classification Process 

The anomaly detection process leverages a custom 
MATLAB function named test Network. This function takes 

the path to the target IRT image as input and performs the 

following actions: 

Load Trained Model 

The function loads the pre-trained GoogLeNet model, 

fine-tuned on the prepared dataset, from the saved file 

(‘Retrained_GooglenetCNN.mat’). 

Image Preprocessing 

The input image is loaded and resized to match the 

expected input dimensions of the GoogLeNet architecture 

(224x224 pixels). 

Classification and Probability Prediction 
The resized image is fed into the loaded network, and the 

model predicts a label (normal or abnormal) and associated 

probability score. 

Visualization and Output 

The predicted label and its corresponding probability 

score are displayed. Additionally, the original image is 

visualized with the predicted label and probability overlaid as 

the title using the imshow and title functions. 

The main program section calls the test Network function, 

providing the specific path to the IRT image under analysis. 

This structure allows for reusability, enabling the application 

of the function to various images by simply modifying the 
input image path. 

3.6.2. Anomaly Classification Criteria 

The classification of an IRT image as normal or abnormal 

is determined by considering both the predicted label and the 

associated probability score: 

Normal 

Images classified as “normal” with a probability score 

exceeding 0.9 are considered normal, indicating a high 

confidence level in the absence of anomalies. 

Abnormal 

Images classified as “abnormal” with a probability score 

exceeding 0.9 are considered abnormal, signifying a high 
confidence level in the presence of anomalies. 

Uncertain 

Images with a probability score below 0.9 are categorized 

as uncertain, requiring further investigation due to insufficient 

confidence in the automated classification. This classification 

scheme prioritizes high-confidence predictions while ensuring 

potential anomalies are not overlooked due to low probability 
scores. 

3.6.3. Anomaly Severity Levels 

For the identified abnormal images, the severity of the 

anomaly is assessed based on the following factors: 

Probability Score 

Higher probability scores indicate a greater degree of 

abnormality. 

Defect Characteristics 

The size, location, and type of the detected defect also 

contribute to the severity assessment. For instance, a larger, 

centrally located defect would be considered more severe 

compared to a smaller, peripheral one. Based on this combined 

evaluation, the anomaly severity is categorized into three 

levels: 

Less Abnormal 

Images with a probability score between 0.9 and 0.95, 

exhibiting small or peripheral defects, are classified as less 

abnormal. 

Medium Abnormal 

Images with a probability score between 0.95 and 0.99, 

presenting moderate or central defects, are classified as 

medium abnormal. 
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Critically Abnormal 

Images with a probability score exceeding 0.99, 

indicating large or multiple defects, are classified as critically 

abnormal. The assigned severity level informs the appropriate 

maintenance or replacement actions for the corresponding 

electrical system component. 

Less Abnormal 

These components may be scheduled for repair or 

replacement shortly. 

Medium Abnormal 

Prompt repair or replacement of these components is 

recommended. 

Critically Abnormal 

Immediate repair or replacement of these components is 

crucial. Figures 15 to 20: Examples of IRT Image 

Classification by the Deep Learning Model. These figures 

showcase examples of IRT images and their corresponding 

classifications by the trained deep-learning model.  

Each figure is labelled as either “Normal Condition 

Detected” or “Abnormal Condition Detected” based on the 

model’s predictions. 
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4. Experimental Results 
4.1. Experimental Setup 

4.1.1. Imaging Tool Used 

A FLIR C2 infrared camera with a resolution of 80 x 60 

pixels, a thermal sensitivity of 0.10°C, and a temperature 

range of -10°C to 150°C was utilized for image capture. Figure 

21 depicts the FLIR-C2 thermal camera utilized to capture 

thermal images throughout the research.  

4.1.2. Sample Test System in the Laboratory  

Figures 22 and 23 provide visual context for the 

experimental setup carried out in the laboratory for 

considering electrical conductors of variable lamp loads to 
provide varying currents from 0 to 50 Amps as one of the test 

components. Figure 24 depicts the real-time IRT image 

captured by said Thermal Camera. 

4.1.3. Dataset Preparation 

The experiments utilized a dataset of 300 IRT images 

encompassing various electrical system components, 

including current conductors, transformer insulators, and solar 

panels. 

 

 

 

 

 

 

Each image was meticulously labelled as “normal” or 

“abnormal” based on the presence or absence of defects. This 

IRT-image dataset was strategically proportionated into a 

training set of 70%, remaining 30% for validation purposes. 

The training set facilitated the training of the GoogLeNet 

CNN model, while the validation set served to assess its 

performance. 

~30.0 °C 33.4 

27.2 FLIR 

Fig. 15 Normal condition 

(Current) 
Fig. 16 Abnormal condition 

(Current) 

Normal Current, Probability: 1.00 Abnormal Current, Probability: 1.00 

FLIR 

Normal Insulator, Probability: 1.00 Abnormal Insulator, Probability: 1.00 

Fig. 17 Normal condition 

(Insulator) 
Fig. 18 Abnormal condition 

(Insulator) 

Normal Solar Panel, 

Probability: 1.00 
Abnormal Solar Panel, 

Probability: 1.00 

Fig. 19 Normal condition 

(Solar panel) 
Fig. 20 Abnormal condition 

(Solar panel) 

Fig. 21 Flir thermal Camera Fig. 22 Laboratory setup 
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Model Training and Evaluation Tools Used 

The GoogLeNet CNN model was trained using 

MATLAB software, employing the hyperparameters and 

configuration outlined in Section 3.3. Following training, the 

model was evaluated on the validation set, classifying images 

and generating predicted labels and probabilities were 
implemented. These predictions were then compared against 

the ground truth labels and probabilities to assess the model’s 

accuracy and reliability.  

 
Fig. 23 Laboratory setup for high current testing 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 24 Flir camera based thermal  

4.2. Performance Evaluation Metrics and Comparison 

The evaluation of the proposed technique’s performance 

primarily relied on confusion matrices and the accuracy 

metric. A confusion matrix visualizes the distribution of 

correct and incorrect predictions across different categories or 

classes.  

Accuracy, expressed as the proportion of correct 

predictions among all predictions, reflects the overall model 

performance. Both the confusion matrix and accuracy were 

calculated using the MATLAB code. Furthermore, the 

proposed technique was compared against established 

methods, namely Faster R-CNN and YOLOv3, which also 

leverage CNN architectures for anomaly detection in IRT 

images. 

4.3. Results and Discussion 

The experimental results attained by the proposed 

technique and existing methods for anomaly detection are 

presented in Tables 2, 3, and 4. Table 2, already addressed in 
the previous section of the paper, reflects the confusion matrix 

for machine learning methods like simple deep learning 

methods, implemented.  

Table 3 shows the confusion matrix for GoogleNet-based 

deep learning method. Moreover, Table 4 delineates the 

experimental findings for the anomaly detection techniques 

under critical observation. It encapsulates a comparative 

analysis of performance metrics for Support Vector Machine 

(SVM), Simple Deep Learning, and the advanced GoogLeNet 

& RasNet50 CNN architectures. The table evaluates these 

machine learning paradigms against criteria like accuracy, 

precision, recall, F1-score, and duration of model training. 

Table 3. Confusion matrix for Google net 
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Figures 25 to 29 reflect the comparative statistics of each 
performance parameter of all the machine learning paradigms 

implemented for electrical system maintenance and anomaly 

detection. This superior performance underscores the potential 

and effectiveness of the claimed technique for real-world 

applications related to electrical system maintenance and their 

anomaly detection. 

25.5 °C 87.2 

23.9 FLIR 
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Table. 4 Comparison of various machine learning and deep learning techniques implemented for electrical system anomaly detection 

No. Machine Learning Architecture Accuracy Precision Recall F1-Score 
Time Required 

to Train Model 

1 Support Vector Machine (SVM) 91% 95.80% 94.40% 98.10% 2 min   30 sec 

2 Simple Deep Learning 33.33% 6.66% 16.66% 10% 45 Sec 

3 GoogLeNet (CNN) 99.8% 99.9% 99.9% 99.9% 16 min 56 sec 

4 RasNet-50 (CNN) 99.8% 99.9% 99.9% 99.9% 1 min  40 sec 

 

 
Fig. 25 Prediction accuracy 

 
Fig. 26 Normal condition (recall) 

 
Fig. 27 Normal condition (F1-score) 

 
Fig. 28 Normal condition (precision) 

91%

33.33%

99.80% 99.80%

0%

20%

40%

60%

80%

100%

120%

Support

Vector

Machine

(SVM)

Simple

Deep

Learning

GoogLeNet RasNet-50

94.40%

16.66%

99.90% 99.90%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Support

Vector

Machine

(SVM)

Simple

Deep

Learning

GoogLeNet RasNet-50

Recall

98.10%

10%

99.90% 99.90%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Support

Vector

Machine

(SVM)

Simple

Deep

Learning

GoogLeNet RasNet-50

F1-Score

95.80%

6.66%

99.90% 99.90%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Support

Vector

Machine

(SVM)

Simple

Deep

Learning

GoogLeNet RasNet-50

Precision



Sajid Patel et al. / IJEEE, 11(4), 240-253, 2024 

252 

   

Fig. 29 Normal condition (time required to train model) 

5. Future Work and Conclusion 

5.1. Recommendations for Future Research or Practice  

Based on the limitations of the study, some 
recommendations for future research or practice are 

suggested. Future research should collect and use a larger and 

more diverse dataset of IRT images covering different types 

of electrical system components, defects, and conditions 

obtained from real-world or field experiments.  

Future research should also investigate and control the 

effects of external factors on the IRT images and the neural 

network classification, and optimize the parameters and 
settings of the IRT camera and the neural network model 

accordingly. Future research should also compare the 

proposed technique with other types of CNN models or 

architectures and explore the possibility of combining or 

hybridizing them to enhance the performance or robustness of 

the abnormality detection.  

Future practice should apply the proposed technique to 

other types of electrical system components and integrate it 
with other methods or techniques, such as fault diagnosis, to 

provide a comprehensive solution for electrical system 

maintenance and management. 

5.2. Conclusion  

The data illustrates that the GoogLeNet & ResNet50 

CNN methodologies significantly outperform traditional 

SVM (91%) and traditional deep learning techniques 
(33.33%) with an impressive accuracy of 99.8%. This stark 

contrast in performance highlights not only the robustness of 

the CNN-based approaches but also their applicability in 

practical scenarios such as electrical system maintenance and 

anomaly detection. Moreover, the training time analysis offers 

insights into the efficiency of these models, with ResNet-50 

demonstrating a remarkable balance between high accuracy 

and reduced training time attributed to its optimized network 

complexity.  

The findings of this study may have significant 

implications for the field of electrical engineering and the 

related literature, as they demonstrate the potential and 

effectiveness of incorporating deep learning and IRT for 

abnormality detection in electrical system components, which 

can improve the performance and safety of the system, and 
prevent fire hazards or power outages.  
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