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Abstract - Many applications in signal processing have an innate ability to tolerate a certain amount of computational mistakes. 

The human eye’s limited capacity for perceiving images and videos makes approximation useful in computations. Hence, this 

concept of error resilience approach can be accommodated in the hardware to reduce the computational time in high-speed 
circuits. Basically, multiplication in the signal processing domain takes a longer time. Hence, approximate multipliers have been 

an area of interest in recent times. This paper initially deals with a detailed study of various approaches to approximate multipliers. 

Subsequently, a novel architecture for error-resilient multiplication is proposed wherein approximate partial products are 

obtained. The entire multiplication operation is divided into three modules. The architecture of these modules is designed such 

that it provides the approximate output. These three modules work in parallel, thereby increasing the throughput. Efficient 

components are used in the design to improve the performance. The proposed multiplier is designed and simulated using Cadence 

45nm technology.  

Keywords - Error resilience, Fixed width multipliers, Signal processing, Throughput, Low latency. 

1. Introduction 
An approximate computation has become a viable method 

for designing digital systems with energy efficiency. 

Approximate computing approaches enable a significantly 

higher energy economy by removing the requirement for 

totally exact or completely predictable operation. Achieving 

energy minimization with the least amount of performance 

(speed) loss is greatly desired [1]. The computational core of 

digital signal processing in multimedia applications needs 

faster yet reliable arithmetic units, where multiplication has a 
greater share among all possible operations [2]. Hence, various 

methodologies in multiplier with a focus on performance 

metrics have the greater interest over the last two decades. 

A large number of DSP cores are used to build algorithms 

for processing images and videos, with the end product being 

ready for human vision. The fact that the human eye has limited 

perceptual capabilities in observing an image or a video 

enables the use of approximation in computations by 
occasionally dropping a few of the frames. Apart from image 

and video processing applications, there exist additional 

domains in which the precision of arithmetic operations is not 

required for the functioning of the system [4, 5]. Specifically, 

performance metrics-oriented application domains share an 

intrinsic tolerance for small and negligible errors [3]. The 

foundation of approximate computing is the discovery that, in 

certain situations, allowing for bounded approximations can 
result in a disproportionate gain in performance and energy 

while maintaining acceptable result accuracy, even when 

executing exact calculations costs a large amount of resources. 

Consider two distinct classes that yield comparable 

classification results in a set of sample items as an additional 

data analysis example. It is exceedingly challenging, if not 

impossible, to determine which is superior for classifying 

newly discovered items. 

Such approximates may be added as arbitrary circuits in 

the Boolean/High-level descriptions, or they may be 

incorporated into the main building blocks that are utilized in 

the circuits. The goal of approximate arithmetic is to create 
simple arithmetic operations, like multipliers and adders that 

can be used in programmable computers to supplement 

accurate arithmetic operations [2]. The idea that these 

arithmetic units perform makes sense and provides fast results 

compared to exact computation data paths. In the context of 

Very Large-Scale Integration (VLSI), leakage power refers to 

the power that a digital circuit uses even while it is not actively 

operating. The power lost during the charging and discharging 
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of the load capacitance at the cell’s output is known as the 

switching power of a driving cell. The low latency means the 

six least significant bits are made zero. The least significant six 

bits of each partial product are hardwired to zero during the 

computation of the final product from the partial products, 

ensuring speed improvement and delay reduction. 

2. Literature Review 
In order to achieve superior design metrics, Gupta et al. [2] 

suggested a number of approximate adder designs that 

eliminated some part of the logic that was included in 

conventional adders. This model results in shorter critical path 

designs, enabling voltage scaling possibilities. Also, 

mathematical models are derived for power consumption and 
error calculations in approximate adders. Since the main 

element in the multiplier is adders in the subsequent stage, the 

analysis of inaccurate adders is the greater interest of concern 

when dealing with performance analysis of approximate 

multipliers. A simulation result puts a noteworthy result of up 

to 69% power saving as compared to accurate adders. 

In order to increase accuracy, Z Babic et al. [4] suggested 

a log-based pipelined approximation using an iterative process. 

The iterative MA multiplier is proposed to be performed in 

parallel using a single correction circuit. The results, when 

implemented on the Xilinx xc3s500e FPGA, reveal that power 
consumption increases only a little, from 2% (one correction 

term) to 16% (three correction terms). Along with this, the 

maximum computational delay rises by 30% to 45% for every 

additional correction circuit. 

An approximate multiplier and adder based on the broken 

array multiplier approach was suggested by H. R. Mahdiani et 

al. [6]. The suggested paradigm offers faster, more affordable, 

and more effective implementations. The efficiency with 

which the suggested BAM builds a three-layer Neural Network 

(NN) for face recognition and a defuzzification block, which is 

utilized in a fuzzy inference engine, is demonstrated by the 

results of simulation and synthesis. Here, an array multiplier 
and a ripple carry adder are used to build the precise model, 

whereas a single multiplier and an adder comprise the data path 

and the critical path. The synthesized results from the Leonardo 

Spectrum tool show that the area delay product, in comparison 

with the precise model for 0.13µm standard cell library CMOS 

technology, clearly suggests greater improvements. 

F. Farshchi et al. [7] apply the above-proposed BAM to 
booth multiplier, a modified arrangement which helps to deal 

with signed binary computations. The system’s power 

consumption was reduced by almost 50% due to the suggested 

approximation blocks, which also resulted in a 6dB peak 

reduction in the signal-to-noise ratio. Additionally, the 

enhanced power-delay product outperforms traditional adders 

by roughly 65%. To determine the suggested model’s power 

consumption, the design is synthesized in a standard cell of 

90nm CMOS technology using the synopsys design compiler. 

In order to shorten the critical path, K. Bhardwaj et al. [13] 

proposed an Approximation Wallace Tree Multiplier (AWTM) 

with a carry-in prediction. In comparison to the case of 

employing an accurate Wallace Tree Multiplier, AWTM was 

employed in this work’s real-time benchmark image 

applications, demonstrating reductions in power and area of 
roughly 40% and 30%, respectively, without sacrificing image 

quality. Synthesis results from Cadence RTL provide power, 

and area requirements are compared with accurate Wallace tree 

arrangement. Also, accuracy and acceptance probability for a 

16*16 multiplication are generated for 5000 random 

combinations, and various accuracy design metrics are 

tabulated.   

The rest of the brief is organized as follows. Section 3 

brings the background about signed multipliers and the 

approximation involved in that, Section 4 briefs about a 

proposal for approximate multiplier architecture with expected 

results, and Section 5 concludes this article. 

3. Background 
3.1. Two’s Complement Multiplication 

To illustrate with an example, let us consider that A and 

B are two numbers that are represented in 2’s complement 

format. The input A has m bits while the input B has n bits.  

𝐴 = −𝐴𝑚−12𝑚−1 +  ∑ 𝐴𝑖2
𝑖𝑖=𝑚−2

𝑖=0               (1) 

𝐵 = −𝐵𝑛−12𝑛−1 +  ∑ 𝐵𝑖2
𝑖𝑗=𝑛−2

𝑗=0                (2) 

Then, the product P, which has m+n bits, can be written 

as, 

𝑃 =  𝐴𝑚−1𝐵𝑛−1  2
𝑚+𝑛−2 + ∑ ∑ 𝐴𝑖

𝑛−2
𝑗=0

𝑚−2
𝑖=0 𝐵𝑗  2𝑖+𝑗 −

 ∑ 𝐴𝑖 
𝑖=𝑚−2
𝑖=0  𝐵𝑛−1 2

𝑛−1+𝑖 − ∑ 𝐴𝑚−1
𝑗=𝑛−2
𝑗=0 𝐵𝑗 2

𝑚−1+𝑗      (3) 

The two subtractions in Equation (3) can be expressed as 

an addition of 2’s complement numbers; thereby, the above 

equation can be realized with the help of all adders instead of 

subtractions.  

As in DSP processing, the multiplication process gets a 

greater share of up to 80% of computational capabilities, and 
plenty of architectures are devised to improvise the 

implementation features of Equation (3). 

To understand the fixed-width multiplication, consider A 

and B as 8 bit wide. Hence, after multiplication, the product 

obtained will be 16 bits. In fixed width multiplier, only the 

upper 8 bit output is considered while truncating the lower 8 

bits, which is shown in Figure 1. 

As the least bits have much lower significance as 

compared with higher bits, truncating the LSB would result in 

a greater reduction in both hardware utilization and 
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computational time. The product P for an 8 * 8 signed fixed 

multiplier is given as: 

P = MSB + LSB 

⟹ P = ∑ 𝑃𝑖2𝑖𝑖=2𝑛−1
𝑖= 𝑛              (4) 

As the LSB part of the product is truncated to hardwired 

‘0’. 

 

 

 

 

 

 

 

Fig. 1 Representation of partial products 

4. Proposed Fixed Multiplier 
The proposed architecture for an 8*8 fixed multiplier is 

detailed in Figure 2. The partial products obtained are 

separated as MSP and LSP. Instead of truncating the entire 
LSB part as defined in the previous section, the least six bits 

are hard-wired to ‘0’, and the bits P6 and P7 are used to round 

off the LSB of the multiplier output. This is done to improve 

the result close toward exact.  

Again, the computational capabilities of MSP are greatly 

improvised by subdividing into three major parts, which are 

shown in Figure 3. The three blocks work independently, and 

partial outputs are obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Partial product array of 8 with 2 bits for improving accuracy 

The partial results are combined with the suitable logic 

circuit to get the final product. As the Multiplication is carried 

out in the independent flow of signals, the latency of this 

proposed arrangement will be much less on par with the 

existing architectures. Realization of these three major parts 

can be done with an efficient combinatorial circuit, which aids 
in speeding up the results towards low latency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Multiplication modules for computing MSP 

The complete architecture of the proposed 8*8 fixed-

width multiplier with three major parts is shown in Figure 4. 

The inputs A and B are appropriately routed to these modules, 

and the partial products of these modules can be added using a 

customized adder designed to get the final results in very little 

latency. Also, the least 6 bits of the product (P5 – 0) are 

hardwired to logic ‘0’, and P6 and P7 are used to make the 

multiplier result close to the exact output. 

 

 

 

 

 

 

Fig. 4 Realization of modified fixed-point multiplier 

The major sub-parts are realized with the help of 

combinatorial logic, much similar to that of the circuit shown 

in Figure 5. In fact, since the architecture deals with 

approximate multipliers, the full adders can be replaced with 

various approximate adders, which consume less space and 

operate faster. Replicated tree arrangement of such AND 
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Adder logic will be used in realizing each module as shown in 

Figure 6. 

 

 

 

 

 

 

 

Fig. 5 AND logic with adder logic (ANADD logic) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Module 1 realization using ANADD logic 

The 6 bit partial product (P1 [5-0]) of module 1 can be 

obtained with a propagation delay of 6 Adder delays; similarly, 

6 bit partial product (P2[5-0]) would have been available after 

the same delay, as each module works independently. After 3 

adder delays, the least 2 – bits of modules 1 and 2 are available, 

with which the carry is generated to the final adder. Since 
module 3 needs 8 adder delay to generate 8  bit partial outputs 

P3[7-0]), it will not have any impact on the overall delay since 

least two partial products of Module  3 are available after one 

adder delay itself.  

Finally, an adder is realized to perform the addition of 

these 3 partial products. Figure 7 proposes one such 

arrangement. The generated carry from the least 2 bits of 

modules 1 and 2 is routed to a synchronous carry save adder to 

generate the MSB part of the result. 

 

 

 

 

 

 

 

 

Fig. 7 Final adder realization 

5. Implementation 
The proposed multiplier, as shown in Figure 4, has been 

coded using verilog and synthesized using genus in cadence. 

The script file written using transaction control language with 

45nm technology provides a detailed report on the area, 

power, and timing summary for the proposed multiplier. The 

synthesized RTL is shown in Figure 8. 

 
Fig. 8 RTL implementation of the proposed multiplier 

Figure 9 depicts the pictorial representation of the 

simulation results for the error resilient multiplier, where the 6 

least significant bits are forced to logic zero. 

To obtain the transient power of the proposed multiplier 

the following circuits have been implemented using GPDK 

45nm technology. The circuit includes Binary AND, OR, 

INVETER, NAND, NOR, and XOR. Combinational circuits 

such as half adder, full adder, parallel Adder, the proposed 

ANADD component and the 8 bit proposed multiplier have 

been implemented using cadence virtuoso.  

The logical diagram shown in Figure 10 is the proposed 

error-resilient multiplier. The simulation results obtained on 

spectre have been functionally verified for the correctness and 

working of the multiplier. Subsequently, DC power analysis 
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and transient power analysis have been carried out to determine 

the DC power and the transient power, which is shown in 

Figure 11. The transient power obtained is in the range of 

44.583uW to 44.587uW. The DC power is in the range of 

60uW to 180uW.  

 
Fig. 9 Functional verification of proposed multiplier 

 
Fig. 10 Logical diagram of the proposed multiplier 

 
Fig. 11 Power analysis of the proposed multiplier 

6. Performance Evaluation 
The proposed fixed width multiplier is designed and coded 

in Verilog and subsequently implemented using Cadence 45nm 

technology. The simulation results have functionally verified 

the multiplication operation.  

The leakage power obtained is 0.979 nW, and the internal 

switching power is 0.617 uW. Also, the transient power 

obtained is in the range of 44.583uW to 44.587uW. The DC 

power is in the range of 60uW to 180uW. Area occupancy 

reports 385 cells and 8963.125 as cell area.  

7. Conclusion 
The fixed-width high-speed approximate multiplier can be 

designed by dividing the partial products into three modules. 

Parallel computation improves the speed. For each module, a 

customized data path is developed, and independency is an 

added advantage to the proposed architecture.  

Since approximate multipliers are the key to image 

processing, various means of constraint improvements can be 

achieved by adapting different strategies. The proposed 

multiplier utilizes fewer gates and combinational circuits to 

yield the result as compared to the conventional multiplier.  
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