
SSRG International Journal of Electrical and Electronics Engineering Volume 11 Issue 6, 182-187, June 2024
ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V11I6P120 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Low Latent Fixed Width Multiplier for Error Resilient

Computation

B.V. Srividya1, S.P. Meharunnissa2, Chetan Umadi1, Nagarathna1, Saravana Kumar3

1Department of Electronics and Telecommunication Engineering, Dayananda Sagar College of Engineering, Karnataka, India.
2Department of Electronics and Instrumentation Communication Engineering, Dayananda Sagar College of Engineering,

Karnataka, India.
3DFT Engineer, Radiant Semiconductors Pvt Ltd, Karnataka, India.

1Corresponding Author : srividyabv@gmail.com

Received: 09 April 2024 Revised: 12 May 2024 Accepted: 09 June 2024 Published: 29 June 2024

Abstract - Many applications in signal processing have an innate ability to tolerate a certain amount of computational mistakes.

The human eye’s limited capacity for perceiving images and videos makes approximation useful in computations. Hence, this

concept of error resilience approach can be accommodated in the hardware to reduce the computational time in high-speed
circuits. Basically, multiplication in the signal processing domain takes a longer time. Hence, approximate multipliers have been

an area of interest in recent times. This paper initially deals with a detailed study of various approaches to approximate multipliers.

Subsequently, a novel architecture for error-resilient multiplication is proposed wherein approximate partial products are

obtained. The entire multiplication operation is divided into three modules. The architecture of these modules is designed such

that it provides the approximate output. These three modules work in parallel, thereby increasing the throughput. Efficient

components are used in the design to improve the performance. The proposed multiplier is designed and simulated using Cadence

45nm technology.

Keywords - Error resilience, Fixed width multipliers, Signal processing, Throughput, Low latency.

1. Introduction
An approximate computation has become a viable method

for designing digital systems with energy efficiency.

Approximate computing approaches enable a significantly

higher energy economy by removing the requirement for

totally exact or completely predictable operation. Achieving

energy minimization with the least amount of performance

(speed) loss is greatly desired [1]. The computational core of

digital signal processing in multimedia applications needs

faster yet reliable arithmetic units, where multiplication has a
greater share among all possible operations [2]. Hence, various

methodologies in multiplier with a focus on performance

metrics have the greater interest over the last two decades.

A large number of DSP cores are used to build algorithms

for processing images and videos, with the end product being

ready for human vision. The fact that the human eye has limited

perceptual capabilities in observing an image or a video

enables the use of approximation in computations by
occasionally dropping a few of the frames. Apart from image

and video processing applications, there exist additional

domains in which the precision of arithmetic operations is not

required for the functioning of the system [4, 5]. Specifically,

performance metrics-oriented application domains share an

intrinsic tolerance for small and negligible errors [3]. The

foundation of approximate computing is the discovery that, in

certain situations, allowing for bounded approximations can
result in a disproportionate gain in performance and energy

while maintaining acceptable result accuracy, even when

executing exact calculations costs a large amount of resources.

Consider two distinct classes that yield comparable

classification results in a set of sample items as an additional

data analysis example. It is exceedingly challenging, if not

impossible, to determine which is superior for classifying

newly discovered items.

Such approximates may be added as arbitrary circuits in

the Boolean/High-level descriptions, or they may be

incorporated into the main building blocks that are utilized in

the circuits. The goal of approximate arithmetic is to create
simple arithmetic operations, like multipliers and adders that

can be used in programmable computers to supplement

accurate arithmetic operations [2]. The idea that these

arithmetic units perform makes sense and provides fast results

compared to exact computation data paths. In the context of

Very Large-Scale Integration (VLSI), leakage power refers to

the power that a digital circuit uses even while it is not actively

operating. The power lost during the charging and discharging

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

B.V. Srividya et al. / IJEEE, 11(6), 182-187, 2024

183

of the load capacitance at the cell’s output is known as the

switching power of a driving cell. The low latency means the

six least significant bits are made zero. The least significant six

bits of each partial product are hardwired to zero during the

computation of the final product from the partial products,

ensuring speed improvement and delay reduction.

2. Literature Review
In order to achieve superior design metrics, Gupta et al. [2]

suggested a number of approximate adder designs that

eliminated some part of the logic that was included in

conventional adders. This model results in shorter critical path

designs, enabling voltage scaling possibilities. Also,

mathematical models are derived for power consumption and
error calculations in approximate adders. Since the main

element in the multiplier is adders in the subsequent stage, the

analysis of inaccurate adders is the greater interest of concern

when dealing with performance analysis of approximate

multipliers. A simulation result puts a noteworthy result of up

to 69% power saving as compared to accurate adders.

In order to increase accuracy, Z Babic et al. [4] suggested

a log-based pipelined approximation using an iterative process.

The iterative MA multiplier is proposed to be performed in

parallel using a single correction circuit. The results, when

implemented on the Xilinx xc3s500e FPGA, reveal that power
consumption increases only a little, from 2% (one correction

term) to 16% (three correction terms). Along with this, the

maximum computational delay rises by 30% to 45% for every

additional correction circuit.

An approximate multiplier and adder based on the broken

array multiplier approach was suggested by H. R. Mahdiani et

al. [6]. The suggested paradigm offers faster, more affordable,

and more effective implementations. The efficiency with

which the suggested BAM builds a three-layer Neural Network

(NN) for face recognition and a defuzzification block, which is

utilized in a fuzzy inference engine, is demonstrated by the

results of simulation and synthesis. Here, an array multiplier
and a ripple carry adder are used to build the precise model,

whereas a single multiplier and an adder comprise the data path

and the critical path. The synthesized results from the Leonardo

Spectrum tool show that the area delay product, in comparison

with the precise model for 0.13µm standard cell library CMOS

technology, clearly suggests greater improvements.

F. Farshchi et al. [7] apply the above-proposed BAM to
booth multiplier, a modified arrangement which helps to deal

with signed binary computations. The system’s power

consumption was reduced by almost 50% due to the suggested

approximation blocks, which also resulted in a 6dB peak

reduction in the signal-to-noise ratio. Additionally, the

enhanced power-delay product outperforms traditional adders

by roughly 65%. To determine the suggested model’s power

consumption, the design is synthesized in a standard cell of

90nm CMOS technology using the synopsys design compiler.

In order to shorten the critical path, K. Bhardwaj et al. [13]

proposed an Approximation Wallace Tree Multiplier (AWTM)

with a carry-in prediction. In comparison to the case of

employing an accurate Wallace Tree Multiplier, AWTM was

employed in this work’s real-time benchmark image

applications, demonstrating reductions in power and area of
roughly 40% and 30%, respectively, without sacrificing image

quality. Synthesis results from Cadence RTL provide power,

and area requirements are compared with accurate Wallace tree

arrangement. Also, accuracy and acceptance probability for a

16*16 multiplication are generated for 5000 random

combinations, and various accuracy design metrics are

tabulated.

The rest of the brief is organized as follows. Section 3

brings the background about signed multipliers and the

approximation involved in that, Section 4 briefs about a

proposal for approximate multiplier architecture with expected

results, and Section 5 concludes this article.

3. Background
3.1. Two’s Complement Multiplication

To illustrate with an example, let us consider that A and

B are two numbers that are represented in 2’s complement

format. The input A has m bits while the input B has n bits.

𝐴 = −𝐴𝑚−12𝑚−1 + ∑ 𝐴𝑖2
𝑖𝑖=𝑚−2

𝑖=0 (1)

𝐵 = −𝐵𝑛−12𝑛−1 + ∑ 𝐵𝑖2
𝑖𝑗=𝑛−2

𝑗=0 (2)

Then, the product P, which has m+n bits, can be written

as,

𝑃 = 𝐴𝑚−1𝐵𝑛−1 2
𝑚+𝑛−2 + ∑ ∑ 𝐴𝑖

𝑛−2
𝑗=0

𝑚−2
𝑖=0 𝐵𝑗 2𝑖+𝑗 −

 ∑ 𝐴𝑖
𝑖=𝑚−2
𝑖=0 𝐵𝑛−1 2

𝑛−1+𝑖 − ∑ 𝐴𝑚−1
𝑗=𝑛−2
𝑗=0 𝐵𝑗 2

𝑚−1+𝑗 (3)

The two subtractions in Equation (3) can be expressed as

an addition of 2’s complement numbers; thereby, the above

equation can be realized with the help of all adders instead of

subtractions.

As in DSP processing, the multiplication process gets a

greater share of up to 80% of computational capabilities, and
plenty of architectures are devised to improvise the

implementation features of Equation (3).

To understand the fixed-width multiplication, consider A

and B as 8 bit wide. Hence, after multiplication, the product

obtained will be 16 bits. In fixed width multiplier, only the

upper 8 bit output is considered while truncating the lower 8

bits, which is shown in Figure 1.

As the least bits have much lower significance as

compared with higher bits, truncating the LSB would result in

a greater reduction in both hardware utilization and

B.V. Srividya et al. / IJEEE, 11(6), 182-187, 2024

184

computational time. The product P for an 8 * 8 signed fixed

multiplier is given as:

P = MSB + LSB

⟹ P = ∑ 𝑃𝑖2𝑖𝑖=2𝑛−1
𝑖= 𝑛 (4)

As the LSB part of the product is truncated to hardwired

‘0’.

Fig. 1 Representation of partial products

4. Proposed Fixed Multiplier
The proposed architecture for an 8*8 fixed multiplier is

detailed in Figure 2. The partial products obtained are

separated as MSP and LSP. Instead of truncating the entire
LSB part as defined in the previous section, the least six bits

are hard-wired to ‘0’, and the bits P6 and P7 are used to round

off the LSB of the multiplier output. This is done to improve

the result close toward exact.

Again, the computational capabilities of MSP are greatly

improvised by subdividing into three major parts, which are

shown in Figure 3. The three blocks work independently, and

partial outputs are obtained.

Fig. 2 Partial product array of 8 with 2 bits for improving accuracy

The partial results are combined with the suitable logic

circuit to get the final product. As the Multiplication is carried

out in the independent flow of signals, the latency of this

proposed arrangement will be much less on par with the

existing architectures. Realization of these three major parts

can be done with an efficient combinatorial circuit, which aids
in speeding up the results towards low latency.

Fig. 3 Multiplication modules for computing MSP

The complete architecture of the proposed 8*8 fixed-

width multiplier with three major parts is shown in Figure 4.

The inputs A and B are appropriately routed to these modules,

and the partial products of these modules can be added using a

customized adder designed to get the final results in very little

latency. Also, the least 6 bits of the product (P5 – 0) are

hardwired to logic ‘0’, and P6 and P7 are used to make the

multiplier result close to the exact output.

Fig. 4 Realization of modified fixed-point multiplier

The major sub-parts are realized with the help of

combinatorial logic, much similar to that of the circuit shown

in Figure 5. In fact, since the architecture deals with

approximate multipliers, the full adders can be replaced with

various approximate adders, which consume less space and

operate faster. Replicated tree arrangement of such AND

A
m-1

 A
m-2

 A
1
 A

0

B
n-1

 B
n-2

 B
1
 B

0

A
m-1

B
0
 A

1
B

0
 A

0
B

0

A
1
B

1
 A

0
B

1

A
0
B

n-1
 A

1
B

n-1

A
m-1

B
1

A
m-1

B
n-1

P

m+n-1
 P

2m-1
 P

2
 P

1
 P

0

MSP Truncated LSP

A7B0 A6B0

A7B1 A6B1 A5B1

A7B2 A6B2 A5B2 A4B2

A7B3 A6B3 A5B3 A4B3 A3B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0B6

A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0B7

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6

A7B0 A6B0
A7B1 A6B1 A5B1

A7B2 A6B2 A5B2 A4B2
A7B3 A6B3 A5B3 A4B3 A3B3

A7B4 A6B4 A5B4 A4B4
A7B5 A6B5 A5B5 A4B5

A7B6 A6B6 A5B6 A4B6
A7B7 A6B7 A5B7 A4B7

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6

Mul1

A3B4 A2B4
A3B5 A2B5 A1B5

A3B6 A2B6 A1B6 A0B6
A3B7 A2B7 A1B7 A0B7

Mul2

Mul3

MSP

A 8

8
B

A
[7-4]

A
[3-0]

B
[7-4]

A
[7-4]

B

[7-4]
 Module 3

Module 2

Module 1

Gnd

10

6

A
d

d
er

B
[3-0]

P
[15-6]

P
[5-0]

B.V. Srividya et al. / IJEEE, 11(6), 182-187, 2024

185

Adder logic will be used in realizing each module as shown in

Figure 6.

Fig. 5 AND logic with adder logic (ANADD logic)

Fig. 6 Module 1 realization using ANADD logic

The 6 bit partial product (P1 [5-0]) of module 1 can be

obtained with a propagation delay of 6 Adder delays; similarly,

6 bit partial product (P2[5-0]) would have been available after

the same delay, as each module works independently. After 3

adder delays, the least 2 – bits of modules 1 and 2 are available,

with which the carry is generated to the final adder. Since
module 3 needs 8 adder delay to generate 8 bit partial outputs

P3[7-0]), it will not have any impact on the overall delay since

least two partial products of Module 3 are available after one

adder delay itself.

Finally, an adder is realized to perform the addition of

these 3 partial products. Figure 7 proposes one such

arrangement. The generated carry from the least 2 bits of

modules 1 and 2 is routed to a synchronous carry save adder to

generate the MSB part of the result.

Fig. 7 Final adder realization

5. Implementation
The proposed multiplier, as shown in Figure 4, has been

coded using verilog and synthesized using genus in cadence.

The script file written using transaction control language with

45nm technology provides a detailed report on the area,

power, and timing summary for the proposed multiplier. The

synthesized RTL is shown in Figure 8.

Fig. 8 RTL implementation of the proposed multiplier

Figure 9 depicts the pictorial representation of the

simulation results for the error resilient multiplier, where the 6

least significant bits are forced to logic zero.

To obtain the transient power of the proposed multiplier

the following circuits have been implemented using GPDK

45nm technology. The circuit includes Binary AND, OR,

INVETER, NAND, NOR, and XOR. Combinational circuits

such as half adder, full adder, parallel Adder, the proposed

ANADD component and the 8 bit proposed multiplier have

been implemented using cadence virtuoso.

The logical diagram shown in Figure 10 is the proposed

error-resilient multiplier. The simulation results obtained on

spectre have been functionally verified for the correctness and

working of the multiplier. Subsequently, DC power analysis

A

B

X

Y

Full Adder

S

C
i

C
i-1

AND B(0)

A(7) A(6) A(5) A(4)

ANADD AND

P1(5) P1(4) P1(3) P1(2) P1(1) P1(0)

AND

B(1)

B(2)

B(3)

AND

ANADD

ANADD ANADD ANADD

ANADD ANADD ANADD AND

FA FA FA

P1(5) P1(4) P1(3) P1(2) P1(1) P1(0)

P2(5) P2(4) P2(3) P2(2) P2(1) P2(0)

P2(7) P2(6) P2(5) P2(4) P2(3) P2(2) P2(1) P2(0)

P(11) P(14) P(13) P(12) P(11) P(10) P(9) P(8) P(7) P(6)

To Carry Generator

MSB Result

B.V. Srividya et al. / IJEEE, 11(6), 182-187, 2024

186

and transient power analysis have been carried out to determine

the DC power and the transient power, which is shown in

Figure 11. The transient power obtained is in the range of

44.583uW to 44.587uW. The DC power is in the range of

60uW to 180uW.

Fig. 9 Functional verification of proposed multiplier

Fig. 10 Logical diagram of the proposed multiplier

Fig. 11 Power analysis of the proposed multiplier

6. Performance Evaluation
The proposed fixed width multiplier is designed and coded

in Verilog and subsequently implemented using Cadence 45nm

technology. The simulation results have functionally verified

the multiplication operation.

The leakage power obtained is 0.979 nW, and the internal

switching power is 0.617 uW. Also, the transient power

obtained is in the range of 44.583uW to 44.587uW. The DC

power is in the range of 60uW to 180uW. Area occupancy

reports 385 cells and 8963.125 as cell area.

7. Conclusion
The fixed-width high-speed approximate multiplier can be

designed by dividing the partial products into three modules.

Parallel computation improves the speed. For each module, a

customized data path is developed, and independency is an

added advantage to the proposed architecture.

Since approximate multipliers are the key to image

processing, various means of constraint improvements can be

achieved by adapting different strategies. The proposed

multiplier utilizes fewer gates and combinational circuits to

yield the result as compared to the conventional multiplier.

B.V. Srividya et al. / IJEEE, 11(6), 182-187, 2024

187

References
[1] Massimo Alioto, “Ultra-Low Power VLSI Circuit Design Demystified and Explained: A Tutorial,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 59, no. 1, pp. 3-29, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[2] Vaibhav Gupta et al., “Low-Power Digital Signal Processing Using Approximate Adders,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jie Han, and Michael Orshansky, “Approximate Computing: An Emerging Paradigm for Energy-Efficient Design,” 2013 18th IEEE

European Test Symposium (ETS), Avignon, France, pp. 1-6, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[4] Z. Babić, A. Avramović, and P. Bulić, “An Iterative Logarithmic Multiplier,” Microprocessors and Microsystems, vol. 35, no. 1, pp. 23-

33, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[5] Rangharajan Venkatesan et al., “MACACO: Modeling and Analysis of Circuits for Approximate Computing,” 2011 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), San Jose, USA, pp. 667-673, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[6] H.R. Mahdiani et al., “Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing

Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Farzad Farshchi, Muhammad Saeed Abrishami, and Sied Mehdi Fakhraie, “New Approximate Multiplier for Low Power Digital Signal

Processing,” The 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS 2013), Tehran, Iran, pp. 25-30,

2013. [CrossRef] [Google Scholar] [Publisher Link]

[8] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac, “Trading Accuracy for Power with an Underdesigned Multiplier Architecture,” 2011

24th Internatioal Conference on VLSI Design, Chennai, India, pp. 346-351, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[9] D.R. Kelly, B.J. Phillips, and S. Al-Sarawi, “Approximate Signed Binary Integer Multipliers for Arithmetic Data Value Speculation,”

Proceedings of the 2009 Conference on Design & Architectures For Signal And Image Processing, pp. 97-104, 2009. [Google Scholar]

[Publisher Link]

[10] Khaing Yin Kyaw, Wang Ling Goh, and Kiat Seng Yeo, “Low-Power High-Speed Multiplier for Error-Tolerant Application,” 2010 IEEE

International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, pp. 1-4, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Amir Momeni et al., “Design and Analysis of Approximate Compressors for Multiplication,” IEEE Transactions on Computers, vol. 64,

no. 4, pp. 984-994, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[12] Kartikeya Bhardwaj, and Pravin S. Mane, “ACMA: Accuracy-Configurable Multiplier Architecture for Error-Resilient System-on-Chip,”

2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Darmstadt, Germany, pp.

1-6, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[13] Kartikeya Bhardwaj, Pravin S. Mane, and Jörg Henkel, “Power and Area-Efficient Approximate Wallace Tree Multiplier for Error-

Resilient Systems,” Fifteenth International Symposium on Quality Electronic Design, Santa Clara, USA, pp. 263-269, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[14] John N. Mitchell, “Computer Multiplication and Division Using Binary Logarithms,” IRE Transactions on Electronic Computers, vol.

EC-11, no. 4, pp. 512-517, 1962. [CrossRef] [Google Scholar] [Publisher Link]

[15] V. Mahalingam, and N. Ranganathan, “Improving Accuracy in Mitchell’s Logarithmic Multiplication Using Operand Decomposition,”

IEEE Transactions on Computers, vol. 55, no. 12, pp. 1523-1535, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[16] Srinivasan Narayanamoorthy et al., “Energy-Efficient Approximate Multiplication for Digital Signal Processing and Classification

Applications,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180-1184, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[17] Soheil Hashemi, R. Iris Bahar, and Sherief Reda, “DRUM: A Dynamic Range Unbiased Multiplier for Approximate Applications,” 2015

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, USA, 2015, pp. 418-425, 2015. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Chia-Hao Lin, and Ing-Chao Lin, “High Accuracy Approximate Multiplier with Error Correction,” 2013 IEEE 31st International

Conference on Computer Design (ICCD), Asheville, USA, pp. 33-38, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[19] Cong Liu, Jie Han, and Fabrizio Lombardi, “A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error

Recovery,” 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, pp. 1-4, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1109/TCSI.2011.2177004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ultra-low+power+VLSI+circuit+design+demystified+and+explained%3A+A+tutorial&btnG=
https://ieeexplore.ieee.org/document/6121919
https://doi.org/10.1109/TCAD.2012.2217962
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-power+digital+signal+processing+using+approximate+adders&btnG=
https://ieeexplore.ieee.org/document/6387646
https://doi.org/10.1109/ETS.2013.6569370
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximate+computing%3A+An+emerging+paradigm+for+energy-efficient+design&btnG=
https://ieeexplore.ieee.org/document/6569370
https://doi.org/10.1016/j.micpro.2010.07.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Babic%2C%2C+An+iterative+logarithmic+multiplier&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0141933110000438
https://doi.org/10.1109/ICCAD.2011.6105401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MACACO%3A+Modeling+and+analysis+of+circuits+for+approximate+computing&btnG=
https://ieeexplore.ieee.org/document/6105401
https://doi.org/10.1109/TCSI.2009.2027626
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+imprecise+computational+blocks+for+efficient+VLSI+implementation+of+soft-computing+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bio-inspired+imprecise+computational+blocks+for+efficient+VLSI+implementation+of+soft-computing+applications&btnG=
https://ieeexplore.ieee.org/document/5371902
https://doi.org/10.1109/CADS.2013.6714233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+approximate+multiplier+for+low+power+digital+signal+processing&btnG=
https://ieeexplore.ieee.org/document/6714233
https://doi.org/10.1109/VLSID.2011.51
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trading+accuracy+for+power+with+an+underdesigned+multiplier+architecture&btnG=
https://ieeexplore.ieee.org/document/5718826
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximate+signed+binary+integer+multipliers+for+arithmetic+data+value+speculation&btnG=
https://digital.library.adelaide.edu.au/dspace/handle/2440/64509
https://doi.org/10.1109/EDSSC.2010.5713751
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-power+high-speed+multiplier+for+error-tolerant+application&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Low-power+high-speed+multiplier+for+error-tolerant+application&btnG=
https://ieeexplore.ieee.org/document/5713751
https://doi.org/10.1109/TC.2014.2308214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+analysis+of+approximate+compressors+for+multiplication&btnG=
https://ieeexplore.ieee.org/document/6748013
https://doi.org/10.1109/ReCoSoC.2013.6581532
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACMA%3A+Accuracy-configurable+multiplier+architecture+for+error-resilient+system-on-chip&btnG=
https://ieeexplore.ieee.org/document/6581532
https://doi.org/10.1109/ISQED.2014.6783335
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Power-+and+area-efficient+approximate+wallace+tree+multiplier+for+error-resilient+systems&btnG=
https://ieeexplore.ieee.org/document/6783335
https://doi.org/10.1109/TEC.1962.5219391
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+multiplication+and+division+using+binary+logarithms&btnG=
https://ieeexplore.ieee.org/document/5219391
https://doi.org/10.1109/TC.2006.198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+accuracy+in+Mitchell%E2%80%99s+logarithmic+multiplication+using+operand+decomposition&btnG=
https://ieeexplore.ieee.org/document/1717385
https://doi.org/10.1109/TVLSI.2014.2333366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-efficient+approximate+multiplication+for+digital+signal+processing+and+classification+applications&btnG=
https://ieeexplore.ieee.org/document/6858039
https://doi.org/10.1109/ICCAD.2015.7372600
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DRUM%3A+A+dynamic+range+unbiased+multiplier+for+approximate+applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DRUM%3A+A+dynamic+range+unbiased+multiplier+for+approximate+applications&btnG=
https://ieeexplore.ieee.org/document/7372600
https://doi.org/10.1109/ICCD.2013.6657022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High+accuracy+approximate+multiplier+with+error+correction&btnG=
https://ieeexplore.ieee.org/document/6657022
https://doi.org/10.7873/DATE.2014.108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+low-power%2C+high-performance+approximate+multiplier+with+configurable+partial+error+recovery&btnG=
https://ieeexplore.ieee.org/document/6800309

