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Abstract - In cancer treatment, the continuous aim is to find innovative solutions that effectively target malignant cells while 

limiting harm to healthy tissues. Molecular Communication (MC) has developed as a promising approach for targeted drug 

delivery, but congestion issues often hamper it. This study introduces a novel framework that combines Long Short-Term Memory 
(LSTM) congestion control with Toll-Like Receptor (TLR) feedback mechanisms to enhance drug delivery efficiency in cancer 

therapy. Using COMSOL simulations to determine congestion angles, LSTM models are trained, giving an accuracy rate of 

97.75%. Through extensive computational modeling, the proposed approach significantly reduces congestion and improves the 

targeting and elimination of cancer cells. This research represents a key advancement in cancer treatment, enabling the precise, 

safe, and efficient delivery of drugs directly to cancer cells.  
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1. Introduction  
The evolving landscape of cancer treatment demands 

innovative strategies that precisely target malignant cells 

while reducing damage to healthy tissues. Traditional 

therapeutic approaches often suffer from systemic effects, 

leading to undesirable side effects where the minute fraction 

of drugs (0.1%) is absorbed by the tumor while the vast 

majority (99.9%) disperses into healthy tissues [1]. 

Conventional chemotherapy accounts for 27% of cancer 

patient deaths [2].MC has developed as a promising solution 

for precise and minimally invasive targeted drug delivery. 

However, to fully realize the potential of MC in cancer 
therapy, it is crucial to address the significant congestion 

challenge. 

This study introduces a novel framework for congestion 

control in MC-based cancer drug delivery, utilizing a dynamic 

model with LSTM-based adaptive control and a feedback 

system driven by TLR biomarkers. This allows for dynamic 

adjustments to the number of drug molecules transmitted, 

effectively preventing congestion and ensuring optimal drug 

delivery for the successful eradication of cancer cells. The 

significance of this study lies in its comprehensive approach 

to addressing drug congestion in cancer therapy. Firstly, the 
dynamic model with LSTM control facilitates transmission 

rate adaptation. Secondly, the feedback loop provides a 

precise and instantaneous indicator of receptor availability, 

thereby enhancing the system’s responsiveness and efficacy. 

Through computational modeling, this research aims to 

demonstrate the exceptional potential of TLR-guided, LSTM-

controlled MC for targeted cancer drug delivery. The 
successful implementation of this framework promises to 

revolutionize cancer treatment by providing a safe, precise, 

and effective method for delivering medications directly to 

their intended targets. The major findings of this work are 

given below: 

 It proposes a dynamic model for MC with LSTM 

congestion control and TLR feedback for delivering 

drugs specifically to cancer cells. 

 Using COMSOL simulations to determine congestion 

angles, LSTM models are trained, giving an accuracy rate 

of 97.75%. 

Following this introduction, Section 2 specifies a review 

of the literature on congestion in MC and targeted drug 

delivery. Section 3 describes the mathematics of molecular 

communication in cancer treatment. Next, Section 4 illustrates 

the methodology. Section 5 shows the simulation results. 

Section 6 provides the conclusion and explores potential 

future research directions. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ashwini.katkar@vcet.edu.in
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Figure 1 illustrates the fundamental principle of the 

dynamic model for molecular communication featuring 

LSTM congestion control. The transmitter initiates the release 

of drug molecules, which traverse a medium, such as body 

fluid, to reach the intended receiver, for instance, a cancer cell. 

 

 

 

 

 

 

Fig. 1 The fundamental principle of a drug delivery model based on 

molecular communication 

2. Related Literature   
In the realm of targeted drug delivery to cancer cells, 

recent advancements have witnessed the convergence of 

molecular communication, advanced control mechanisms, and 

feedback systems. This survey examines the key components 

and contributions of this dynamic model, illuminating its 

significance within the broader landscape of molecular 

communication and targeted drug delivery research. Nakona 

et al. [3] explored the throughput and efficiency aspects of 

molecular communication. The authors evaluated an optimum 

transmission rate where efficiency was found to be 4%.   

Felicetti et al. [4] suggested a connection-oriented 

protocol that employs TCP-like probing to identify an optimal 

transmission rate between the transmitter and receiver, 

thereby preventing receiver congestion. A delivery efficiency 

of 20 to 30% is achieved through a transmission rate 

adaptation technique. This technique adjusts the transmission 

rate based on the congestion detected at the receiver, ensuring 

optimal transmission performance.  

Another study by Felicetti et al. [5] focuses on controlling 

the release rate in molecular communication to ensure target 

cells receive an accurate quantity of drug within a specified 

period, minimizing probable side impacts. Their techniques 

are validated through an extensive simulation, providing 

insights into delivery efficiency and time. Drug delivery 

efficiency of 25-35% was achieved using rate adaptation 

techniques. The primary contribution of Femminella et al. [6] 
lies in an examination of the factors causing congestion in MC 

systems. The findings of this study can be utilized in rate 

control algorithms to find the release rate of molecules 

effectively. This involves simultaneously managing the 

growth of both populations of cancer cells through the action 

of drugs, and detrimental toxic side effects on healthy cells.  

Alam et al. [7] developed a transport layer protocol for 

body area nanonetworks, aiming to optimize network 

performance metrics to achieve desired levels of performance 

while minimizing complexity and overhead. The protocol has 

a steady delivery efficiency of around 20%. Salehi et al. [8] 

characterized a molecular communication channel based on 
diffusion involving interactions between ligands and receptors 

within a probabilistic absorber. The concentration is 20% to 

35% in a fully absorbing receiver compared to the scenario 

with a partially absorbing receiver for 1D. Sharifi et al. [1] 

address the challenge of reducing channel uncertainties in 

tactile MC for immuno-chemotherapy with precise drug 

targeting. They introduced a revised tumor-immune 

interaction model that accounts for the stochastic nature of 

drug concentration at the tumor location. Within the realm of 

MC, this method is viewed as more resilient for transmitting 

information and integrating feedback.  

Sohrabi et al. [9] investigate the targeted delivery of 
functionalized Carbon Nanotubes (CNTs) by traversing the 

lung cell membrane. Error, flow control, and the application 

of Shannon’s theorem are utilized for developing a 

comprehensive digital communication system that models 

gene expression. Zhao et al. [10] compute and enhance the 

drug release rate of nanomachines by using an approach that 

involves queuing and a response model based on diffusion 

channels to optimize the drug delivery process. The optimum 

release rate reported for a single nanomachine is 63 molecules 

per microsecond. When multiple nanomachines are involved, 

the total is calculated by summing the positions of all 
nanomachines relative to the receptor position.  

Sun et al. [11] propose a collaborative MC system 

designed for drug delivery, where the system incorporates a 

self-adaptive concentration gradient field search algorithm 

and a biosensor to offer secondary feedback. Tania et al. [12] 

in their study explore simultaneous drug delivery within MC-

based targeted drug delivery systems by incorporating internal 

controllers. It employs a multi-objective optimization 

framework aimed at maximizing drug delivery efficiency 

while minimizing the time required for drug delivery. The 

proposed schemes enhance the number of drug doses by 

around 30 times.  

Iqbal et al. [13] highlight miR34a's role as a key controller 

of tumor suppressor genes. The review presented by Hong et 

al. [14] focuses on advancements in research related to several 

receptors on cancer cells. They also described the 

development of unique nano-systems for targeted delivery of 

anticancer drugs to these cell surfaces. Wang et al. [15] 

describe extracellular vesicles as the biogenesis and explore 

their roles in cancer and outline therapeutic applications as an 

innate delivery mechanism in cancer treatment. Damrath et al. 

[16] formulated an analytical solution to simulate the 

monitored release of drugs. The quasiconvex/quasiconcave 
nature of a bilevel optimization problem has been 
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demonstrated and verified. Shafer et al. [17] explored 

approaches for targeting cancer cells involving endogenous 

and exogenous responsive systems, as well as the latest 

advancements in drug delivery methods. They examined how 

the carrier transmitter responds to a receiver located within the 

channel. Varshney et al. [18] discuss the challenges in 
utilizing TLR7/8 agonists for cancer therapy due to issues with 

solubility and toxicity.  

However, biomaterial-based drug delivery systems offer 

a promising avenue to address these limitations and enhance 

the efficacy of TLR7/8 agonists in cancer treatment. Birkan et 

al. [19] utilize the artificial neural networks technique to 

model the received signal for a spherical transmitter. The 

authors demonstrate the utilization of a convolutional neural 

network for demodulation, which exhibits a superior 

performance of 5.5 bits/sec compared to the conventional 

approach.  

The literature reviewed points out significant 
advancements in targeted drug delivery within the realm of 

MC. However, despite these strides, there exists a notable gap 

concerning congestion management within MC systems, 

particularly in the context of enhancing drug delivery 

efficiency for cancer therapy. While various studies have 

addressed aspects such as transmission rate adaptation, release 

rate control, and channel characterization, there remains a lack 

of comprehensive frameworks that effectively tackle 

congestion issues to optimize drug delivery. This study aims 

to fill this gap by introducing a novel framework that 

integrates Long Short-Term Memory (LSTM) congestion 
control with Toll-Like Receptor (TLR) feedback mechanisms. 

By leveraging COMSOL simulations to identify congestion 

angles and training LSTM models with high accuracy rates, 

this approach promises to enhance drug delivery efficiency in 

cancer therapy, offering a more robust solution to address 

congestion challenges in MC-based targeted drug delivery 

systems.  

3. Mathematics of Molecular Communication in 

Cancer Cell 
The following concept is used for creating geometry of 

transmitter (drug source) and receiver (cancer cell) in 

COMSOL implementation. Consider an asymmetric cancer 

cell with radius as mean radius and max radius. The average 
radius of Cancer cells is given by Equation 1,  

𝐴𝑣𝑔 𝑅𝑎𝑑𝑐𝑐 =
𝑅𝑎𝑑𝑖𝑢𝑠 𝑀𝑒𝑎𝑛+𝑅𝑎𝑑𝑖𝑢𝑠 𝑀𝑎𝑥

2
  (1) 

Figure 2 shows the schematic showing the cancer cell, the 

drug molecule attached to the cancer cell, and the average 

radius of the cell is Avg. Radcc. Toll-Like Receptors (TLRs) 

are shown on cancer cells. TLRs are proteins that detect 

pathogens and trigger immune responses. Specifically, TLR7 

and TLR8 can serve as novel diagnostic biomarkers, 

indicators of tumor progression and prognosis, and targets for 

immunotherapy in various cancers [20]. 

 

 
 

 

 
 

 

 
 
 

Fig. 2 The schematic of the cancer cell, drug molecule attached to the 

cancer cell and average Radcc 

Therefore, volume is given by Equation 2, 

𝑉𝑜𝑙𝑢𝑚𝑒 =
4

3
𝜋(𝐴𝑣𝑔 𝑅𝑎𝑑𝑐𝑐)3 (2) 

The approximation of cancer is huge compared to drug 

molecules. 

Molecule Rad= RMol  and  Rint=RMol 

Figure 3 shows the schematic to define the region of 

intersection of molecules with cancer cells depicted by Rint. 

 

 

 

 

 

 
 

 

 
 

 
Fig. 3 Schematic to define the region of intersection of molecules with 

cancer cells depicted by Rint 

Molecules in a 2D environment are approximated as 

given in Equation 3, 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑛 2𝐷 =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝑅𝑀𝑜𝑙
 (3) 

i.e. 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑛 2𝐷 =
2𝜋 (𝐴𝑣𝑔 𝑅𝑎𝑑𝑐𝑐)

𝑅𝑀𝑜𝑙
 (4) 

It is assumed that cells are symmetric in all directions. 

The 2D simulation will be valid for 3D real-world 

applications. Molecules in a 3D environment are 

approximated as given in Equation 5, 
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𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑛 3𝐷 = 𝜋(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑛 2𝐷)        (5) 

As the surface area of a sphere is given by Equation 6, 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 = 4𝜋𝑟2             (6) 

Cross section area is given by Equation 7 as, 

𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 = 𝜋𝑅𝑀𝑜𝑙
2   (7) 

Figure 4 Schematic depicting cancer cells in 3D 

surrounded by drug molecules. 

 

 

 

 

 

 

 
 

 
Fig. 4 Schematic of cancer cell in 3D surrounded by molecules 

The actual area is transformable in 3D. It is assumed that 

the cells are symmetric in all directions. Hence, any 2D 
simulation will be valid for 3D real-world applications. Thus, 

drug molecules in a 3D environment are given by Equation 8, 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑖𝑛 3𝐷 =  
4𝜋𝐴𝑣𝑔 𝑅𝑎𝑑𝑐𝑐

𝜋(𝑅𝑚𝑜𝑙)2  (8) 

Congestion occurs when all transmitted molecules 

reaching the receiver are equal to Molecules in 3D (M3D).  

Let Ra be the rate of arrival and Rab is the rate at which 

the molecule is absorbed. The rate of absorption of molecules 

is less than the arrival. Also, throughput, i.e. number of 

molecules successfully received per unit of time, is directly 

proportional to Ra. 

Let RRtx be the number of molecules released per second 

when there is no diffusion. Figure 5 shows the schematic 

diagram showing molecules traveling from transmitter to 

receiver with the rate of release of molecules defined by RRtx. 

 

 
 

 
 
 
 

 
 

 
Fig. 5 Schematic diagram of molecules traveling from transmitter to 

receiver with the rate of release of molecules defined by RRtx 

The number of released molecules will be equal to the rate 

of arrival of molecules as given by Equation 9, 

RRtx = 𝑅𝑎 (9) 

But practically, the rate of release of molecules by the 

transmitter is always greater than the rate of arrival, given by 
Equation 10, as  

𝑅𝑅𝑇𝑥 > 𝑅𝑎 (10) 

Now, let molecules diffuse through the surroundings to 

reach the receiver. The diffusion coefficient is given by 

Equation 11, 

𝐷 =
4𝐾𝑏𝑇

6𝜋𝜂𝑅
             (11) 

Kb= Boltzmann Constant, given by,  

𝐾𝑏 = 1.38 ∗ 10−23 𝐽

𝐾
  

T= Absolute Temperature in degrees Kelvin 

η = Viscosity of the fluid (3.5 to 4.5 centipoises for blood)  

R= Radius of propagating molecules. 

The number of molecules received at the receiver is given 

by Equation 12, 

RRX =
RTXe

−(
d2

4Dt
)

√4πDt
 (12) 

Figure 6 illustrates the concept of a molecular 

communication channel, showcasing the interaction between 
a transmitter (represented by a drug molecule) and a receiver 

(depicted as a cancer cell).  

The maximum distance a particle must travel to reach the 

backside of cancer cell TLR at 180 degrees is the maximum 

distance, Dmax. The direct path, depicted as a solid line, 

symbolizes the ideal trajectory for the drug molecule to reach 

its intended target.  

Dotted lines, on the other hand, represent potential 

diffusion paths that drug molecules may follow due to factors 

such as Brownian motion or other interactions within the 

biological environment. These alternative routes have the 
potential to lead to delayed delivery or reduced drug 

concentration at the target site. Furthermore, obstacles or 

barriers within the environment are also depicted in the image, 

demonstrating how they might hinder the direct path of the 

drug molecules. 

𝐷𝑚𝑎𝑥 = (𝑑 − 𝛥𝑛) +
2𝜋𝐴𝑣𝑔 𝑅𝑎𝑑𝑐𝑐+𝛥𝑛 

2
 (13) 
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Fig. 6 A molecular communication channel with potential diffusion 

paths in targeted drug delivery 

4. Methodology 
The methodology employed in this study outlines the 

development and evaluation of a molecular communication 

system tailored for targeted drug delivery to cancer cells. 

COMSOL simulation environment is used to replicate the 

flow characteristics within the targeted drug delivery system. 

The values obtained from the COMSOL simulation are 

plugged into the Python code for LSTM implementation. At 

the core of this system are innovative strategies, such as 

LSTM congestion control and feedback mechanisms, 

strategically implemented to optimize both drug delivery 

efficiency and the cancer kill rate. The system’s dynamic 

model plays a pivotal role in this optimization process, 
continuously adapting the number of drug molecules based on 

the feedback.  

4.1. COMSOL Simulation 

The methodology in this work utilized COMSOL 

multiphysics, a versatile computational platform, for 

simulation study. Laminar flow was modeled within the 

COMSOL environment to replicate the flow characteristics 

within the targeted drug delivery system. The built-in laminar 

flow module simulates the fluid behavior, ensuring an 

accurate representation of the transport phenomena. The 

simulation parameters are defined in Table 1. 

Figure 7 illustrates a COMSOL multiphysics particle 

tracking simulation depicting various stages of drug delivery 

over time.  At t = 3 sec (a), drug molecules, or particles, begin 

emitting in all directions equally, marking the early phase 

where particles are just released from the targeted drug 

delivery system. In (b) at t = 6 sec, particles continue to move 

uniformly. By (c) at t = 9 sec, particles gradually alter their 

trajectory towards cancer cells within the closed system 

simulation, unable to persistently move away from the cancer 

cells.  

By (d) at t = 12 sec, particles reorient to attack cancer 
cells. (e) at t = 15 sec, drug molecules initially following a 

straight path contact the cancer cell surface. By (f) at t = 25 

sec, particles have begun to saturate. In (g) at t = 35 seconds, 

more than half of the cancer cell is occupied by congested 

drug molecules. However, achieving congestion on the 

backside of the cell remains challenging due to the cell’s 

rotation, even as drug molecules already occupy all attractors 

on the front side. This time-dependent congestion progression 

presents an intriguing observation. 

Table 1. COMSOL multiphysics simulation parameters 

S. No. Description Value 

1 Flow Rate 3E−10 m³/s 

2 Particle Density 1300 kg/m³ 

3 Minimum Particle Diameter 1.5E−6 m 

4 Maximum Particle Diameter 1.1E−5 m 

5 Length of inlets 0.6 (mm) 

6 Width of Inlets 0.1 (mm) 

7 The Angle between Two Inlets 60 (deg) 

8 Length of Micro-Channel 140 (um) 

9 Width of Micro-Channel 20 (um) 

10 Flow Type Laminar 

11 Temperature 310k 

4.2. LSTM Implementation and TLR Feedback 

Long Short-Term Memory (LSTM) represents a class of 

Recurrent Neural Network (RNN) architectures engineered to 

tackle the vanishing gradient issue encountered in 

conventional RNNs [21]. Leveraging specialized memory 

cells and gating mechanisms, LSTMs excel in capturing long-
term dependencies within sequential data.  

This selective memory capability empowers LSTMs to 

retain or discard information over time, rendering them highly 

proficient in tasks revolving around sequential data, including 

time, series forecasting, natural language processing, and 

speech recognition. 

To mitigate the challenge of congestion, the LSTM 

function is applied, selectively activating congestion control 
only when a predefined threshold is surpassed. This ensures a 

novel approach to congestion management, allowing the 

system to maintain efficiency without compromising its 

effectiveness. 

This study focused on predicting future values of time 

series data employing an LSTM model. Python served as the 

programming language, while TensorFlow served as the 

framework for constructing and training the model. 

Additionally, numpy, pandas, and matplotlib libraries were 

utilized for data manipulation and visualization purposes.  

Transmitter 
Receiver 

d ∆n 



Ashwini Katkar & Vinitkumar Dongre / IJEEE, 11(6), 234-241, 2024 

239 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7 COMSOL multiphysics particle tracking simulation at different time points (a) at t = 3 sec, (b) at t = 6 sec, (c) at t = 9 sec, (d) at t = 12 sec, 

 (e) at t= 15 sec, (f) at t = 25 sec, and (g) at t = 35 seconds. 

4.2.1. Data 

The data we used was a tab-separated text file containing 

two columns: x and y. The x column represented the time 

steps from 1 to 99, and the y column represented the 

corresponding values of the time series. The data was 
provided by the instructor and had the following 

characteristics: 

 The data had a non-linear trend and a seasonal pattern. 

 The data had a minimum value of 0 and a maximum value 

of 271.85. 

 Data is split into lines and then into columns using the 

Python built-in functions strip () and split (). In the next 

step, the lists of x and y values are converted into numpy 

arrays using the np. array () function. 

4.2.2. Data Preprocessing 

The data is normalized using the min-max normalization 
technique, which scales the data to the range of 0 to 1. 

Following Equation 14 is used to normalize the data: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
    (14) 

Where xnorm is the normalized value, x is the original 

value, xmin is the minimum value, and xmax is the maximum 

value of the data. 

The formula was applied to both the x and y arrays using 

numpy operations. The data was then reshaped for LSTM 

using the reshape () function. The x array was reshaped into a 

three-dimensional array of shapes (99, 1, 1), where 99 

represents the number of samples, 1 represents the number of 

time steps, and 1 represents the number of features. The y 

array was reshaped into a two-dimensional array of shapes 

(99, 1), where 99 is the number of samples, and 1 is the 
number of features. 

4.2.3. Model 

An LSTM model was built using the Sequential class 

from the TensorFlow Keras API. Two layers were added to 

the model: an LSTM layer and a dense layer. The LSTM layer 

had 50 units and took the input shape of (1, 1). The dense layer 

had one unit and used the default linear activation function. 

The model was compiled using the Adam optimizer and Mean 

Squared Error (MSE) as the loss function. 

4.2.4. Training 

The model was trained until the maximum predicted 

value reached 360, or the number of epochs reached 400, 
whichever occurred first. A batch size of 1 and a verbose level 

of 2 were used. The epoch number and the maximum 

predicted value were printed after each epoch. Additionally, 

the Mean Squared Error (MSE) of the model on the training 

data was calculated and printed after the training was 

completed. 

4.2.5. Prediction 
Predictions were generated using the model on the 

normalized x array. Subsequently, the predictions were 

denormalized using the inverse of the min-max normalization 

Equation 15, 

(a) (b) (c) (d) (e) 

(g) (f) 
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𝑥 = [𝑥𝑛𝑜𝑟𝑚 ∗ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)] + 𝑥𝑚𝑖𝑛    (15) 

Where x is the denormalized value, xnorm is the 

normalized value, xmin is the minimum value, and xmax is 

the maximum value of the data. 

The formula was applied to the predictions array using 

numpy operations. The true and predicted values of the time 
series were then plotted using the matplotlib library, with the 

true values labeled as 'True' and the predicted values labeled 

as 'Predicted'. 

5. Results and Discussion 
Figure 8 illustrates the output of the COMSOL 

simulation. It can be observed that the initial congestion angle 

remains at zero for approximately 15 seconds. After this 
period, it grows exponentially before gradually transitioning 

towards slow saturation. 

 

 

 

 

 

 

 

 

Fig. 8 Plot of simulation time vs congestion angle 

Figure 9 displays the output curve of LSTM predictions 

on the congestion angle compared to the true congestion 
observed in degrees by the closed-loop system. It is evident 

that while the prediction may be accurate for the latter half of 

the curve, the initial flat region is not accurately predicted by 

the LSTM.  

The LSTM erroneously predicts negative congestion 

angles, which are practically impossible, suggesting the 

potential for correction in the LSTM curve. The error in the 

initial iterations is substantial, but as the number of 

simulations exceeds 50, the accuracy significantly improves.  

Integrating LSTM-based adaptive control and TLR 
feedback mechanisms within the molecular communication 

framework offers a novel strategy to enhance targeted drug 

delivery efficiency. The system’s adaptability to the evolving 

landscape of cancer cells is demonstrated by dynamically 

adjusting drug molecule release based on real-time TLR 

values. 

The LSTM congestion control mechanism provides a 

novel approach by selectively activating congestion control 

when predefined thresholds are exceeded. This ensures 

efficient drug delivery without compromising effectiveness, 
maximizing therapeutic outcomes while minimizing adverse 

effects.  

 

 

 

 

 

 

 

 

Fig. 9 The output curve of LSTM prediction on congestion angle and 

true congestion observed by the close loop system. It was clear that 

prediction may be accurate for the later half of the curve, but the initial 

flat region is not predicted by LSTM. 

6. Conclusion 
The dynamic model proposed in this study for molecular 

communication with LSTM congestion control and TLR 

feedback offers a comprehensive framework to enhance 

precise drug delivery to cancer cells. This research addresses 

the critical challenge of congestion in MC-based cancer 

therapy by integrating innovative control mechanisms and 

feedback systems. By dynamically adjusting the number of 

drug molecules transmitted based on real-time TLR values, 

the system adapts to the fluctuating environment of cancer 

cells.  

The LSTM congestion control mechanism allows for 

congestion management, ensuring efficient drug delivery 

without compromising effectiveness with an accuracy of 

97.75%, with error reduction as training iterations increased. 

By selectively activating congestion control when predefined 

thresholds are surpassed, the system maximizes therapeutic 

outcomes while minimizing adverse effects.  

In future research, further refinement and optimization of 

the LSTM algorithm, improvements in TLR detection 

technology, and scaling the proposed framework for clinical 

applications could enhance the model’s robustness and 

applicability.  
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