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Abstract - Conventional circuits for EV battery charging have lower ratings, which can charge the batteries at lower currents. 

This causes a long wait time to charge heavy EV batteries becoming a greater drawback to the EV sector. Fast charging circuits 

need to be deployed to charge the EV batteries with higher charging current ratings. In this paper, a novel PPC circuit is 

introduced for fast charging of EV batteries using a high-frequency operated full bridge. The PPC circuit charged individual EV 

batteries with only processing of a fraction battery’s total power. The proposed circuit is controlled with CC/CV control as per 

the SOC of the battery, retaining the health of the battery. The CC/CV control of the PPC circuit is designed with duty ratio 

control of the high-frequency full bridge. The duty ratio of the switches in the full bridge is controlled by the conventional PI 

gain controller with error generated by comparison of reference and measured values. The conventional PI controller is further 

updated with the PR controller, and a comparative analysis is done with dynamic conditions. A test module is designed with a 
PPC circuit connected to SST to a high voltage distribution line, charging a heavy EV battery. The comparative analysis is 

carried out in a Simulink environment of MATLAB software with graphical plotting done with respect to time. 

Keywords - EV (Electric Vehicle), PPC (Partial Power Charging), CC (Constant Current), CV (Constant Voltage), SOC (State 

Of Charge), PI (Proportional Integral), PR (Proportional Resonant), SST (Solid State Transformer). 

1. Introduction  
Transportation vehicles with Internal Combustion (IC) 

engines contribute to 30% of the global Carbon Dioxide (CO2) 

emissions. Without measures to restrict the use of IC engine 

vehicles, this percentage may increase in the future. This 

heavy carbon footprint is leading to natural disasters and 

creating inhabitable conditions for humans and other living 

beings. To decarbonize transportation, IC engine vehicles 

need to be replaced with Electric Vehicles (EVs) [1].  

EVs are powered solely by electricity from a high-
capacity mobile battery pack. An electric motor drives the 

vehicle by drawing power from the battery pack. The battery 

pack needs to be charged later, either from a conventional 

power grid or renewable sources, depending on availability 

[2]. Previous research has shown that conventional charging 

methods, including buck, buck-boost, and PFC converters, 

have limited charging capability [3].  

The converters’ charge current prolongs the charging 

time, causing delays in transportation. Therefore, the charging 

current to the battery needs to be increased to enable faster 

charging. Fast charging stations are typically DC charging 

stations with powerful electronic circuits that can charge a 

battery with high currents. The power provided by fast-

charging stations ranges from 10kW to 20kW. Using 

conventional circuit topologies to charge batteries in this 

power range can result in high ripple and disturbances, which 

can damage the battery pack. To address this, conventional 

converters are replaced with high-frequency full-bridge 
converters with High Frequency Transformers (HFTF) for 

better and faster charging of Electric Vehicles (EVs).  

Additionally, for efficient power delivery and reduced 

size, a Solid-State Transformer (SST) is used instead of the 

conventional transformer. Each Power Processing Converter 

(PPC) circuit is connected to the SST to charge a single battery 

unit, using power partially from the mains. The system’s 

structure is depicted in Figure 1, with the SST connected to a 

single-phase AC line at the distribution voltage level [6]. 

In Figure 1, the front-end converter connected to the 

11kV MV grid distribution line converts AC to DC. The high-
magnitude DC voltage is then input to the SST, which 

converts it to a low-magnitude DC voltage [7]. This is 

achieved by using two full bridges connected on the primary 
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and secondary sides of the HFTF. The HFTF has reduced turns 

on the secondary side, which decreases the voltage magnitude. 

The low-magnitude DC voltage after the second full bridge of 

the STT is the DC link of the system, where all the PPC 

circuits are connected. Each PPC circuit consumes partial 

power from the DC link for charging the EV and equally 
charges the battery packs connected in parallel [8]. This paper 

is organized with the proposed circuit topology and test 

system introduction in section 1, followed by the circuit 

configuration of the SST and PPC circuits in section 2 and also 

details the internal structure with power delivery and current 

paths of the circuits. Section 3 covers the design of the control 

structure that controls the PPC circuit, including CC/CV 

charging with respect to battery voltage. The design of the 

control structure with conventional PI and proposed PR 

controllers is included in section 3. Section 4 consists of a 

comparative analysis and validation of the results by 
simulating the proposed structure. The comparison is made 

between PI and PR CC/CV control with dynamic 

characteristics and references. The determination of the better-

performing controller is validated in the conclusion of the 

paper in section 5, followed by references.

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 1 Structure of the proposed system with SST and PPC circuits 

2. Circuit Configuration 
The circuit design being proposed replaces the traditional 

transformer with a power electronic-based step-down load 

transformer. This static transformer reduces the voltage levels 

to the range needed for charging Electric Vehicle (EV) 

batteries [9]. It consists of two full bridges connected on the 

primary and secondary of an HFTF. The DC voltage from a 

controlled rectifier connected to AC mains powers the primary 

full bridge, and after voltage step-down, the low magnitude 

DC voltage is sent to PPC circuits for charging EV batteries 

[10].  

The PPC circuits ensure controlled charging of the EV 

battery using an active series-pass element, with very high 

efficiency and minimal power loss. The complete power from 
the DC link is transferred to the battery with very little loss. 

The PPC unit prevents circulating currents better than circuits 

with multiple charging units connected in parallel [11]. 

According to ‘IEC 61851-23:2014’, the voltage output ripple 

of the PPC circuit is maintained. Figure 2 shows the complete 

structure of the PPC circuit connected to the SST fed from the 

MV grid. The input is a single-phase AC voltage at a 

distribution voltage of 6.3kV and a fundamental frequency of 

50Hz. The single-phase AC voltage (Vac) is given as input to 

the controlled rectifier, which converts the AC voltage to high 

magnitude DC voltage (Vdc,cell) given as (1). 

𝑉𝑑𝑐,𝑐𝑒𝑙𝑙 =  √2 . 𝑉𝑎𝑐   (1) 

= 1.414 x 6.3kV ≅ 9kVdc 

The 9kVdc is fed as input to the primary full bridge of the 

SST, converting it into high frequency AC in the range of 50-
100 kHz. The high magnitude and high frequency AC voltage 

are induced to the secondary bridge through HFTF with a 

reduced turn’s ratio for stepping down the voltage [12]. A 

HFTF is installed for reduced leakage currents and losses, 

increasing the efficiency of the SST. The secondary side full 

bridge converts the stepped down magnitude high frequency 

AC to low level DC voltage (Vdc) in the range of load 

consumption (300V-500V). These low voltages levels can be 

utilized for charging the EV battery or operating any DC load. 

Multiple PPC circuits are connected to this low-magnitude DC 

link for charging multiple EV batteries. The primary side of 
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HFTF in the PPC circuit is installed with a full bridge 

converting the low voltage DC to low voltage high frequency 

AC [13]. The high frequency AC is induced to the secondary 

side by the HFTF connected to an uncontrolled diode full 

bridge converting AC to DC, feeding the battery [14]. As per 

the given circuit configuration, battery voltage (Vbat) and Vdc, 

the PPC circuit can be operated in three different schemes, as 

in Figure 3. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 
Fig. 2 Internal circuit structure of PPC circuit and SST 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

Fig. 3 (a) Scheme 1: Vdc > Vbat, (b) Scheme 2: Vdc > Vbat, and (c) Vdc < Vbat. 
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As per Figure 3, Iin is the input current to the primary 

bridge, Iout is the output current of the secondary bridge, Ibat is 

the charging battery current and variable ‘i’ represents the 

number of PPC circuit modules [15]. With respect to the type 

of scheme activated, the Ibat is expressed as follows:  

𝐼𝑏𝑎𝑡 =  {

𝐼𝑖𝑛    (𝑆𝑐ℎ𝑒𝑚𝑒 1)
𝐼𝑖𝑛 + 𝐼𝑜𝑢𝑡    (𝑆𝑐ℎ𝑒𝑚𝑒 2)

𝐼𝑜𝑢𝑡       (𝑆𝑐ℎ𝑒𝑚𝑒 3)
   (2) 

With Scheme 2, the battery can receive more charging 

current, achieving fast charging capability. As per the input 

power (Pin) and battery charging power (Pbat), the partiality 

ratio Kp is expressed as:  

𝐾𝑝 =
𝑃𝑖𝑛

𝑃𝑏𝑎𝑡
⁄   (3) 

As per Scheme 2, the input voltage and output voltage are 

variable, which can be controlled by changing the duty of the 

switches in the full bridge of the PPC circuit. The updated 
variables are expressed as:  

𝑉𝑖𝑛 =  𝑉𝑑𝑐 − 𝑉𝑏𝑎𝑡   (4) 

𝑉𝑜𝑢𝑡 = 𝑉𝑏𝑎𝑡   (5) 

𝐼𝑖𝑛 =  
𝐼𝑏𝑎𝑡𝑉𝑏𝑎𝑡

(1−𝜂)𝑉𝑏𝑎𝑡+𝜂𝑉𝑑𝑐
  (6) 

𝐼𝑜𝑢𝑡 =  
𝜂𝐼𝑏𝑎𝑡(𝑉𝑑𝑐−𝑉𝑏𝑎𝑡)

(1−𝜂)𝑉𝑏𝑎𝑡+𝜂𝑉𝑑𝑐
  (7) 

𝐾𝑝 =  
𝑉𝑑𝑐−𝑉𝑏𝑎𝑡

(1−𝜂)𝑉𝑏𝑎𝑡+𝜂𝑉𝑑𝑐
  (8) 

Here, 𝜂 is the efficiency of the PPC circuit given as: 

𝜂 =  
𝑃𝑏𝑎𝑡

(𝑃𝑏𝑎𝑡 + 𝑃𝑙𝑜𝑠𝑠)⁄   (9) 

The passive element ratings of the PPC circuit with 
respect to Vdc, Vbat, the duty cycle of switches (D) and 

sampling time (Ts) are given as follows:  

𝐿𝑓 =  
(𝑛.𝑉𝑑𝑐−(𝑉𝑏𝑎𝑡−𝑉𝑑𝑐)).𝐷.𝑇𝑠

∆𝐼𝑓
  (10) 

Here, ∆𝐼𝑓 is the allowable inductor current ripple, ‘n’ is 

the turns ratio of the HFTF in the PPC circuit given as:  

𝑛 =  
(𝑉𝑏𝑎𝑡 − 𝑉𝑑𝑐)

𝐷. 𝑉𝑑𝑐
⁄   (11) 

Moreover, the maximum allowable duty ratio of the 

switches in the PPC circuit primary side is expressed as:  

𝐷 =  
𝜑𝑖

𝜋⁄   (12) 

Here, 𝜑𝑖 is the phase shift angle of the switching pulse fed 

to the switches. With the reduction of ‘n’ and ‘D’ values, the 

output voltage is also reduced, changing the charging current 

of the battery unit. As the ‘n’ remains constant in the HFTF 

once it is modelled, the only change that can be done is the 
dynamic ‘D’ value which varies the battery charging current 

[16]. The closed-loop design of the battery charge control is 

further explained in the next section.  

3. Control Design  
The control structure of the PPC circuit controls the 

battery charging current and the slope of the State-Of-Charge 

of the battery (SOCbat). For fast charging of the battery the 
PPC circuit has to transfer more power to the particular battery 

pack [17]. The current to the battery needs to be limited as per 

the maximum withstanding charge current capacity of the 

battery. Every battery has its own limiting charging currents 

and voltage levels as per the manufacturing materials used for 

the fabrication of the battery [18].  

As per previous research, the charging is categorized into 

two types: Constant Current (CC) and Constant Voltage (CV). 

The charging methods significantly control the charging of the 

battery as per the reference value specified. In CC mode, the 

reference is a current value (Iref), and in CV mode, the 

reference is a voltage value (Vref) [19]. The controlling modes 
are selected as per the battery voltage magnitude which 

changes as per the %SOCbat. The control structure design of 

the PPC circuit can be seen in Figure 4.  

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 4 CC/CV control modes of PPC circuit topology 

In the selector switch, the switching happens by a 

threshold battery voltage value (Vbatthres) set as per the 

%SOCbat. During lower %SOCbat levels, the PPC circuit needs 

to be operated in CC mode for fast charging the battery pack 

with high power transfer. When the CC mode is selected, the 

current regulator (either PI or PR controller) generates D for 

the switches of the full bridge of the PPC circuit [20]. 

However, when the CV mode is selected, the voltage regulator 

generates the D value. The D signal is limited to a maximum 

of 48% (0.48), avoiding a short circuit of the PPC circuit. The 
D signal is now compared to high frequency triangular 
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waveform in the range of 50-100 kHz for the generation of 

pulses to the switches S1-S4. With the conventional PI 

regulator, the D value is expressed as:  

𝐷 = (𝐼𝑏𝑎𝑡
∗ − 𝐼𝑏𝑎𝑡) (𝐾𝑝 +

𝐾𝑖

𝑠
)  (13) 

Here, Kp and Ki are the proportional and integral gains 
tuned as per the response of the circuit topology. For better 

performance of the control structure, the conventional PI 

regulator is replaced with a PR controller with resonance gain 

replacing integral gain [21]. The new D signal with the PR 

regulator is expressed as:  

𝐷 =  (𝐼𝑏𝑎𝑡
∗ − 𝐼𝑏𝑎𝑡) (𝐾𝑝 + 𝐾𝑟

2𝜔𝑐𝑠

𝑠2+2𝑤𝑐𝑠+𝑤0
2)   (14) 

Here, Kr is resonant gain, 𝜔𝑐  is cut-off frequency and 𝜔0  

is the resonant frequency. These values are updated as per the 

peak overshoot and settling time of the plant [22]. The 

modeling of the complete system is done with the two 

controllers performing a comparative analysis carried out in 
the next section.  

4. Simulation Analysis  
The modeling of the given circuit configuration of an EV 

fast charging station, including SST and PPC circuit charging 

a car EV battery, is done in a MATLAB Simulink 

environment. The blocks for the design are considered from 
the ‘Powersystem’ toolbox and ‘Commonly used blocks’ of 

the simulink library. The system configuration parameters 

considered for the modeling are given in Table 1.  

Table 1. System parameters 

Name of the Module Parameters 

Grid Infinite Grid: 1-ph 6.3kV 50Hz 

SST 
fsst = 50kHz, Dsst = 50%, HFTF: 

10kVA, n = 22.5:1, Lm = 1mH. 

PPC Circuit 

fppc = 50kHz, Dmax-ppc = 48%, 

HFTF: 10kVA, n = 1:1, Lm = 

695µH, Csn = 49nF, Rsn = 500Ω,   
Lf = 520µH, Cf = 20µF. 

EV Battery 

Manufacturer: TATA Nexon 

(Basic) 

Vnom = 320V, Storage = 93Ahr 

Controller 

Vbat-ref = 350V, Ibat-ref = 20A, Kp-

cv = 0.05,       Ki-cv = 0.023, Kp-cc 

= 0.5, Ki-cc = 0.023. 

Kr-cv = Kr-cc = 0.05, wo = 50Hz 

Vbat-threshold = 346V. 

 

As per the given parameters of the circuit modules the 

simulation is run for two different cases. The initial SOC of 

the battery (SOCint) is set with two different values in each 

case. The SOCint, in one case, is set at 20% when the controller 
operates in CC mode, and another case, it is set at 90%, it is 

when the controller switches to CV mode. A comparative 

analysis is undertaken for these cases with the control module 

updated with the PR controller. The plotting of the graphs for 

the given conditions of SOCint is presented with respect to 

time.  

 
 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5 Simulink model of the proposed EV fast charging station 

4.1. Case 1: EV Battery SOCint set at 20%  

In this case, the SOC of the EV battery is considered to 

be 20%, generally considered as low charge. During the 

condition as the Vbat goes below 346V (threshold value) the 
controller is switched to CC mode. In this mode, Iref = 20A is 

compared to Ibat generating duty ratio for the switches (S1-S4) 

of the PPC circuit. Below are dynamic graphs noted for the 

given condition and mode of control.  

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6 DC link voltage (input to PPC circuit) for case 1 

Figure 6 is the DC link voltage measured (for case 1) at 

the output of the SST, stepping the voltage from 9kV to 300V. 

The HFTF causes this vast drop in the voltage with a very low 

turns ratio of 22.5:1. The ripple in the DC link voltage is 

caused by the switching of the MOSFETs at a very high 

frequency. This voltage is input to the PPC circuit charging 

the EV battery at specified reference values. Figure 7 is the 

dynamic duty ratio generated by the CC control producing 

pulses for S1S4 and S2S3.   
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Fig. 7 Duty ratio and gate pulse to the switches for case 1 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Fig. 8 Battery current comparison for case 1 

 

 

 

 

 

 

 

 

Fig. 9 Battery charging power comparison for case 1 

As per the given duty ratio from CC control, the Ibat for 

case 1 is plotted in Figure 8. The graph shows the comparison 

of Ibat with PI and PR controller. As observed, the Ibat peak 

value and ripple are higher for the PI controller as compared 

to the PR controller. As per the Ibat plotting, the Pbat also 

represents the same pattern in Figure 9. A comparison Table 2 
is given for the current and power parameters with PI and PR 

controller operating in case 1.  

Table 2. Parameter comparison table for case 1 

Name of the Parameter PI PR 

Ibat initial peak 37.2A 31.8A 

Ibat ripple 15.38% 7.1% 

Pbat initial peak 12.5kW 10.7kW 

Pbat ripple 13.5% 6.8% 

4.2. Case 2: EV Battery SOCint set at 90% 
In this case, 2, the parameters of the complete system are 

maintained the same but with only a change in the EV battery 

SOCint value set to 90%. This condition is considered to be an 

almost full charge, where the intensity of charging needs to be 

reduced for a healthy battery. As per the given condition, the 

controller switches to CV mode where the graphs are noted 

and plotted for the same simulation time.  

Figure 10 is the DC link voltage plotted for case 2 which 

has similar magnitude and ripple content as in case 1. The 

average magnitude is recorded to be 300V which is the input 

voltage to the PPC circuit. In Figure 11, the duty ratio for the 

switches is plotted, generated by CV control as the Vbat is 
above 346V (caused by SOC above 85%). 

For case 2 operating in CV mode, the Ibat and Pbat 

comparison with PI and PR is shown in Figures 12 and 13, 

respectively. A comparative parametric Table 3 is given, 

analyzing the measured results.  

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
Fig. 10 DC link voltage (input to PPC circuit) for case 2 
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Fig. 11 Duty ratio and gate pulse to the switches for case 2 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 12 Battery current comparison for case 2 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 13 Battery charging power comparison for case 2 

Table 3. Parameter comparison table for case 2 

Name of the Parameter PI PR 

Ibat Initial Peak 15.5A 13A 

Ibat Ripple 16.6% 7.27% 

Pbat Initial Peak 5.4kW 4.5kW 

Pbat Ripple 22.2% 6.5% 

5. Conclusion 
For enhancement of charging heavy EV batteries fast 

charging method is needed, which can charge with high 

current amplitude. A partial power charging circuit is designed 
and modelled for charging the EV battery with high current 

ratings. For controlling the PPC circuit a CC/CV switcher 

controlling module is included. The selection of CC/CV 

modes is considered from the battery voltage feedback 

compared to the threshold value. In a further modification, the 

duty ratio generation from the error signals is updated with the 

PR controller, replacing the conventional PI controller.  

The resonance gain (Kr) reduces the ripple in the duty 

signal, which reduces oscillations in the battery current and 

charging power. A comparative analysis is carried out with 

both the PI and PR controllers integrated into the PPC circuit, 

improving the performance of the circuit topology.  

As per the comparative tables for both cases during 20% 

and 90% SOCint of battery it is observed that the Ibat and Pbat 

parameters are improved when the controller is operated with 

PR controller. The peak value generation and ripple in both 

parameters are reduced to nearly half with the updated to the 

charge control. 
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