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Abstract - The infinite face-centered Cubic network in this study is composed of equal capacitors, each of which has a 

capacitance (Co). Analytically and statistically, the equivalent capacitance C(2m1,0,0)) between the lattice site (2m1, 0, 0) and 

origin has been evaluated. The asymptotic behavior of the equivalent capacitance has also been studied. Finally, an asymptotic 

example is addressed, and the analogous capacitance is provided as a collection of numerical values. 
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1. Introduction  
One of the well- known and fascinating challenges in 

electric circuit theory is finding out the equivalent 

resistance/capacitance in endless networks of the same 

resistors and capacitors. Numerous methods have been 

proposed to compute resistance/capacitance in infinite 

networks, including Net resistance between adjacent sites in 

infinite networks has been computed by superposing the 

current distribution [1-5]. Although analyzing infinite 

networks of capacitance is similar to networks of resistors, 

many efforts have been carried on them; for example, see the 

previous research and references therein. In these papers, the 

authors considered infinite square, simple cubic, and face-

centred cubic lattices consisting of identical capacitors. They 

used the charge distribution and Lattice Green's Function 

methods to investigate these networks when they were perfect 

and disturbed. This work is unique since no prior research on 

analyzing infinite networks of capacitance has developed a 

precise and correct equation for the net capacitance between 

the lattice sites (2m1, 0, 0) and (2m1, 0, 0). Other works like 

[6-9] give an expression of the net capacitance between any 

lattice site and the origin in terms of the Lattice Green's 

Function values. The method presented here is valid only for 

infinite face centered networks and comprising of equal 

capacitors. Research on infinite networks of identical 

capacitors has important real-world applications, notably in 

the construction of new materials and energy storage devices. 

Understanding the effective capacitance of such networks can 

help optimize supercapacitors, metamaterials, and 

nanostructures for better performance in electronics, 

telecommunications, and power grid applications. This 

theoretical paradigm also promotes creativity in distributed 

sensor networks and large-scale circuit design. The remainder 

of this paper is written as follows: In Section 2, we offer some 

basic concepts, and in Part 3, we apply these principles to an 

endless network of equal capacitors. Finally, in Section 4, we 

conclude the study with our findings and discussions.  

2. Literature Review 
Analyzing infinite networks of identical resistors is a 

well-known approach in theoretical physics and electrical 

engineering. There are many methods used in literature, such 

as the current distribution method [6], the random walk 

method [7] and the mathematical principles of Green's 

functions [1, 2]. Many infinite networks (perfect or perturbed) 

have been investigated using these methods like 2-

dimensional square, hexagonal, ….), 3 dimensional (simple 

cubic, body centered cubic, face-centered cubic, …) networks 

and references in. The application of Green's functions to 

infinite resistor networks has also received substantial 

attention. Notably, Cserti [1, 2, 7] was the first who use the 

lattice Green's function approach to determine the resistance 

between two random nodes in an infinite resistor network. 

This study offered precise formulae for resistance in a variety 

of lattice designs, confirming the usefulness of Green's 

function technique in resistor networks. Furthermore, studies 

have investigated the relationship between resistance in 

infinite networks and random walks, suggesting a link 

between electrical resistance and probabilistic processes. This 

multidisciplinary approach has improved our knowledge of 

electrical characteristics in infinite networks. The study of 

infinite networks composed of identical capacitors has been 

explored in various lattice structures, where authors utilized 

Green's function to compute the capacitance between arbitrary 

nodes in infinite linear chains and square lattices of identical 

capacitors. Their methodology demonstrated that the 
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capacitance between two nodes depends on Green's function 

evaluated at specific lattice points, providing a systematic way 

to calculate capacitances in such networks. Further 

investigations extended this analysis to more complex lattice 

structures. For instance, studies have examined the 

capacitance in body-centered and face-centered cubic lattices, 

revealing that Green's function approach can be adapted to 

various geometries. These analyses highlight the versatility of 

Green's functions in handling different lattice configurations. 

The study of perturbations in infinite networks, such as the 

removal of a bond, has been addressed using Green's 

functions. Cserti et al. [2] investigated the resistance between 

arbitrary nodes in perturbed infinite resistor networks, 

establishing a relationship between the resistance and the 

lattice Green's function of the perturbed network. By solving 

Dyson's equation, they expressed Green's function and the 

resistance of the perturbed lattice in terms of those of the 

perfect lattice.  

Similarly, Hijjawi et al. [8] studied the capacitance 

between arbitrary nodes in an infinite square lattice of 

identical capacitors when one bond is removed. They 

connected the capacitance to the Lattice Green's Function of 

the perturbed network, expressing it in terms of the perfect 

network's Green's function. Their numerical results provided 

insights into the effects of perturbations on capacitance in such 

networks. Finally, Tan Zhi Zhong has conducted significant 

research on the behavior and modeling of finite resistors in 

electrical systems. His work explores the impact of finite 

resistor sizes on circuit performance, including their influence 

on current distribution, thermal effects, and noise 

characteristics. By integrating both theoretical analyses and 

experimental data, Tan Zhi Zhong has developed refined 

models that account for real-world limitations, such as 

material properties and geometric constraints. These models 

enhance the accuracy of circuit simulations and have been 

instrumental in advancing the design of efficient and reliable 

electronic devices. His contributions are particularly valuable 

in high-precision applications, where even slight deviations in 

resistor behavior can lead to substantial performance 

discrepancies [9-13]. 

3. Elementary Definitions  
We begin this part with a few key introductions and 

terminology pertaining to the Lattice Function of the infinite 

face lattice. There are several statistical scenarios when the 

face lattice's Green's Function is encountered. This is how it is 

defined [14]: 

𝐹(𝑚1, 𝑚2, 𝑚3; 𝜀) =
1

𝜋3 ∫ ∫ ∫
cos𝑚1𝜃1cos𝑚2𝜃2cos𝑚3𝜃3

𝜀−(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2+𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃3+𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃3)

𝜋

0

𝜋

0

𝜋

0
𝑑𝜃1𝑑𝜃2𝑑𝜃3.

 (1)                                                                                                       

Where 𝜀 = 𝜀1 + 𝑖𝜀2 is a complex variable (𝑛1, 𝑛2, 𝑛3) is 

any lattice site where 𝑚1 + 𝑚2 + 𝑚3= even. Watson [15] 

studied the Green's Function at the origin for 𝜀 =
3(𝑖. 𝑒. , 𝐹(0,0,0; 3) =  𝑓𝑜). Evaluation of the following 

result for the Green's Function of the infinite face lattice: 

𝐹(0, 0, 0; 3) = 𝑓𝑜 =
√3

𝜋2
[𝐾(𝑘3)]

2 = 0.44822039440.

 (2)                                                  

Where 𝑘3 = 𝑠𝑖𝑛
𝜋

12
=

√3−1

2√2
 (i.e., the elliptic integral's 

singular modulus), and 𝐾(𝑘3) is known as the complete 

elliptic integral of the first kind. At the site (2𝑚1, 0, 0) the 

Green's Function of the infinite face lattice may be expressed 

as follows, as demonstrated by Joyce and Delves [14] in their 

paper: 

𝐹(2𝑚1, 0, 0; 3) = (−1)𝑚 √3

3𝑚 {[
𝑈𝑚

(1)
𝐾3

𝜋
]
2

− [
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(2)

𝐾3
]
2

}. (3)                                                                

𝑈𝑚
(𝑗)

(with 𝑗 = 1, 2) are values that obey the following 

recurrence connection (i.e., rational): 

(2𝑚 + 1)𝑈𝑚+1
(𝑗)

− 12𝑚𝑈𝑚
(𝑗)

− 3(2𝑚 − 1)𝑈𝑚−1
(𝑗)
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 (4)                                                           

With the following initial conditions: 

𝑈0
(1)

= 1, 𝑈1
(1)

= 1, 𝑈0
(2)

= 0, 𝑈1
(2)

= 1, 𝐾3 =
𝜋

2
𝐹1(

1
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,
1
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 , and with 𝑚 = 1, 2, 3, … 

In the above 𝐹1(
1

2
,
1

2
; 1; 𝑘3)2

  is known as the entire first-

kind elliptic integral. 

For more information about the derivation of Equation 

(4), interested readers can follow the derivation presented in 

[15].  

4. Calculation of the Capacitance C(2m1,0,0; 

0,0,0)   
The goal of this section is to give the net capacitance in 

an infinite face-centered cubic network of equal capacitors 

between the lattice site (2m1,0,0) and the origin (i.e., 

𝐶(2𝑚1, 0,0)) in terms of 𝐹(2𝑚1, 0,0; 3). Firstly, it has been 

demonstrated that the equivalent capacitance between any 

lattice site and origin in a three-dimensional infinite network 

made up of equal capacitors with capacitance 𝐶𝑜 is, 

𝐶(0⃗ , 𝑟 ) =
𝐶𝑜

2[𝐺(0⃗⃗ )−𝐺(𝑟)⃗⃗⃗⃗ ]
 . (5)                                                       

Here 𝑟  denotes the position vector of the lattice's points. 

For a 3- D lattice, it takes the form: 

𝑟 = 𝑚1𝑏1
⃗⃗  ⃗ + 𝑚2𝑏2

⃗⃗  ⃗ + 𝑚3𝑏3
⃗⃗  ⃗. (6)                                                                  
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With 𝑚1, 𝑚2, 𝑚3 are integers, and 𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗  ⃗, 𝑎𝑛𝑑𝑏3
⃗⃗  ⃗ are 

independent primitive translation vectors. Also, the equal 

capacitance between any lattice site and origin in a three-

dimensional lattice may be stated in integral form as: 

𝐶(𝑚1, 𝑚2, . . , 𝑚𝑑) =
𝐶𝑜

∫
𝑑𝑥1
2𝜋

𝜋
−𝜋 …∫

𝑑𝑥𝑑
2𝜋

1−exp(𝑖𝑚1𝑥1+⋯+𝑖𝑚𝑑𝑥𝑑)

∑ (1−𝑐𝑜𝑠𝑥𝑖)
𝑑
𝑖=1

𝜋
−𝜋

.

 (7)                                          

Furthermore, the Green's Function for a 3D hypercube 

reads: 

𝐺(𝑚1, 𝑚2, . . , 𝑚𝑑) =

∫
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𝜋
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…∫
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𝜋

−𝜋
. (8)                                   

For the case of an infinite face lattice (i. e. , 𝑑 = 3). Then 

using (7), (8) and comparing with (5), we got: 

𝐶(𝑚1, 𝑚2, 𝑚3) =
𝐶𝑜

[𝑓𝑜−𝐹(𝑚1,𝑚2,𝑚3)]
. (9)                                                                        

Finally, plugging (3) into (9) results in our final required 

relation 

𝐶(2𝑚1, 0,0) =
𝐶𝑜

(
√3

𝜋2[𝐾(𝑘3)]2−(−1)𝑛
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 (10)                       

This is our basic relation, and using the initial conditions 

given after (4) in addition to (4) and (10), one can evaluate the 

required effective capacitance. Below, in Table 1 we give 

some numerical results. It is important to mention two points: 

firstly, 𝐶(2𝑚1, 0,0) = 𝐶(−2𝑚1, 0,0) which is known as 

symmetric, and this is due to the fact that FCC is pure (it has 

no impurities). Second, consider the capacitance's asymptotic 

behavior (i.e., when the separation between the site (2m1, 0, 0) 

and origin grows larger or reaches infinity). In this case, it has 

been shown in the previous research, that as 𝑚1 ⟶ ∞, then 

𝐹(2𝑚1, 0,0) ⟶ 0. Thus from (9),   

𝐶(𝑚1, 𝑚2, 𝑚3) ⟶
𝐶𝑜

[𝑓𝑜−0]
=

𝐶𝑜

0.44822039440
=

2.23104529043(𝑓𝑜𝑟𝐶𝑜 = 1)                 

5. Results and Discussion  
The net capacitance in an infinite face network composed 

of identical capacitors with a capacitance of Co between the 

lattice site (2m1,0,0) and the origin (0,0,0) (i.e.(2m1,0,0)) has 

been represented in the precise form provided by Eq. (10). The 

entire first-kind elliptic integral and rational integers, π, are 

utilized to get the equivalent capacitance (C(2m1,0,0)). We 

were able to get numerical values for these predicted effective 

capacitances using Mathematica, as shown in Table 1. Figure 

1 displays the estimated capacitances plotted along the [100] 

direction against the site (2m1,0,0) in the infinite fcc lattice. 

The capacitance (C(2m1,0,0)) is symmetric and approaches 

the finite value 2.23104529043 (for Co=1). This is due to the 

fact that fo(3,0,0,0) = 0.4482203944 as m→∞. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 The effective capacitance of the site (2m1,0,0) and origin in an 

infinite face lattice

Table 1. Numerical values of effective capacitance C(2n1,0,0) in an infinite face lattice  

Here we consider Co=1  

The site (2m1,0,0) Um
(1)  Um

(2) C(2m1,0,0) 

(0,0,0) 1 0 ∞ 

(2,0,0) 1 1 2.69124672004 

(4,0,0) 5 4 2.44633355758 

(6,0,0) 129/5 21 2.37083681056 

(8,0,0) 717/5 816/7 2.33445231414 

(10,0,0) 825 4695/7 2.31307465448 

(12,0,0) 266859/55 27612/7 2.29901441252 

(14,0,0) 1593171/55 2142999/91 2.28906285767 

(16,0,0) 9615591/55 12934080/91 2.28165684794 

(18,0,0) 994789431/935 78712155/91 2.27592391131 

(20,0,0) 1218673431/187 9160550820/1729 2.27135929497 

(22,0,0) 3410853057/85 56405302965/1729 2.26763540051 

(24,0,0) 5336440769529/21505 348809334480/1729 2.26450813751 

(26,0,0) 1948213488537/1265 10824102013941/9645 2.2629810249 
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6. Conclusion  
The effective capacitance C(2m1,0,0) in an infinite face-

centred cubic lattice has been precisely calculated and 

described in terms of elliptic integrals and rational integers, as 

shown in Eq. (10). Numerical simulations with Mathematica 

verify the theoretical predictions, and the findings are given in 

Table 1. Figure 1 shows how C(2m1,0,0) converges in the 

[100] direction and reaches a finite value of 2.23104529043 as 

m approaches infinity (with Co=1).  

This behavior is due to the limiting value for 𝑓𝑜 = 

0.4482203944. These findings contribute to a better 

knowledge of capacitance characteristics in infinite lattice 

networks and can be used as a basis for future research in 

related systems. 
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