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Abstract - This study presents a sliding mode control method for wheeled mobile robots designed to enhance trajectory tracking 

accuracy and robustness. The method begins with the formulation of constraint and dynamic equations that describe the robot's 

motion, accounting for the complex interactions between the wheels and the ground and the forces and moments that influence 

its movement. A comprehensive state model of the system is developed to enhance understanding of the robot's internal and 

external dynamics. A variable structure controller based on sliding mode principles is employed to achieve effective control, 

which is particularly advantageous for systems encountering uncertainties and disturbances, ensuring stability amid parameter 

variations. Specific modifications are applied to address the issue of chattering -rapid oscillations that can compromise 

precision and durability. Advanced techniques, such as saturation functions and higher-order sliding modes, are utilized to 

mitigate these oscillations while preserving the robustness of the control system.   Finally, numerical simulations are performed 

to evaluate the performance of the proposed method under diverse conditions. The results illustrate that the controller facilitates 

precise trajectory tracking, even in the presence of external disturbances and dynamic uncertainties, confirming the effectiveness 

of sliding mode control for wheeled mobile robots in achieving stability, rapid convergence to target trajectories, and reduced 

chattering effects. 

Keywords - Sliding mode, Lagrange formalism, Non-holonomic mobile robot, Trajectory pursuit. 

1. Introduction  
Robotics has undergone significant development since 

the 1970s, from fixed manipulator systems mainly applied in 

production lines to autonomous mobile robots operating in 

diverse and unstructured environments. Though innovative for 

the manufacturing industry, the early robotic manipulators 

were incapable of mobility. These robots were designed 

mainly to replace humans in repetitive or physically 

demanding tasks but were confined to fixed, predefined 

environments [1]. With the advancement of needs related to 

logistics, exploration, and services, the research fraternity felt 

the requirement for mobile robots that could navigate 

autonomously in dynamic environments. 

Mobile robots are autonomous machines that can move 

without anchoring their bodies to a fixed reference frame. 

Such robots have opened up new applications in fields far 

beyond manufacturing, including precision agriculture, 

logistics, hazardous area exploration, healthcare, military 

defense, and emergency response systems [2, 3]. In such 

robots, navigation through different environments with 

adaptability to various terrains makes them inseparable tools 

in most applications. Locomotion is at the core of mobile 

robots' functionality, and the design of their propulsion 

systems depends on the specific requirements of each 

application. They can be equipped with wheels, tracks, legs, 

or hybrid configurations depending on the terrain. Wheeled 

robots, for example, are particularly efficient on flat surfaces 

and are widely used for tasks requiring fast and precise 

movements [2]. However, in more complex environments, 

such as rough or unstable terrains, walking or tracked robots 

are preferred for their obstacle-conquering ability and better 

realization of stability [4]. 

Controlling a mobile robot, mainly regarding its stability 

and following a predetermined trajectory, is not easy. Real-

world environments are usually uncertain, with uneven terrain 

and time-varying conditions that demand an efficient control 

strategy to handle these uncertainties.  

Sliding Mode Control has appeared to be one of the robust 

ways to manage nonlinearities and external disturbances to 

which mobile robots are naturally exposed. This technique 

was developed in the 1950s and is effective, especially in 

systems that need increased robustness against uncertainties 

[5, 6]. SMC relies on using a sliding surface-a state to which 

the system converges to ensure stable behavior, even in the 

presence of disturbances. This control approach has been 
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widely adopted for mobile robots, especially those that need 

to follow a trajectory over complex terrains where wheel-

ground contact conditions may fluctuate [7]. However, one of 

the major drawbacks of this approach is the so-called 

chattering phenomenon, which is constituted by fast 

oscillations of the control signal that may cause premature 

mechanical wear and deteriorate performance. Modern 

solutions, such as introducing saturation functions and higher-

order sliding mode control methods, have been developed to 

avoid this problem without losing system robustness [8]. 

The main objective of this research is to analyze and 

propose solutions to improve the stability of mobile robots 

during trajectory tracking, particularly through the use of 

sliding mode control. Integrating robust control techniques, 

such as SMC, with advanced dynamic models allows for better 

handling of real-world conditions and ensures the reliable 

performance of mobile robots in critical applications. This 

work shows readers that sliding mode control to mobile robots 

gives stability and better performance, illustrated by the 

position, speed and acceleration graphs; this control ensures 

flexibility for adding other control algorithms, such as neural 

network controls or fuzzy logic. 

2. Methodology 
2.1. Dynamic Modelling of the Mobile Robot 

The choice of robot which was made has the following 

configuration: 

Mobile robot with four wheels including two non-steering 

driving wheels placed at the rear and two idler wheels for 

better trajectory tracking and stability of the mobile robot. For 

the study of the system's movement, we consider an inertial 

frame of reference 𝑅0 (𝑜, 𝑖, 𝐽, �⃗⃗�) and another frame of 

reference linked to the robot 𝑅1 (𝐺, 𝑖1⃗⃗ ⃗, 𝐽1⃗⃗ ⃗, 𝑘1⃗⃗⃗⃗⃗) where G is the 

center of gravity of the mobile robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Coordinated of the mobile robot 

The state of the mobile robot is described by the following 

variables: 

The position vector 𝜉 = (𝑥, 𝑦, 𝜃)𝑇 position and 

orientation of the robot. The speed vector 𝜉̇ =

(�̇�, �̇�, �̇�)𝑇 translation and rotation speed of the robot. The 

coordinates (𝜑1, 𝜑2) and (�̇�1, �̇�2) position and rotation speed 

of the two driving wheels (Figure 1). 

(X,Y) : Coordinate system in the absolute reference frame 

R. 

(X1,Y1) : Coordinate system in the reference frame attached 

to robot R1. 

G : Center of gravity of the robot with its coordinates 

(XG,YG). 

b : Distance between the driving wheel and the symmetry 

axis of the robot. 

Ir : Moment of inertia of the driving wheel around its axis. 

Lr : Distance between the center of gravity and the rear axle. 

Lf : Distance between the center of gravity and the front axle. 

L : Mobile robot length. 

θ : Orientation of the mobile robot (angle between R0, R1). 

r : Radius of the driving wheel. 

c : Constant equal to r/2b. 

mc : Mass of the mobile robot without wheels and without the 

motor rotor. 

mr : Mass of the driving wheel including the rotor of the 

engine. 

m : total mass of the mobile robot. 

1  : Angular position of the left rear wheel. 

2  : Angular position of the right rear wheel. 

1  : Left rear wheel rotation speed. 

�̇�2: Rotation speed of the right rear wheel. 

Ic : Moment of inertia of the mobile robot. 

Im : Moment of inertia of the driving wheel around its 

diameter. 

F1, F2, F3, F4 : Tire-road interaction forces. 

In order to establish the dynamic model of the robot, we 

choose the following generalized coordinate vector: 

𝑞 = (

𝑥𝐺
𝑦𝐺
𝜙𝑔
𝜙𝑑

) (1)   

𝑞: Vector of joint positions. 

𝜙𝑔: Angular position of the left rear wheel. 

𝜙𝑑: Angular position of the right rear wheel. 

𝑥𝐺 and 𝑦𝐺 coordinates of the center of gravity. 

The mobile robot is subject to constraints which are: 

The inability to move in the lateral direction. 
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�̇�𝐺 𝑐𝑜𝑠 𝜃 − �̇�𝐺 𝑠𝑖𝑛 𝜃 − 𝐿𝑟 . �̇� = 0  (2) 

The rolling stress without a slip for each wheel.                                  

�̇�𝐺 𝑐𝑜𝑠 𝜃 + �̇�𝐺 𝑠𝑖𝑛 𝜃 − 𝑏. �̇� − 𝑟�̇�2 = 0 (3)  

�̇�𝐺 𝑐𝑜𝑠 𝜃 + �̇�𝐺 𝑠𝑖𝑛 𝜃 + 𝑏. �̇� − 𝑟�̇�1 = 0 (4) 

By subtracting (3) from (4), we will have: 

   �̇� =
𝑟

2𝑏
(�̇�1 − �̇�2) (5) 

By integrating this equation and considering the initial 

conditions to be zero, we obtain the following non-holonomic 

constraint: 

   θ = c (𝜑1-𝜑2) (6) 

By adding the equations of constraints (3) and (4) and 

dividing by 2 we will have the following: 

 �̇�𝐺 𝑐𝑜𝑠 𝜃 + �̇�𝐺 𝑠𝑖𝑛 𝜃 −
𝑟

2
�̇�1 −

𝑟

2
�̇�2 = 0 (7) 

On the other hand, we replace �̇� =
𝑟

2𝑏
(�̇�1 − �̇�2)in the 

Equation (2) we will have: 

�̇�𝐺 𝑐𝑜𝑠 𝜃 − �̇�𝐺 𝑠𝑖𝑛 𝜃 − 𝐿𝑟
𝑟

2𝑏
(�̇�1 − �̇�2) = 0 (8)        

 Equations (7) and (8) are two non-holonomic motion 

constraints, and they can be written in the following matrix 

form: 

 𝐴(𝑞). �̇� = 0    A(q) : Matrice des contraintes.                            

With  :    

𝐴(𝑞) = [
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐. 𝐿𝑟 −𝑐. 𝐿𝑟

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 −
𝑟

2
−
𝑟

2

] (9) 

The Lagrangian formalism is based on the calculation of 

the energies involved in the system [9]. We then calculate the 

first energy involved in the robot's movement, namely the 

kinetic energy; this energy decomposed into rotational energy 

and translational energy. 

Rotational Energy: 

( ) ( )2 2 2 2

1 2
1 1 1 2

2 2 2rot G roue mE I I I   = + + +
 
(10)   

Translational Energy: 

( )( )

( ) ( )

2 2

2 2 2

1 2
2

2 sin cos

trans c roue

roue r roue r

E m m x y

m L x y m b L   

= + +

− − + + +

 (11) 

We then obtain the following expression: 

trans rotL E E= +
 

(12)  

 𝐿 =
1

2
(�̇�𝐺

2 + �̇�𝐺
2) − 2𝑚𝑟𝑜𝑢𝑒𝐿𝑟(�̇�1 − �̇�2)(−�̇�𝐺 𝑠𝑖𝑛 𝜃 +

�̇�𝐺 𝑠𝑖𝑛 𝜃) 

        + +
1

2
𝐼. 𝑐2(�̇�1 − �̇�2) +

1

2
𝐼𝑟𝑜𝑢𝑒(�̇�1

2 − �̇�2
2) (13) 

With{
𝑚 = 𝑚𝑐 + 2𝑚𝑟

𝐼 = 𝐼𝑐 + 2𝐼𝑚 + 2𝑚𝑟(𝑏
2 + 𝐿𝑟

2)
 

The second energy involved is the potential energy U. 

Since the mobile robot moves only on the horizontal plane, the 

expression for U (q) = 0, [10]. We can now calculate the 

Lagrangian L (where L = T - U), corresponding simply to the 

expression for kinetic energy. According to the Lagrangian 

formalism, we write the following relationship:       

  
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�1
) −

𝜕𝐿

𝜕𝑞1
= 𝜏′. 𝜆 (14) 

Where τ’ is the vector of generalized external forces, this 

vector summarizes the torques applied by the actuators. λ is 

the vector of Lagrange multipliers due to the kinematic 

constraints of the system. We can then write the system in the 

form: 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�) = 𝐸( 𝑞) . 𝜏 − 𝐴𝑇( 𝑞). 𝜆 (15) 

   M(q) : Inertia matrix. 

   V(q) : Coriolis matrix. 

   E(q) : Transformation matrix. 

   A(q) : Constraint matrix. 

With    𝜏′ = 𝐸(𝑞)𝜏 

𝑀(𝑞) =

[
 
 
 

𝑚 0 2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃 −2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃
0 𝑚 −2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃 2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃

2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃 −2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃 𝐼𝑟 + 𝐼. 𝑐
2 −𝐼. 𝑐2

−2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃 2𝑚𝑟 . 𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃 −𝐼. 𝑐2 𝐼𝑟 + 𝐼. 𝑐
2 ]

 
 
 

 

𝑉(𝑞) = [

2𝑚𝑟 . 𝐿𝑟 . �̇�
2 𝑐𝑜𝑠 𝜃

2𝑚𝑟 . 𝐿𝑟 . �̇�
2 𝑠𝑖𝑛 𝜃

0
0

]   𝐸(𝑞) = [

0 0
0 0
1 0
0 1

] (16) 
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  𝜏 = [
𝜏1
𝜏2
]               𝜆 = [

𝜆1
𝜆2
] 

With 𝜏1 and 𝜏2 right and left wheel torques. 

To eliminate the Lagrange multipliers λ, we use the 

angular velocities of each wheel to determine the matrix S(q) 

such that: 

     {
𝐴(𝑞)𝑆(𝑞) = [0]

�̇� = 𝑆(𝑞)𝜂
      With 𝜂 = [

�̇�𝑔

�̇�𝑑
] (17) 

On the other hand, we have: 

�̈� = 𝑆(𝑞). �̇� + �̇�(𝑞). 𝜂 (18) 

The resolution of this system allows us to explicitly 

express the matrix S(q): 

𝑆(𝑞) =

[
 
 
 
 𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃 +

𝑟

2
𝑐𝑜𝑠 𝜃 −𝑐. 𝐿𝑟 𝑠𝑖𝑛 𝜃 +

𝑟

2
𝑐𝑜𝑠 𝜃

−𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃 +
𝑟

2
𝑠𝑖𝑛 𝜃 𝑐. 𝐿𝑟 𝑐𝑜𝑠 𝜃 +

𝑟

2
𝑠𝑖𝑛 𝜃

1 0
0 1 ]

 
 
 
 

 (19) 

By multiplying the equation by𝑆𝑇(𝑞)  , and noting that  

𝑆𝑇(𝑞)𝐴𝑇(𝑞) = [0] and 𝑆𝑇(𝑞)𝐸(𝑞) = 𝐼2×2 

and we also take 𝑉(𝑞, �̇�) = 0 

We will have:   

𝑆𝑇(𝑞)𝑀(𝑞)�̈� = 𝑆𝑇(𝑞)𝐸(𝑞)𝜏′ = 𝜏 (20)  

Substituting �̈�  with its expression in Equation (2), we will 

have:  

𝑆𝑇(𝑞)𝑀( 𝑞) 𝑆(𝑞). �̇� + 𝑆𝑇(𝑞)𝑀( 𝑞) �̇�(𝑞). 𝜂 = 𝜏 (21) 

Let's choose the following state variable: 

   𝑥 = [
𝑞
𝜂]  (22) 

The Equation (15) can be substituted into the equation as 

follows: 

 �̇� = 𝑓(𝑥) + 𝑔(𝑥). 𝜏 (23)              

�̇� = [
�̇�
�̇�
] = [

𝑆(𝑞). 𝜂
𝑓1

] + [
[0]

(𝑆𝑇(𝑞)𝑀( 𝑞) 𝑆(𝑞))−1
] 𝜏 (24) 

With  

𝑓1 = (𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))
−1
(−𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞)). 𝜂 (25) 

The system is represented in state-space form, and for 

clarity, let's introduce a new input variable u such that: 

      𝜏 = (𝑆𝑇(𝑞)𝑀(𝑞)𝑆(𝑞))(𝑢 − 𝑓1)                          (26) 

We can then express the system in the form: 

         �̇� = [
𝑆(𝑞). 𝜂

[0]
] + [

[0]
𝐼
] 𝑢 (27) 

With   𝑓(𝑥) = [
𝑆. 𝜂

[0]
] and 𝑔(𝑥) = [

[0]
𝐼
]  

I is the 2x2 identity matrix. 

2.2. Sliding Mode Control 

To determine this sliding control, we use the equivalent 

control approach [11] to model robot behaviour using a 

simplified reference model. Our mobile robot is non-

holonomous [12], which means it cannot move autonomously 

in all directions. Specifically, the robot's position is 

determined by its centre of gravity (G), subject to cinematic 

and dynamic constraints. However, we cannot directly control 

the center of gravity (G) position due to the robot's non-

holonomic nature. To work around this problem, we have 

chosen another control point on the axis (X1), which facilitates 

modeling and controlling the robot’s movement. This control 

point is chosen so that it is on the axis of symmetry of the robot 

and is at a distance from this control point, we can define the 

robot motion equations based on the control inputs and initial 

conditions [13, 14]. The motion equations are derived by 

applying mechanical laws while considering the kinematic 

and dynamic constraints imposed by the robot. By modeling 

the robot using this control point, we simplify motion 

equations and make implementing the control by sliding mode 

easier. This approach is particularly useful for non-holonomic 

mobile robots, as it bypasses the limitations imposed by non-

holonomy and allows precise and controlled movements. 

Therefore, we have chosen another control point located 

on the X1 axis. [15] The coordinates of this point are given in 

the following form: 

𝑍 = [
𝑧𝑥
𝑧𝑦
] = [

𝑥𝐺 + 𝐿 𝑐𝑜𝑠 𝜃
𝑦𝐺 + 𝐿 𝑠𝑖𝑛 𝜃

]  and   �̇� = [
�̇�𝐺 + 𝐿�̇� 𝑐𝑜𝑠 𝜃

�̇�𝐺 + 𝐿�̇� 𝑠𝑖𝑛 𝜃
] 

On the other hand, we have the system with this 

expression: 

�̇� = [
𝑆(𝑞). 𝜂

[0]
] + [

[0]
𝐼
] 𝑢 (28) 

This system has the particularity of possessing certain 

characteristics. We simplify its state representation by 

partitioning it into two sub-vectors 𝑥1 and 𝑥2, where the 

dimension of 𝑥2 is equal to the dimension of u, which is m=2.  

 

Therefore, the dimension of 𝑛 − 𝑚 = 4. We can then 

express the system (15) in the following form: 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝜏 

{
�̇�1 = 𝑓1(𝑥) + 𝑔1(𝑥)
�̇�2 = 𝑓2(𝑥) + 𝑔2(𝑥)

    Where  

{
 

 
𝑓1(𝑥) = 𝑆(𝑞). 𝜂

𝑔1(𝑥) = [0]

𝑓2(𝑥) = [0]

𝑔2(𝑥) = 𝐼
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This allows us to express the system in its reduced form: 

{
�̇�1 = 𝑓1(𝑥)
�̇�2 = 𝑔2(𝑥)𝑢

 

Now, we consider s(z) as the vector defining the 

switching functions that determine the sliding surfaces of the 

m-dimensional system. By definition, these functions are 

expressed as: 

𝑠(𝑧) = [
𝑠1(𝑧𝑥)
𝑠2(𝑧𝑦)

]     Where    {
𝑆1 = �̇̃�𝑥 + 𝜆𝑥�̃�𝑥
𝑆2 = �̇̃�𝑦 + 𝜆𝑦�̃�𝑦

 

With   {
�̇̃�𝑖 = �̇�𝑖 − �̇�𝑖𝑑
�̃�𝑖 = 𝑧𝑖 − 𝑧𝑖𝑑

                 𝑖 = 𝑥, 𝑦 

On the other hand, we have: 

𝑍 = [
𝑧𝑥
𝑧𝑦
] = [

𝑥𝐺 + 𝐿 𝑐𝑜𝑠 𝜃
𝑦𝐺 + 𝐿 𝑠𝑖𝑛 𝜃

]   and  �̇� = [
�̇�𝐺 + 𝐿�̇� 𝑐𝑜𝑠 𝜃

�̇�𝐺 + 𝐿�̇� 𝑠𝑖𝑛 𝜃
] 

Zid and �̇�𝑖𝑑  are the respective coordinates of the desired 

position and velocity vectors. λx and λy are the coefficients of 

the sliding surfaces. These coefficients determine the system's 

response time. To determine the system's dynamics, we use 

the reaching law approach [2], which allows us to directly 

specify the approach dynamics of the system such that: 

With Q and K being two diagonal matrices with positive 

elements, and: 

�̇� = −𝑄𝑠𝑖𝑔𝑛𝑒(𝑠) − 𝐾ℎ(𝑠) (29) 

With  𝑄 and K two   diagonal matrix with positive 

elements 

𝑠𝑖𝑔𝑛𝑒(𝑠) = [𝑠𝑖𝑔𝑛𝑒(𝑠𝑥), 𝑠𝑖𝑔𝑛𝑒(𝑠𝑦)]
𝑇
 

ℎ(𝑠) = [ℎ(𝑠𝑥), ℎ(𝑠𝑦)]
𝑇
 

The function h(s) is a function depending on the sliding 

surface. We now determine the control law. 

�̇� =
𝑑𝑠

𝑑𝑡
=
𝜕𝑠

𝜕𝑥
�̇� =

𝜕𝑠

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) 

= −𝑄𝑠𝑖𝑔𝑛𝑒(𝑠) − 𝐾ℎ(𝑠) (30) 

Finally, we will have:    𝑢 =

−(
𝜕𝑠

𝜕𝑥2
𝑔2(𝑥))

−1

(𝑄𝑠𝑖𝑔𝑛𝑒(𝑠) + 𝐾ℎ(𝑠) +
𝜕𝑠

𝜕𝑥1
𝑓1(𝑥)) (31) 

 

We used MATLAB/SIMULINK (v.2024b) in this study. 

 

3. Results and Discussion 
To validate and enhance the performance of the proposed 

control strategy, the following Figure 2 illustrates the dynamic 

model for trajectory tracking in wheeled mobile robots 

implemented in the MATLAB/Simulink environment. 

 
Fig. 2 Block diagram of the dynamic model for trajectory tracking in 

wheeled mobile robots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Selected position, velocity, and acceleration profiles 
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Figure 3 depicts the selected position, velocity, and 

acceleration profiles utilized for testing the proposed control 

system. 

3.1. Robot Parameters and Experiments during the 

Simulation, the Robot is Required to Follow a Straight 

Reference Trajectory 

The initial position of the robot in the absolute frame is 

(𝑥, 𝑦, 𝜃)= (0,0,0) 

The final position to reach is  

(𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓) = (2,0,
𝜋

6
) 

The gains used in this simulation are   

𝑄 = 20𝑚/𝑠2; K=5Hz; 𝜆 =0.5Hz 

The robot parameters are 

𝑚𝑐 = 99𝐾𝑔; 𝑚𝑟 =0,5Kg; 𝑏 = 0,5148𝑚; 𝑟 =
0,0228𝑚; 𝐿 = 1,05𝑚; 𝐿𝑟 = 0,3𝑚; 𝐼𝑟 = 8,26 ×
10−3𝐾𝑔.𝑚2; 𝐼𝑐 = 14,4 × 10

−3𝐾𝑔.𝑚2 

3.2. Analysis of Position Tracking, Velocity and 

Acceleration 

The analysis of position tracking results indicates that the 

robot’s trajectory closely aligns with the desired path, as 

illustrated in Figure 4. The tracking performance is both 

accurate and remains within acceptable thresholds, 

highlighting the effectiveness of the control method in guiding 

the robot to its target positions. However, some nuances in the 

robot’s behavior, particularly during specific movement 

phases, warrant further investigation to comprehensively 

understand its dynamics. A key observation involves the 

velocity errors of one of the wheels during the deceleration 

phase, as illustrated in Figure 5(a). During this phase, a 

notable dip in velocity error is evident. This phenomenon 

arises from the robot's decreased sensitivity to rapid velocity 

changes while decelerating, leading to a slower response to 

speed adjustments. Although this might initially appear 

concerning, it indicates that the system is stabilizing 

effectively; however, it does highlight a slight delay in 

response during sharp deceleration. Importantly, despite this 

initial lag in velocity adjustment, position errors are corrected 

after a short period, becoming nearly negligible within 

seconds. This suggests that, while temporary discrepancies in 

velocity occur, the robot successfully compensates for them, 

ensuring accurate position tracking over time. 

Another notable observation relates to the acceleration 

oscillations shown in Figure 5(b), which are linked to the 

specific motion profile being followed, in this case, a straight 

trajectory. These oscillations are unsurprising, as they are 

inherent to the control dynamics of systems operating along 

such paths. A reassuring aspect is that, while these oscillations 

are present, they do not cause any damage to the actuators. 

This indicates that the control system is robust enough to 

accommodate these variations without resulting in mechanical 

stress or degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Right tracking simulation 

    

 

 

 

 

 

 

 

                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Right tracking simulation: (a) Velocity, and (b) Acceleration. 

3.3. Analysis of Control Commands and Slip Surfaces 

The analysis also reveals the presence of the chattering 

phenomenon, an issue commonly associated with sliding 

mode control. Chattering is manifested by spikes in the control 

commands, as seen in Figure 6. Chattering occurs when the 

control signal oscillates rapidly near the sliding surface, 
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resulting in high-frequency fluctuations in the system's inputs. 

While chattering can lead to mechanical wear or inefficiency 

in control, the observed spikes here do not seem to 

significantly affect the robot's ability to track its trajectory. 

This can be attributed to the fact that the sliding surfaces Sx 

and Sy tend towards zero, as shown in Figure 7. When the 

sliding surfaces approach zero, the system is converging 

towards the desired state, ensuring that any deviations are 

minimal and corrected promptly. This convergence suggests 

that the chattering, although present, is sufficiently controlled 

to prevent any major negative impact on the robot's 

performance. In summary, although the velocity errors during 

deceleration and the chattering phenomenon are noteworthy, 

they do not substantially hinder the robot's overall trajectory-

tracking performance. The control system effectively 

minimizes position errors, and the acceleration oscillations 

remain within acceptable limits without inflicting damage on 

the actuators. While the impact of chattering could be further 

mitigated through more refined control techniques, its current 

effects are limited to minor fluctuations that do not 

compromise the system's overall effectiveness in maintaining 

precise trajectory tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 Graphs of commands: (a) Command U1, and (b) Command U2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 7 Graphs of slip surfaces: (a) Surface Sx, and (b) Surface Sy. 

4. Conclusion 
This study has presented a trajectory tracking control 

method for a nonholonomic wheeled mobile robot based on 

sliding mode control techniques. Effective trajectory tracking 

is vital for enabling mobile robots' autonomous and efficient 

operation in varied and potentially disturbed environments. 

Our methodology highlights the advantages of sliding mode 

control, particularly its robustness to dynamic uncertainties 

and external disturbances, which are common challenges 

mobile robots face in practical applications. The simulation 

results confirmed the relevance and effectiveness of sliding 

mode control for this type of robot. A significant finding of 

this study was the critical role of the λ parameter, which 

influences the system's dynamics. This parameter is essential 

for optimizing the control system's performance by accounting 

for the robot's specific physical constraints and the 

surrounding environmental conditions. Our findings 

demonstrated that carefully selecting this parameter enables 

the robot to achieve effective stabilization while providing a 

rapid and precise dynamic response. Sliding mode control 

provides several advantages over alternative control 

techniques, notably its capacity to manage nonlinear systems 

and withstand unexpected disturbances. The simulation results 

demonstrated that this approach can maintain the robot's 

stability despite surface variations, external disturbances, and 
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uncertainties in the dynamic model parameters. This 

robustness is a key strength of sliding mode control, 

distinguishing it from conventional control methods, which 

may be more susceptible to parameter variations or rely on 

incomplete models. Another important aspect to highlight is 

the management of chattering. While sliding mode control is 

known for its robustness, it is also known to produce rapid 

oscillations in the control signal, a phenomenon called 

chattering, which can affect system performance and cause 

premature wear of mechanical components. In our study, we 

applied techniques to reduce chattering, such as using 

saturation functions or higher-order sliding modes. This 

allowed us to minimize this undesirable effect while 

maintaining a precise and stable dynamic response. In 

conclusion, this research has demonstrated that sliding mode 

control is a particularly well-suited method for the trajectory 

tracking of nonholonomic wheeled mobile robots, thanks to its 

robustness and flexibility in the face of uncertainties. The 

simulation results validate this approach and show that it 

offers an efficient solution for applications requiring a high 

degree of reliability, such as mobile robotic systems operating 

in varied and potentially unpredictable environments. 

However, while this method shows promising results, there 

are still opportunities for improvement. For example, 

optimizing control parameters could further enhance system 

performance, especially in reducing chattering without 

compromising stability. Further studies could be conducted to 

test this approach in real-world environments with more 

complex conditions, such as highly irregular terrains or 

unpredictable interaction scenarios. Combining this method 

with artificial intelligence techniques, such as machine 

learning, could also open new perspectives for real-time 

dynamic adaptation, thereby enhancing the autonomy of 

mobile robots in critical applications. 
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