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Abstract - Vehicular Ad Hoc Network (VANET) is a developing technology applied in Intelligent Transportation Systems. The 

existing research has limitations, such as network instability due to vehicles' mobile nature, which reduces the network lifetime. 

To overcome this problem, this research introduced a Multi-objective Dynamic Osprey Optimization Algorithm (MDOOA) based 

on energy-efficient clustering and routing in VANET. In the exploration phase, a dynamic, elite guidance mechanism with an 

adjustable ratio strategy is used to enhance individuals' search space exploration and avoid local optima issues at the beginning 

of the iteration. The MDOOA is used for Cluster Head (CH) and route selection with objective functions like the distance between 

neighbor nodes, the distance between Base Station (BS) to CH, energy, centrality and Load Balancing Factor (LBF), which 

gradually contributes to enhancing Network Lifetime (NLT). The CH maintenance is also performed using MDOOA to balance 

loads among clusters, which is required to prevent node failure. The delay, Packet Delivery Ratio (PDR), NLT, Energy 

Consumption (EC) and throughput are considered for experimental analysis of MDOOA. The experimental results show 

improvement in delay, Packet Delivery Ratio (PDR), NLT, Energy Consumption (EC) and throughput when compared with the 

existing techniques. 

Keywords - Cluster head maintenance, Dynamic, Elite guidance mechanism, Load Balancing Factor, Osprey Optimization 

Algorithm, Vehicular Ad Hoc Network. 

1. Introduction 
The Vehicular Ad hoc Network (VANET) is one of the 

distinct categories of Mobile Ad hoc Networks (MANETs) in 

that vehicles are taken as nodes, and complete transmission 

commonly occurs among them [1]. The data is communicated 

by Vehicle-to-Infrastructure (V2I), Vehicle-to-Everything 

(V2X) and Vehicle-to-Vehicle (V2V) communications [2]. 

VANET is applied in different areas, such as monitoring 

traffic congestion, safety driver programs and traffic control 

[3]. In VANET, data is transmitted without infrastructure, and 

communication is comprehensive due to the promoting 

mechanism over a few hops [4]. The clustering denotes the 

procedure of partitioning the whole set of vehicle nodes into 

small logical groups within a network [5]. The clustering is 

based on various parameters like transmission capability and 

inter-node distance for optimizing overall network 

performance [6, 7]. However, the clustering processes deviate 

from each other based on various criteria considered for 

forming clusters related to their application functionality and 

domain [8].  

Particularly, CH is responsible for forwarding intra-

cluster and inter-cluster communication while Cluster 

Member (CM) nodes act as actual nodes [9-11]. The CH 

selection is related to its improved functionality, attributed to 

the network optimization performance [12]. Therefore, the CH 

selection in VANET plays a significant role in obtaining 

reliable communication [13]. However, VANET has 

limitations, such as dynamic behavior rectified through 

efficient and effective routing for data broadcasts [14, 15]. 

Vehicles cannot communicate data without an effective 

routing technique and will lose every benefit of sophisticated 

VANET technology [16]. Important services allowed through 

VANET are hazard control systems and handling services, 

which require data management towards certain subsets or 

nodes in the network to enable required action. One main issue 

with data distribution is its implied risk of broadcast or 

bottleneck storms [17-20]. In VANET, managing stable and 

long-lasting network connections is difficult because of the 

vehicle’s high mobility, which minimizes the overall network 

lifetime and efficiency in data transmission. The MDOOA is 
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proposed for energy-efficient clustering and routing in 

VANET to solve this research gap. MDOOA addresses the 

instability in VANET by generating more robust clustering 

and routing mechanisms that adjust to the high mobility of 

vehicles. The dynamic, elite guidance mechanism with an 

adjustable ratio strategy is deployed to manage clusters 

towards optimal routes by determining energy-efficient nodes 

effectively. In the exploration phase, the adjustable ratio 

strategy adapts the search space in the early iteration phase to 

avoid local optima issues. By continuously refining the search, 

the MDOOA minimize energy consumption, increases the 

overall network lifetime, stabilizes the network connectivity, 

and enhances data transmission. The vital contributions of this 

manuscript are as follows. 

 The MDOOA is used for CH selection with the help of 

objective functions like the distance between neighbor 

nodes, the distance between BS to CH, energy, centrality 

and Load Balancing Factor (LBF). Moreover, route 

selection is performed through objective functions like 

distance between BS to CH and energy, which 

progressively contributes to enhancing network lifetime. 

 The MDOOA finds different routes and optimizes the 

best route for reducing energy consumption and delay, 

enhancing the overall network lifetime. Additionally, the 

CH maintenance is performed using MDOOA to balance 

loads among clusters, which is required to prevent node 

failure.  

The rest portion of this research is prepared as 

subsequent: Section 2 summarizes existing research; Section 

3 details the proposed methodology. Section 4 gives 

implementation results, and Section 5 concludes the research. 

2. Literature Review 
Effective clustering and routing in VANET were 

significant in optimising vehicle communication and 

increasing road safety and traffic management. Clustering 

contains grouping vehicles depending on mobility patterns to 

effectively exchange data and enhance scalability. The routing 

mechanism adapts to the dynamic nature of vehicle 

movement, providing high reliability and low latency. Various 

algorithms have been developed for CH and route path 

selection to enhance network lifetime in VANET. The 

methodology, advantages and limitations are examined below: 

 Raghu Ramamoorthy and Menakadevi Thangavelu et al. 

[21] presented an Enhanced Hybrid Ant Colony Optimization 

Routing Protocol (EHACORP) for clustering and routing in 

VANET. Initially, the EHACORP depends on distance 

estimation techniques to calculate distance among vehicles. 

The source-based ACO was utilized to create a shorter path 

with fewer hops to communicate data. The EHACORP was 

applied to achieve better balance within the network. The 

objective functions considered are based on distance and 

energy and do not consider centrality and LBF, which affect 

energy efficiency. From the overall evaluation of [21] 

enhances network balance by optimizing routing depending 

on energy and distance, but lack of consideration for LBF and 

centrality limits its energy efficiency.  

Mohamed Elhoseny et al. [22] developed an Intelligent 

Energy-Aware Oppositional Chaos Game Optimization-based 

Clustering (IEAOCGO-C) protocol for VANETs. This 

technique aims to select Cluster Heads (CHs) in the network 

efficiently and construct clusters based on Oppositional-Based 

Learning (OBL) with Chaos Game Optimization (CGO) 

algorithm to improve efficiency. The combination of CGO 

and OBL leads to faster convergence rates due to the efficient 

search mechanism of CGO and the comprehensive solution 

space evaluation of OBL. However, the IEAOCGO-C 

approach has increased sensitivity to parameter settings, 

requiring more extensive tuning to achieve optimal 

performance. In the overall analysis of [22], convergence rates 

increased through solution space exploration but exhibited 

enhanced sensitivity, leading to inaccurate performance. 

S. Harihara Gopalan et al. [23] implemented a Data 

Dissemination Protocol (DDP) for VANET routing protocols. 

Multiple routes were found using a Time Delay-based 

Multipath Routing (TD-MR) approach, transmitting messages 

to the destination node and Particle Swarm Optimization 

(PSO) was utilized to find the optimal and secure path. This 

approach efficiently performed in finding a secure routing 

path, demonstrating strong search capabilities due to its 

collective behavior and information-sharing mechanisms, 

which allow it to explore the solution space efficiently. It 

converges to an optimal solution within the constraints of the 

network routing issue, particularly in highly dynamic 

environments. However, when performing route selection, it 

communicated huge control packets that led to a high routing 

load. From the overall determination of [23], the approach 

effectively converges to the optimal solution but suffers from 

routing load during route selection, which affects the overall 

network effectiveness. 

T. S. Balaji et al. [24] developed a T2FSC-MOR for 

VANET. The T2FSC technique utilized various parameters 

such as Link Quality (LQ), Inter-Vehicle Distance (IVD), 

Traveling Speed (TS), Neighboring Node Count (NNC) and 

Trust Factor (TF). Additionally, Trust Aware Seagull 

Optimization-based Routing (TASGOR) was applied to 

optimize route selection in VANET. To validate the T2FSC-

MOR, a simulation set was considered and examined using 

various metrics. The T2FSC-MOR has less delay and 

communication cost because of the selection of the best routes. 

However, it does not perform cluster maintenance for 

balancing loads among clusters, which leads to node failure. 

In the overall analysis of [24], it minimize costs and delays, 

but it lacks maintenance to balance loads among clusters. 

Mumtaz Ali Shah et al. [25] implemented an Optimal Path 

Routing Protocol (OPRP) for CH and route selection in 
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VANET. The OPRP depended on mobility measures for 

cluster formation to avoid communication overhead in a huge 

mobility environment. Additionally, communication among 

CH was used to minimize transmission numbers, and CH was 

selected through a median approach relying on even or odd 

vehicle numbers for stable clusters. This protocol reduces 

node failure and net dysconnectivity in routing. However, it 

does not consider distance in the route path, which consumes 

high energy if the route has a high distance. From the overall 

evaluation of [25], there is a decrease in node failures and 

network disconnections, but a lack of consideration of 

distance results in high energy consumption, which minimizes 

overall effectiveness.  

Based on the above analysis, the centrality and LBF are 

not considered, affecting energy efficiency. The model 

interconnected huge control packets when performing route 

selection, which leads to a high routing load. Cluster 

maintenance is not performed to balance loads among clusters, 

which leads to node failure. The distance is not considered in 

the route path, which consumes high energy because the route 

has a large distance. In this research, MDOOA-based 

clustering and routing are proposed to enhance NLT in 

VANET. The objective functions, which are the distance 

between neighbor nodes, the distance between BS to CH, 

energy, centrality, and LBF, are considered for clustering and 

routing, which enhances NLT and reduces EC and delay. 

3. Proposed Methodology 
In MDOOA, CHs and routes are selected to achieve 

energy-efficient, reliable data transmission for VANET. 

Initially, nodes are randomly initialized, and CHs are selected 

from vehicle nodes using the distance between neighbor 

nodes, the distance between BS to CH, energy, centrality and 

LBF. Then, clusters are formed based on potential functions 

such as energy and distance. The route selection is presented 

by MDOOA using the distance between BS to CH and energy. 

Then, CH maintenance is presented through MDOOA to 

balance the load among clusters. Figure 1 presents the block 

diagram of MDOOA.  

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
Fig. 1 Block diagram of MDOOA in VANET 

3.1. Node Deployment 

Initially, nodes are deployed randomly in the area of 

VANET and then energy-efficient-based CHs and routes are 

selected using MDOOA, which helps to obtain reliable data 

transmission in VANET.  

3.2. Node Initialization 

The primary solution for the ospreys is fixed through a set 

of candidate nodes. The random node ID from 1 to 𝑆 is used 

to initialize the osprey’s solution where 𝑆 indicates every node 

in VANET. Consider osprey 𝑖 as 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑑) 

Where 𝑑 is a dimension of MDOOA, equivalent to the number 

of CHs.  

3.3. CH Selection Using MDOOA 

The OOA is a population-based intelligent optimization 

algorithm stimulated through the hunting behavior of osprey 

in nature. Like other intelligent optimization algorithms, it 

performs random population initialization in search space as 

Equation (1), 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (1) 

Where the individual population is 𝑥𝑖,𝑗, the lower and 

upper bound of search space is 𝑙𝑏𝑗 and 𝑢𝑏𝑗, a random number 

in [0, 1] is signified as 𝑟. The primary phase of OOA is the 

exploration phase, which is demonstrated by simulating its 

position and fish-catching behavior in nature. At the OOA 

design process, all population individuals are examined other 

individuals through better positions as school fish and target 

schools for all individuals are mathematically indicated as 

Equation (2), 

𝐹𝑃𝑖 = {𝑋𝑘|𝑘 ∈ {1,2, … , 𝑁}⋀𝐹𝑘 < 𝐹𝑖} ∪ {𝑋𝑏𝑒𝑠𝑡} (2) 

Where the set of fish for eagle 𝑖 is indicated as 𝐹𝑃𝑖  and 

the position of the best eagle is 𝑋𝑏𝑒𝑠𝑡 . In this exploration 

phase, a dynamic, elite guidance mechanism with an 

adjustable ratio strategy is used to enhance individuals' search 

space exploration and avoid local optima issues at the start of 

the iteration. However, the targets are selected randomly 

through individuals under a random search strategy. As the 

number of iterations increases, the random search strategy 

enhances the invalid searches through this algorithm. The 

dynamic strategy is applied in the exploration phase, and its 

individual position update is as shown in Equation (3), 

𝑥𝑖,𝑗
𝑁𝐸𝑊 = 𝑥𝑖,𝑗 + 𝛼 ∙ 𝑟𝑖,𝑗 ∙ (𝑋𝑖,𝑗

𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑗) + (1 − 𝛼) ∙ 𝑟𝑖,𝑗 ∙

(𝑆𝐹𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗), 𝛼 =
𝑡

𝑇
 (3) 

Where individual population positions with optimal 

fitness value are signified as 𝑋𝑖,𝑗
𝑏𝑒𝑠𝑡, the dynamic adjustment 

factor is 𝛼, which is used to manage the ratio among elite 

bootstrapping mechanisms and randomized exploration. The 

Objective Functions 

Distance between Neighbor Nodes 

Distance between BS to CH 

Energy Centrality 

Load Balancing Factor 

Vehicle Nodes 

Objective Functions 
Distance between 

BS to CH Energy 

Vehicle Initialization 

CH Selection Using MDOOA 

Cluster Generation 

Route Selection Using MDOOA 

CH Maintenance Using MDOOA 

Data Transmission 
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𝛼 linearly progresses from 0 to 1 with each iteration. The 

dynamic factor, the MDOOA, shifts individual position 

updates from random exploration to elite guidance at the 

exploration stage as increased iterations.  

During the start of the iteration, the lesser score of 𝛼 

enables the focus on exploration to enhance randomness to 

explore solution space and avoid local optima issues. If 

iteration increases, the 𝛼 values are enhanced, and individual 

position update concentrates on elite guidance, which covers 

local optima solutions and reduces invalid searches. The 

boundary checking is implemented for individuals with entire 

position updates with Equation (4), 

𝑥𝑖,𝑗
𝑁𝐸𝑊 = {

𝑥𝑖,𝑗
𝑁𝐸𝑊 , 𝑙𝑏𝑗 ≤ 𝑥𝑖,𝑗

𝑁𝐸𝑊 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗 ,         𝑥𝑖,𝑗
𝑁𝐸𝑊 < 𝑙𝑏𝑗       

𝑢𝑏𝑗 ,         𝑥𝑖,𝑗
𝑁𝐸𝑊 > 𝑢𝑏𝑗      

 (4) 

If the individual position update is enhanced over the 

earlier position, which is exchanged through the new position 

as Equation (5), 

𝑋𝑖 = {
𝑥𝑖
𝑁𝐸𝑊 , 𝐹𝑖

𝑁𝐸𝑊 < 𝐹𝑖
𝑋𝑖 ,         𝑒𝑙𝑠𝑒      

 (5) 

Where updated position and its fitness value are signified 

as 𝑥𝑖
𝑁𝐸𝑊 and 𝐹𝑖

𝑁𝐸𝑊. After capturing a fish in the wild, the 

osprey acquires a fish in a safer position to feed.  

Based on this behavior, the development phase of the 

algorithm is displayed. Every population individual estimates 

random new positions as feeding areas, and its behavior is 

signified in Equation (6), 

𝑥𝑖,𝑗
𝑁𝐸𝑊2 = 𝑥𝑖,𝑗 +

𝑙𝑏𝑗+𝑟∙(𝑢𝑏𝑗−𝑙𝑏𝑗)

𝑡
 (6) 

Boundary checking of every individual through the 

position update phase as Equation (7), 

𝑥𝑖,𝑗
𝑁𝐸𝑊2 =

{
 

 𝑥𝑖,𝑗
𝑁𝐸𝑊2 , 𝑙𝑏𝑗 ≤ 𝑥𝑖,𝑗

𝑁𝐸𝑊2 ≤ 𝑢𝑏𝑗

𝑙𝑏𝑗 ,         𝑥𝑖,𝑗
𝑁𝐸𝑊2 < 𝑙𝑏𝑗       

𝑢𝑏𝑗,         𝑥𝑖,𝑗
𝑁𝐸𝑊2 > 𝑢𝑏𝑗      

 (7) 

The new position is applied to exchange the actual 

position. If the new position is better, compare the updated 

with actual individual position quality as in Equation (8), 

𝑋𝑖 = {
𝑥𝑖
𝑁𝐸𝑊2 , 𝐹𝑖

𝑁𝐸𝑊2 < 𝐹𝑖
𝑋𝑖 ,         𝑒𝑙𝑠𝑒      

 (8) 

Where updated individual position and fitness value are 

signified as 𝑥𝑖
𝑁𝐸𝑊2  and 𝐹𝑖

𝑁𝐸𝑊2 .   

3.4. Objective Functions 

The objective functions, such as the distance between BS 

to CH and the distance between neighbor nodes, centrality, 

LBF, and energy, are considered to find the optimal CH using 

MDOOA, which are explained below.  

3.4.1. Distance between Neighbor Nodes 

It denotes the ranges among actual neighbor nodes and 

their CH. The energy depletion for nodes is based on 

communication path distance. If the selected node has less 

communication distance near BS, the energy consumption of 

the node is small. Distance between neighbor nodes (𝑓1) is 

defined in Equation (9), 

𝑓1 = ∑ ∑ 𝐷(𝑠𝑖 , 𝐶𝐻𝑗/𝐼𝑗)
𝐼𝑗
𝑖=1

𝑚
𝑗=1  (9) 

Where, 𝐷(𝑠𝑖 , 𝐶𝐻𝑗/𝐼𝑗) is a 𝑖th sensor, and 𝐶𝐻𝑗, 𝐼𝑗 is sensor 

node quantity among CH. 

3.4.2. Distance between BS and CH 

The node's energy consumption is calculated through 

distance over the communication track. When BS is 

positioned far from CH, data transmission needs huge energy. 

As a result, the rapid drop in CH is associated with enhanced 

energy usage. Hence, the node near to BS is selected 

throughout the data transmission. The distance between BS 

and CH (𝑓2) is defined in Equation (10), 

𝑓2 = ∑ 𝐷(𝐶𝐻𝑗 , 𝐵𝑆)
𝑚
𝑖=1  (10) 

Where, 𝐷(𝐶𝐻𝑗 , 𝐵𝑆) is the distance among 𝐵𝑆 and 𝐶𝐻𝑗. 

3.4.3. Energy 

The CH gathered data from nodes and communicated it 

with BS in the network. Because the CH consumes huge 

energy to accomplish earlier activities, the node with high 

energy is the best choice for CH. The optimal solution of 

energy (𝑓3) is defined in Equation (11), 

𝑓3 = ∑
1

𝐸𝐶𝐻𝑖

𝑚
𝑖=1  (11) 

Where, 𝐸𝐶𝐻𝑖  is a 𝑖th 𝐶𝐻’s energy.  

3.4.4. Centrality 

Higher centrality in the network efficiently reduces the 

communication distance among CM, enhances energy 

efficiency, and reduces delay and overall network 

performance. Node centrality (𝑓4) is a measure that indicates 

the relative distance of the node from its neighbors as Equation 

(12),   

𝑓4 = ∑

√
(∑ 𝐷2(𝑖,𝑗)𝑚
𝑗∈𝑛 )

𝑛(𝑖)

𝐿

𝑚
𝑖=1  (12) 
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Where 𝑛(𝑖) is a number of CH’s neighbor nodes, 𝐿 is a 

network dimension.  

3.4.5. Load Balancing Factor 

The LBF is integrated as an assessment tool associated 

with any technique to measure the load of CH. Every CH deals 

with its equivalent number of cluster nodes; however, 

maintaining balanced loads among systems is difficult. The 

basic explanation is the consecutive connection and separation 

of neighbors from CHs. The cluster size elements show CH 

loads and LBF (𝑓5) is defined in Equation (13), 

𝑓5 =
1

𝑛𝐶𝐻×∑(𝑥𝑖−𝜇)2
 (13) 

Where 𝑛𝐶𝐻 is a number of 𝐶𝐻, 𝑥𝑖 is a 𝑖th cluster node, 𝜇 

is an average load for all 𝐶𝐻. 

All the objective functions do not strongly conflict with 

each other in nature; hence, instead of optimizing them 

individually, the weighted-sum approach is used for all 

objective functions to convert into a single objective function 

as Equation (14), 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼1(𝑓1) + 𝛼2(𝑓2) + 𝛼3(𝑓3) + 𝛼4(𝑓4) +
𝛼5(𝑓5) (14) 

Where, ∑ 𝛼𝑖
5
𝑖=1 = 1; and 𝛼𝑖 ∈ (0,1), the values of 𝛼𝑖 are 

0.27, 0.25, 0.23, 0.13 and 0.12 respectively. The 𝛼1, 𝛼2, 𝛼3, 𝛼4 

and 𝛼5 are weights assigned to every objective functions. In 

multi-objective optimization, multiple objectives are 

optimized simultaneously using min-max normalization. 

Normalizing the values of each objective helps to balance and 

ensure that one objective does not excessively affect the 

optimization process. All objectives have different values; 

thus, min-max normalization is employed for every objective 

using Equation (15), 

𝐹(𝑥) =
𝑓𝑖−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
 (15) 

Where, 𝑓𝑖 is a value of function, 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 are 

minimum and maximum value, 𝐹(𝑥) is a normalized value 

among 0 and 1. 

3.5. Cluster Generation 

Here, the selected CHs by MDOOA are given to nodes. 

In some existing research, clusters are generated, so the 

possibility of CHs is limited to each cluster. If the selected 

CHs are inappropriate, it leads to high communication 

overhead and reduces the network lifetime. By selecting the 

appropriate CH in this research, the network ensures that CH 

is capable of handling additional load. This procedure 

minimizes the communication overhead and enhances the 

network lifetime. Normally, nodes are allocated to suitable 

clusters after selecting the CH using MDOOA. Based on the 

potential function, energy and distance are measured for 

cluster generation as Equation (16), 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑆𝑖) =
𝐸𝐶𝐻

𝑑𝑖𝑠(𝑆𝑖,𝐶𝐻)
 (16) 

Where, 𝐸𝐶𝐻  is a CH residual energy and  𝑑𝑖𝑠(𝑆𝑖 , 𝐶𝐻) is 

the distance among the sensor and CH. The distance between 

two different CHs and nodes is equivalent, and the node is 

integrated into CHs with high energy.  

3.6. Route Selection 

The MDOOA-based energy-efficient route path is 

implemented in the same way as CH's selection; the formation 

of routes is processed at different communication levels. The 

MDOOA is performed effectively for both CHs and route 

selection, which enhances the network performance. The 

MDOOA ensures optimal CH selection and cluster generation 

through enhancing network lifetime and reducing energy 

consumption. The MDOOA selects the route using the 

distance between BS to CH and energy parameters. In route 

selection, the dimension of each population is the same as the 

number of nodes. The route selection using MDOOA is 

provided below: 

 Primarily, the solution of ospreys is fixed with possible 

paths from the transmitter BS to CH, where the 

dimensions are equivalent to the number of transmitted 

CHs along the route. 

 The position update process for possible paths is 

initialized in each position of the ospreys, equivalent to 

the iterative process explained in the above section. The 

fitness considered in the MDOOA to define the route as 

Equation (17), 

𝑓 = 𝜇1 × ∑ 𝐷(𝐶𝐻𝑗 , 𝐵𝑆)
𝑚
𝑖=1 + 𝜇2 × ∑

1

𝐸𝐶𝐻𝑖

𝑚
𝑖=1  (17) 

Where, ∑ 𝜇𝑖
2
𝑖=1 = 1; and 𝜇𝑖 ∈ (0,1), the values of 𝜇𝑖 are 

0.4 and 0.6, respectively. The 𝜇1 and 𝜇2 are weights assigned 

to every route objective functions. From this process, 

optimized nodes are selected to produce routes from nodes to 

BS. After producing a route from source to destination, the 

nodes transfer the data to the destination. The shortest distance 

leads to less communication delay and helps to enhance 

network lifetime. Energy-efficient route paths are used to 

enhance network reliability and lifetime. By preserving 

energy, nodes maintain stable communication for a long time, 

which reduces node failure and enhances the network lifetime. 

Therefore, secure route paths are selected, and CH 

maintenance is explained in the following section.  

3.7. CH Maintenance 

The CH maintenance is one of the main stages in this 

research for balancing load among clusters. The maintenance 

of the cluster is required to prevent node failure. The MDOOA 
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is reset to the network cluster if the energy of CH exceeds the 

threshold level. Then, the CH is selected through MDOOA 

with the help of five objective functions: the distance between 

BS and CH, the distance between neighbor nodes, centrality, 

LBF, and energy. These objective functions are applied to 

select optima CH among nodes. The BS continuously 

monitors the energy of nodes to avoid node failure at data 

transmission. From source to BS through CH, the MDOOA is 

applied to find the best data transmission route path with the 

help of the distance between BS to CH and energy. It finds the 

best path to reduce energy consumption and enhance the 

network lifetime. This MDOOA-based clustering and route 

path selection results in an energy-efficient data transmission 

in VANET. During data transmission, an energy-efficient 

VANET is applied to enhance the entire transferred packets to 

BS thereby enhancing the network lifetime.  

4. Experimental Result 
The MDOOA is implemented using MATLAB R2018a 

with a system configuration operating system of Windows 10 

Ultimate, random-access memory of 16GB and Intel (R) Core 

(TM) i5-3570 CPU @ 3.40GHz processor with the 64-bit 

operating system. As per the existing method scenarios, we 

have considered parameters like target area, simulation time, 

packet size, number of vehicles, initial energy, and mobility 

model to evaluate the reliability and validity of results. The 

10-60 vehicle nodes are distributed randomly in the target area 

of 2500×2500m. The simulation parameters used for this 

implementation are listed in Table 1. The main goal of this 

research is to reduce the usage of entire energy and enhance 

the network lifetime. As a result, MDOOA-based CHs and 

route selection are performed to provide energy-efficient 

cluster-based routing in VANET. For the best CH selection, 

the distance between BS and CH, as well as the distance 

between neighbor nodes, centrality, LBF, and energy, are 

inputs provided to MDOOA. Energy and distance between BS 

and CH are provided as input to MDOOA for better route 

selection. The metrics such as delay, PDR, NLT, EC and 

throughput for calculating MDOOA performance are 

mathematically expressed in Equations (18)-(22). Lower 

delay is significant for transmitting the data in a timely manner 

in VANET. Higher PDR ensures more reliable 

communication, which directly impacts the data-sharing 

effectiveness among vehicles. A longer NLT supports 

sustainable connectivity, which reduces frequent 

reconfiguration and manages network stability. A minimized 

energy consumption prolongs the operation of the node, which 

is essential for effective resource utilization in VANET. 

Higher throughput supports the effective exchange of data, 

which increases overall network performance. 

𝐷𝑒𝑙𝑎𝑦 = ∑(𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡 −
𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡) (18) 

𝑃𝐷𝑅 = [
∑ 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑛
𝑖=1

∑ 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑛
𝑖=1

] (19) 

𝑁𝐿𝑇 =
𝜎0−𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒[𝐸𝑅𝐸]

𝐶𝑃+#𝐸[𝐸𝐶𝐸]
 (20) 

𝐸𝐶 = (𝐸𝑟𝑥 × 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑜𝑑𝑒𝑠) + 𝐸𝑡𝑥 (21) 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠×𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒×8

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

 (22) 

Where, 𝜎0 is total energy, 𝐶𝑃 is an endless power 

consumption in the network, 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒[𝐸𝑅𝐸] is an approximate 

remaining energy, 𝐸[𝐸𝐶𝐸] is a consumed energy, 𝐸𝑡𝑥 and 𝐸𝑟𝑥 

are the total number of transferred and received energy.   

Table 1. Simulation parameters 

Parameter Value 

Target area 2500×2500m 

Simulation time 300s 

Initial energy 1mJ 

Packet size 4000bits 

Mobility model Random 

Number of vehicle nodes 10, 20, 30, 40 and 50 

 

4.1. Performance Analysis 

Primarily, MDOOA is analyzed through Distributed 

Energy-Efficient Clustering (DEEC), Low-Energy Adaptive 

Clustering Hierarchy (LEACH), Threshold DEEC (TDEEC), 

Developed DEEC (DDEEC) and Centralized LEACH 

(CLEACH) since these approaches are implemented using the 

parameters listed in Table 1. The number of vehicle nodes 

affects CHs and route selection over VANET. The VANET, 

with huge nodes, delivers alternative routes for data 

broadcasting, which enhances reliability. Additionally, 

VANET with high nodes has evenly distributed energy usage, 

which minimizes energy consumption. However, the above-

mentioned impacts of different nodes are examined through 

delay, PDR, NLT, EC and throughput, as shown in Figures 2 

to 6, respectively.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Fig. 2 Delay evaluation with various vehicle nodes 
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In Figure 2, the delay evaluation of MDOOA is compared 

with various state-of-the-art methods such as DEEC, LEACH, 

TDEEC, DDEEC, and CLEACH. The MDOOA achieved less 

delay of 0.12ms, 0.20ms, 1.00ms, 1.20ms and 1.20ms for 

different vehicle nodes from 10-50. By taking distance as the 

objective function, it examined less transmission distance for 

transmitting data, which reduces the delay. The MDOOA 

demonstrates efficient performance in CH and routes through 

achieving less delay. 

In Figure 3, the PDR evaluation of MDOOA is compared 

with various state-of-the-art methods such as DEEC, LEACH, 

TDEEC, DDEEC, and CLEACH. The MDOOA achieved 

high PDR of 98.54%, 98.64%, 99.12%, 99.42% and 99.42% 

for different vehicle nodes from 10-50. Using LBF as an 

objective function provides a reliable and stable network, 

enhancing PDR performance. The MDOOA demonstrates 

efficient performance in CH and routes through achieving 

high PDR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 PDR evaluation with various vehicle nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 NLT evaluation with various vehicle nodes 

In Figure 4, the NLT evaluation of MDOOA is compared 

with various state-of-art methods such as DEEC, LEACH, 

TDEEC, DDEEC, and CLEACH. The MDOOA achieved 

high NLT of 5000 rounds, 4700 rounds, 4700 rounds, 4600 

rounds and 4300 rounds for different vehicle nodes from 10-

50. By considering distance as the objective function, the 

MDOOA achieves less delay, thereby enhancing NLT. The 

MDOOA demonstrates efficient performance in CH and 

routes through achieving high NLT. 

In Figure 5, the EC evaluation of MDOOA is compared 

with various state-of-the-art methods such as DEEC, LEACH, 

TDEEC, DDEEC, and CLEACH. The MDOOA achieved less 

EC of 20mJ,  24mJ, 26mJ, 30mJ and 32mJ for different 

vehicle nodes from 10-50. Selecting CH-based energy assists 

in the distribution of energy consumption, which reduces EC 

performance. The MDOOA demonstrates efficient 

performance in CH and routes through achieving less EC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 EC evaluation with various vehicle nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 6 Throughput evaluation with various vehicle nodes 
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Table 2. Throughput analysis (kbps) with different optimization 

methods 

Optimization Methods 
No. of. Vehicle Nodes 

10 20 30 40 50 

PSO 78 82 85 88 92 

MOA 82 84 87 88 90 

OOA 92 95 96 97 98 

MDOOA 96 97 98 100 100 

Table 3. EC analysis (mJ) with different optimization methods 

Optimization Methods 
No. of. Vehicle Nodes 

10 20 30 40 50 

PSO 32 34 35 41 42 

MOA 25 26 30 32 38 

OOA 24 25 29 34 36 

MDOOA 19 23 28 29 30 

Table 4. Computational time analysis 

Optimization Methods Computational Time (ms) 

PSO 120 

MOA 110 

OOA 90 

MDOOA 75 

In Figure 6, the throughput evaluation of MDOOA is 

compared with various state-of-the-art methods such as 

DEEC, LEACH, TDEEC, DDEEC, and CLEACH. The 

MDOOA achieved high throughput of 98.7kbps, 98.90kbps, 

99.30kbps, 99.35kbps and 99.35kbps for different vehicle 

nodes from 10-50. High centrality enables effective data 

transmission in CH, which is needed to communicate data 

from BS to CH for enhancing throughput. The MDOOA 

demonstrates efficient performance in CH and routes through 

achieving high throughput. Table 2 presents the throughput 

analysis with different optimization methods. This analysis is 

determined using various vehicle nodes from 10 to 50 nodes. 

Compared to existing methods like Particle Swarm 

Optimization (PSO), Mayfly Optimization Approach (MOA), 

and OOA, the proposed MDOOA achieves a high throughput 

of 100 kbps for 50 vehicle nodes by balancing exploitation and 

exploration effectively, which allows it to rapidly converge to 

best solutions. The proposed method adaptive strategy 

increases the search process and manages intricate objectives 

efficiently.  

Table 3 represents a performance analysis of EC with 

different optimization methods. The existing methods like 

PSO, MOA, and OOA are compared with the proposed 

MDOOA approach. The proposed MDOOA obtains a lesser 

EC of 19 mJ for 10 vehicle nodes because the proposed 

approach balances exploitation and exploration effectively, 

minimizing unnecessary energy compared to existing methods 

like PSO, MOA, and OOA, respectively. 

Table 4 provides the performance of computational time 

analysis with different optimization methods. The proposed 

MDOOA achieves a less computational time of 75 ms 

compared to existing methods like PSO, MOA, and OOA. Due 

proposed approach effectively balances exploration and 

exploitation that accelerates convergence. Also, its adaptive 

mechanism reduces redundant calculations, which optimizes 

resource allocation in dynamic network conditions. 

4.2. Comparative Analysis 

The MDOOA comparative analysis with existing 

approaches such as IEAOCGO-C [22], PSO-SVNS-LBGB 

[23] and T2FSC-MOR [24] are discussed in this section. The 

comparison is simulated under various scenarios, as illustrated 

in Table 5. In Table 5, scenario 1 is IEAOCGO-C [22], 

scenario 2 is PSO-SVNS-LBGB [23] and scenario 3 is 

T2FSC-MOR [24]. The MDOOA is simulated based on the 

parameters listed in Table 5. In Tables 6, 7 and 8, MDOOA is 

compared with IEAOCGO-C [22], PSO-SVNS-LBGB [23] 

and T2FSC-MOR [24] respectively. These tables show that 

MDOOA performed better under various scenarios than 

existing techniques.  

Table 5. Different scenario specifications 

Parameters 
Scenarios 

1 2 3 

Area NA 1000×13000m NA 

Simulation time NA 150s NA 

Packet size NA 256bytes NA 

No. of vehicle 

nodes 

20, 

40, 

60, 

80, 

100 

100, 150, 200, 

250, 300, 350 

20, 40, 

60, 

80, 

100 

Table 6. Comparative analysis with IEAOCGO-C [22] 

Scenario Methods Performance Metrics 
No. of Vehicle Nodes 

20 40 60 80 100 

1 

IEAOCGO-C [22] 

Delay (ms) 6.06 6.16 6.44 7.28 7.79 

PDR (%) 99.38 89.36 83.40 76.07 74.21 

NLT (rounds) 5000 4700 4500 4200 4000 

EC (mJ) 30.96 51.68 70.19 84.91 90.33 

Throughput (kbps) 70.91 77.67 82.57 87.60 89.10 

MDOOA 
Delay (ms) 3.53 3.67 3.82 4.12 4.39 

PDR (%) 99.54 99.21 98.76 98.43 98.06 
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NLT (rounds) 5200 4900 4800 4600 4400 

EC (mJ) 25.37 38.61 46.95 52.74 68.31 

Throughput (kbps) 96.47 97.63 98.12 98.57 99.04 

Table 7. Comparative analysis with PSO-SVNS-LBGB [23] 

Scenario Methods 
Performance 

Metrics 

No. of Vehicle Nodes 

100 150 200 250 300 350 

2 

PSO-SVNS-LBGB [23] 

PDR (%) 91.26 93.67 94.38 96.82 98.52 99.05 

EC (J) 0.019 0.026 0.034 0.043 0.056 0.062 

Throughput (kbps) 190.25 194.47 199.82 206.17 214.61 221.43 

MDOOA 

PDR (%) 97.28 97.76 98.35 98.68 99.44 99.61 

EC (mJ) 0.016 0.022 0.028 0.032 0.035 0.039 

Throughput (kbps) 213.45 228.37 237.64 251.94 264.39 281.67 

Table 8. Comparative analysis with T2FSC-MOR [24] 

Scenario Methods Performance Metrics 
No. of Vehicle Nodes 

20 40 60 80 100 

3 

T2FSC-MOR [24] 
Delay (s) 0.0810 0.1600 0.1770 0.2730 0.2570 

PDR 0.9300 0.8200 0.8000 0.7400 0.7200 

MDOOA 
Delay (s) 0.0621 0.0937 0.1173 0.1359 0.1462 

PDR 0.9837 0.9783 0.9754 0.9721 0.9635 
 

4.3. Discussion 

The existing algorithms' limitations and the advantages of 

the proposed algorithms are discussed in this section. In 

EHACORP [21], objective functions were considered based 

on distance and energy, which does not consider centrality and 

LBF, which affects energy efficiency. IEAOCGO-C [22] 

increased sensitivity to parameter settings, requiring more 

extensive tuning to achieve optimal performance. T2FSC-

MOR [24] does not perform cluster maintenance for balancing 

loads among clusters, which leads to node failure. OPRP [25] 

does not consider distance in the route path, which consumes 

high energy because the route has a high distance. To 

overcome these limitations, this research developed an 

MDOOA-based clustering and routing for increasing NLT and 

reducing EC in VANET. The distance between BS and CH 

and the distance between neighbor nodes, centrality, LBF, and 

energy are considered objective functions for CH and route 

selection. Additionally, CH maintenance is performed to 

balance loads among clusters, which is required to prevent 

node failure. By performing this process, the proposed 

MDOOA achieves a better performance. For example, the 

proposed MDOOA obtains better performance than T2FSC-

MOR [24] due to the proposed method's adaptive decision-

making capabilities that optimize multi-objectives like delay, 

energy consumption, etc. By using the dynamic behavior of 

osprey, the proposed MDOOA effectively explores the search 

space, which results in enhanced routing performance. Its 

ability to balance network load increases overall network 

lifetime and minimizes energy consumption. 

4.4. Limitations 

The MDOOA suffers from scalability issues in dense 

VANET or highly dynamic environments. As the network 

nodes and the number of vehicles increased, the MDOOA 

struggled to effectively process and adapt to rapidly changing 

topology, which resulted in delays in clustering and routing 

decisions. This process leads to suboptimal performance and 

enhanced communication overhead. 

5. Conclusion 
The MDOOA proposed in this research is based on 

energy-efficient clustering and routing in VANET. In the 

exploration phase, a dynamic, elite guidance mechanism with 

an adjustable ratio strategy is used to enhance the individual's 

search space exploration and avoid local optima issues at the 

beginning of the iteration. The MDOOA is used for CH and 

route selection with objective functions like the distance 

between BS to CH, the distance between neighbor nodes, 

centrality, LBF and energy, which gradually contributes to 

enhancing NLT.  

Additionally, the CH maintenance is performed using 

MDOOA to balance loads among clusters, which is required 

to prevent node failure. The delay, PDR, NLT, EC and 

throughput are considered for experimental analysis of 

MDOOA. The MDOOA achieved significant improvements 

in delay, PDR, NLT, EC and throughput compared to the 

existing methods. The impact of this research is determined, 

and it provides practical implications for increasing traffic 

management and vehicular communication via enhanced 

clustering and routing in VANET. By advancing the field of 

Intelligent Transportation systems, this research contributes to 

developing safer and more responsive transportation 

networks. In future, advanced optimization methods with 

different fitness functions will be considered to solve 

scalability issues in dense or highly dynamic VANET 

environments. 
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