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Abstract - The main aim of this paper was to evaluate automated test failure detection and healing tools in software test 

automation. Although Artificial Intelligence and Machine Learning involve creating separate and individual algorithms for 

accessing data and making sense of it by identifying patterns to form conclusions, these predictions should be used to their full 

benefit for software testing. Automated test failure detection and healing tools are one approach that makes more of these 

predictions become a reality under software testing. This paper reviews the existing literature regarding healing tools specifically 

created for test failure detection and healing, particularly their performance in recognizing User Interface changes and healing 

the test scripts automatically. The review presents the key characteristics, features, functionalities, and technologies used in the 

tools, such as Artificial Intelligence, machine learning, visual testing, and integration with popular test automation frameworks. 

By juxtaposing the sources reviewed above, the review outlines the pros and cons and promising application areas of each and 

provides suggestions for appropriate uses in highly diverse testing conditions and contexts. Moreover, the review also starts with 

the gaps and the challenges that the current cutting-edge approaches have faced and gives a future outlook on what directions 

future research and development have in terms of automated test failure detection and healing. Somewhere It seems like there is 

no distinctive technique framework or tool available that could support the automated test failure detection and healing and can 

fulfill all the requirements. Finally, this paper ends with a discussion of the most popular tools available, along with the expressed 

thought process about the present and forthcoming artificial intelligence for test automation. 

Keywords - Test automation, Artificial Intelligence, Machine Learning, Self-healing tools. 

1. Introduction 
Testing is a necessary part of the process of constructing 

any software. It ensures that the software produced is reliable 

and responsive to users’ needs [1]. Testing can prevent 

expensive problems down the line by catching errors 

expeditious in the development process. Different tests can be 

used, and which ones will depend on the particular software 

that is being developed. Nevertheless, the ultimate aim is to 

locate defects in the software so that they can be repaired 

before it is released to users. These defects can be slight bugs 

or faults, meaning errors in the code itself. However, some can 

be serious problems that might cause the software to fail or 

crash.  

Last but not least, finding and repairing defects early can 

lower the cost of correcting them later [2]. Manual and 

automation testing are other primary divisions in software 

testing. The former refers to software application testing 

whereby it’s testing stands in the hands of a human being’s 

actions, while the latter is a software tool or program that 

controls the execution of tests, comparing the pages and 

results produced by a program under test with the expected 

behavior and mark it as passed or fail [3]. A manual tester 

enters data into the application and uses the application by 

interfacing with the application and checking how the 

application responds. Automation testing refers to testing 

software applications by employing a software tool that 

executes the application’s source code. The test, most likely, 

is written by an Automation tester who, in advance, 

determines the actions that the tool will perform to test the 

software’s source code [4]. As test automation in software 

development continues to grow, robust and reliable test 

execution has become more important.  

The traditional automation tools are based on static 

scripts, which are extremely sensitive to any changes in the 

AUT. A slight modification of the UI can cause the failure of 

tests if element attributes have been changed, the layout is 

modified, or dynamic identifiers are introduced, necessitating 

frequent script maintenance. Self-healing automation tools 

aim to address this issue by automatically detecting and 

adapting to changes in the AUT. While promising, current 

solutions lack robustness, often failing in highly dynamic 

environments or introducing inefficiencies. 
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1.1. Software Testing 

Software testing is known as the way to find defects, 

while software testing has different reasons for conducting it. 

One reason is improved software quality, where user 

requirements and expectations are checked for this product so 

that it can be said to be high-quality software. Testing ensures 

the smooth running of a software system. In Software 

Developing Life Cycle (SDLC), software-developing 

companies spend much effort and time on testing [5]. Early 

detection of defects at the SDLC saves time and money, but if 

they are discovered later on during development, there will be 

a significant rise in both time-to-market and costs.  

Consequently, performing the test across all stages of 

SDLC is more fruitful in identifying the flaws in the program 

[6]. It is more cost-effective to fix them earlier before release. 

Software testing aims at the evaluation of applications 

capabilities or products, for example, reliability, portability, 

efficiency, security, and usability, among others, which should 

be thoroughly tested by checking out all these principles [7]. 

The intent of software testing is to detect errors or defects and 

avoid the recurrence of defects in the software, which 

aftermath in the overall improved effectiveness of the system. 

1.2. Manual Software Testing  

This is the most basic level of testing, where test cases are 

executed directly by interacting with the software. The tester 

creates a set of test examples that illustrate the features and 

desired output of the software to be tested. These test cases are 

language natural plain text. It is time-consuming because, in 

manual testing, every activity will be performed manually by 

the tester. It is more cost-effective, but it may be a good choice 

in the case of some complex systems where critical issues are 

not likely to be found via automated testing. In manual testing, 

the tester plays a key role as the end user and checks all 

features of the software to make sure that the behavior is intact 

[8]. 

1.3. Automated Software Testing 

The process of testing becomes efficient. Automated 

software testing makes it easy to run different tests, such as 

regression tests and performance tests. The advent of 

automated testing made hard testing activities easier because 

it can test a wide range of data sets and also duplicate the tests 

many times without any human intervention. Automated 

software testing calls for minimal capital outlay in terms of 

purchasing licensed tools; however, this is insignificant as 

compared to the cost savings realized from reduced efforts in 

manual software testing [4].  

Some phases through which automated software testing 

passes are developing the test plan or preparing the test cases, 

opting for the best tool to use, developing the scripts, and 

finally running the automated testing tool using the developed 

script. Automating software tests aims to reduce both the time 

taken and the cost involved in such an activity. This leads to 

more efficient operation in relation to reducing human 

involvement during a test process. Testing automation 

supports reusability for different upgrades of the tested system 

by employing tester’s tool scripts [9]. There are several 

benefits to using automation testing, including: 

1.3.1. Reduced Time to Test 

Automation testing can reduce the time taken to test any 

software application. This is because automation tests can be 

rerun and run concurrently, thus reducing the time spent on 

testing. 

1.3.2. Improved Accuracy 

Automation tests improve the precision of testing. This 

occurs since automation tests are performed similarly every 

time, resulting in consistent outcomes. 

1.3.3. Reduced Costs 

Automation testing reduces costs during testing. It means 

that automation tests can reduce labor costs. 

If you are thinking about automated testing, then you have 

an array of tools from which to choose [10]. In opting for a 

tool for automation testing [11], some considerations should 

be put in mind, such as the type of applications that need to be 

tested, the programming languages used, and the allocated 

budget. Self-healing test automation is a revolutionary 

improvement in software testing [12], which aims at 

addressing the problem of test automation scripts becoming 

outdated when application interfaces change by minimizing 

the necessity of frequent manual script updates through the use 

of advanced technologies that enhance the endurance and 

productivity of automated testing. In this exploration, key 

attributes, uses, and benefits of these tools will be discussed. 

Robust testing methodologies are essential in a dynamic field 

like software development to ensure the quality and reliability 

of software applications. One crucial step has been taken 

through the emergence of automation testing, where 

companies can quickly detect bugs and validate functionality.  

However, it becomes more difficult as projects get more 

complex over time to manage many complex and extensive 

test suites. The most challenging aspect is that testing teams 

must quickly catch and resolve test failures. Some examples 

of these include changes to an application’s code, updates in 

environment configurations, or even abrupt shifts in user 

interface elements [13]. Untreated test failures can delay 

development processes and software releases and break trust 

in its quality.  

As a result, Automated Test Failure Detection and 

Healing Tools have been rising [14]. These benefits are from 

the latest techniques like intricate algorithms, artificial 

intelligence, machine learning, etc. It can immediately 

highlight what is failing during discovery testing and requires 

to be fixed [15] using automatic test failure detection and 
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recovery tools to make the software product quality better 

because it helps in avoiding production bugs in case the defect 

reaches pro when it comes to auto-detect failures of tests 

automatically using some tool manage to recover them too.  

Furthermore, it reduces costs associated with testing and 

also shortens its period while increasing testers’ productivity 

since it eliminates the time used when downtime is inevitable 

for isolating issues with components of a system, thereby 

enhancing the efficiency of the tests. They typically employ 

both static analysis and dynamic analysis. Some static analysis 

tools scan the code for errors, while some dynamic analysis 

tools execute tests and check the codes against unexpected 

results. It has its own pros and cons as there are multiple tools 

that have been published. It allows you to diagnose and 

resolve test failures more quickly and efficiently, reducing the 

time spent maintaining test suites. 

2. Review of Related Literature 
The integration of Artificial Intelligence (AI) and 

Machine Learning (ML) technologies into the software testing 

process has been in the spotlight over the past few years. 

Software testing has traditionally been linked with being time-

consuming and manpower-intensive, with a lot of human 

effort going into test case development, test execution, and 

result analysis. The advent of AI and ML, however, is bringing 

about a paradigm shift in the software testing process, leading 

to increased efficiency, accuracy, and overall coverage.  

A study titled “Self-Healing Test Automation Framework 

using AI and ML” presents case studies demonstrating the 

application of self-healing mechanisms in various software 

environments. The research focuses on developing automated 

recovery processes that dynamically adjust tests based on real-

time data, addressing technical challenges such as AI 

integration and scalability [16]. Here are several ways AI/ML 

are impacting software testing: 

2.1. Test Case Generation and Optimization 

Automated test cases generation and optimization by 

AI/ML The use of AI to sift through historical test data and 

code changes, AI algorithms can suggest the most critical 

scenarios in a shorter duration of time, making sure there are 

no overlaps too, which provides non-redundancy along with 

complete coverage [17]. It uses machine learning algorithms 

to understand the codebase, user stories, and requirements 

before automatically creating test cases. These algorithms find 

different paths across the code and write tests to ensure all 

these are covered efficiently.  

Leveraging this information with machine learning 

models can optimize existing test suites for dormant code 

paths by pruning redundant or less critical test cases and 

thereby reducing the total number of tests. This optimization 

will decrease the execution time and amount of resources 

needed for testing. For example, a machine learning algorithm 

can determine and provide test cases for corner cases that were 

overlooked during the manual creation of the edge cases. This 

methodical approach also leads to hunting phased bugs and 

ensuring the high quality of software. 

2.2. Test Execution 

Maintenance of test scripts is one of the biggest 

challenges of automation testing. These tools leverage 

artificial intelligence to detect such kinds of application 

changes made in the Application Under Test (AUT), like UI 

modifications or behind-the-scene code updates and make 

corresponding repairments. This self-healing feature helps 

radically reduce the maintenance effort required to keep test 

scripts working over a longer period. Based on the last code 

changes, historical test data, and even weighing if you need to 

maximize QAs, their capacity or chances of detection defects 

in real production, AI algorithms can decide which sequence 

will be the most impact target for running executions.  

This little trick results in running the most important tests 

first, thus saving time and resources. AI-Augmented Test 

Automation Test automation tools can execute tests much 

faster while beating the quality of manual testing. These tools 

are able to auto-adjust with any changes in the application 

interface or code, making it easy for developers and reducing 

the overhead of maintaining test scripts [18]. 

2.3. Defect Prediction and Analysis 

By predicting defects, the testing efforts can be arranged 

in order of predicted risk. Testing is focused on high-risk areas 

identified by AI models to ensure critical bugs are captured 

early during development. It will detect any anomalies in the 

changes made to code, artifacts created during build or test 

results that might indicate possible defects. Such anomalies, 

which could go unnoticed when investigated manually, may 

indicate concealed issues that should be examined further. ML 

algorithms can analyze defect data to predict potential bugs in 

new code, helping developers address issues before they 

become critical. This proactive approach enhances software 

quality and reliability [19]. 

2.4. Regression Testing 

This is done by machine learning models determining the 

impacts of code changes on different parts of an application. 

AI understands how the different pieces relate with one 

another and, therefore, can tell which sections may be affected 

as a result of recent changes requiring proper regression tests 

to be conducted. Machine-learning-based tools automatically 

update and repair test scripts that break due to changes in an 

application’s functionality. This self-repairing capacity 

reduces maintenance overheads and ensures continued 

functionality of scripts over time. AI/machine learning knows 

which part of software needs retesting after a change, thus 

optimizing regression testing efforts. This reduces the time 
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spent on regression testing and ensures that new changes do 

not introduce new bugs [20]. 

2.5. Natural Language Processing (NLP) for Requirements 

Analysis 

NLP algorithms can be used to extract key information 

automatically from several sources of requirements 

documentation, including user stories, functional 

specifications, and business requirement documents. Because 

of this extraction process, major aspects such as features, 

limitations and the user’s desires are identified without any 

manual intervention. In addition, it can note inconsistencies in 

different requirements or gaps that lack necessary 

information. Thereby ensuring that a full set of requirements 

will be covered for the majority of key questions related to the 

system. [21]. 

2.6. Self-Healing Test Automation 

Traditional test scripts are designed using static locators 

such as element IDs or XPaths for UI element identification 

and interaction purposes. When the UI changes, those locators 

may change, resulting in a failure. Broader test coverage is 

allowed by self-healing since tests are going to work perfectly 

even with applications that are constantly changing. It 

provides accurate test results and helps locate actual defects 

more quickly, rather than false positives due to minor UI 

changes. More importantly, self-healing test automation 

enables the maintenance of tests with script maintenance-

testers can focus more on developing new scripts and less on 

fixing the current ones, thereby enhancing test coverage.  

The self-healing system is able to adapt manually to any 

changes that must be applied to guarantee the reliability of the 

test suites, even if it transforms the application further. This 

process allows learning over time without always needing to 

go a step further and intervene manually each time, thus 

making this continuing education process a good tool in 

system monitoring. AI/ML-powered self-healing capabilities 

ensure the automatic detection of changes in the application 

under test and the adjustment of corresponding test scripts. 

Thus, it reduces maintenance pressure on testers, who have to 

cope with frequent modifications happening within 

applications [22]. 

2.7. Visual Testing 

Computer vision technologies equip AI tools for visual 

testing. It ensures that the UI will look/behave as expected 

across different devices and screen resolutions. This 

technology is instrumental in ensuring that layouts, colors, 

fonts, and images appear correctly on various devices’ 

screens, regardless of which browser a user chooses and 

screen resolution. Visual testing complements functional 

testing by guaranteeing that the application works correctly 

and looks like it should. This is especially important in rich 

graphical interface applications [23]. 

2.8. Intelligent Test Data Generation 

Test case generation is a crucial phase of software testing. 

It is done to ensure that the software can be tested with 

different inputs and situations, thus being able to handle any 

unexpected inputs gracefully. Nonetheless, manual generation 

of test cases may be time-consuming and prone to errors. 

Intelligent Test Data Generation (ITDG), on the other hand, 

involves using artificial intelligence to automatically generate 

test cases. The scale of the data to be generated may differ 

substantially. This can make ITDG tools struggle to produce 

valid yet challenging data. This must involve generating very 

wide-ranging data that will be used to thoroughly prove the 

program. Thus, ITDG tools may have challenges in providing 

full coverage for all combinations of inputs and conditions 

since this would require coming up with many varied datasets. 

As a result, test data generation becomes faster, easier and 

more reliable. AI could create reliable test data that mirrors 

real environments and diverse edge cases, thus enabling robust 

tests. This is key to ensuring the integrity and security of data 

[24]. 

2.9. Root Cause Analysis 

Automating the analysis process will easily spot and fix 

defects; this is a very big advantage because it saves the time 

that should have been spent in debugging and resolution 

process of defects, and ML algorithms can analyze large 

datasets with high accuracy, which minimizes human errors, 

therefore, increasing the trustworthiness of root cause 

identification. It can also trace the flow of data and control 

through the application to point out exactly where the code 

failed. AI understands code dependencies and relationships, 

thereby predicting the effect of a defect by analyzing affected 

areas and locating the root cause. Root cause patterns like 

defects and test failures and their graphical representation 

have become clearer using AI/ML. This can rapidly diagnose 

and resolve troubles, thereby enhancing overall development 

efficiency [25]. 

Currently, automating test generation and execution is a 

highly desirable improvement in testing productivity and cost 

reduction [26]. Automation facilitates more test cycles due to 

repetitive tests and more continual test runs. There are some 

frameworks, such as TestNG and BDD [27]. These 

frameworks enable the tester to write their test cases more 

productively and effectively in a shorter amount of time. 

Adding artificial intelligence to automation that is currently 

based on Selenium would make the testing processes more 

practical, adaptable, and intelligent.  

Automation testing is an indispensable part of modern 

software testing, enabling faster releases, higher quality 

products, and more efficient use of resources [28]. By 

leveraging automation, organizations can enhance their testing 

processes, achieve better coverage, and ensure that their 

software meets the highest standards of quality and 

performance. This technique would enable Selenium to adapt 
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to the rapidly changing characteristics of today’s 21st-century 

web applications. More importantly, it allows testers to focus 

on work that adds the most value, such as creating test 

scenarios and scrutinizing [29]. There is a small amount of 

research on automated detection and repair tools for failed 

testing. However, there is research in this area. These studies 

have shown that automated test failure detection and healing 

tools can be effective in identifying and fixing defects in 

software. Samad et al. [30] discussed details about Self-

healing capabilities that automatically identify and heal 

broken locators during test execution. This eliminates the need 

for manual intervention and ensures that tests continue to run 

successfully even after page changes. 

Machine learning-powered locator strategies leverage 

machine learning algorithms to analyze page changes and 

identify alternative locator strategies that are more robust to 

updates [31]. This ensures that tests are not dependent on 

fragile locators that are likely to break. Integrates with existing 

Selenium test suites, making it easy to adopt without 

disrupting existing workflows, and supports a wide range of 

testing frameworks, including Java, Python, JavaScript, and 

C# [32].  

Significantly decreases the time and effort required to 

maintain automated tests, freeing up testers to concentrate on 

more valuable tasks. Testers can invest more time in 

developing new test cases and expanding test coverage, 

leading to a more comprehensive testing strategy [33]. 

Streamlines the test automation process, enabling testers to 

execute tests more efficiently and identify potential issues 

early in the development cycle. The main focus of this article 

is to provide a relative analysis of mercantile and open-source 

web-automated self-healing tools [34].  

A feasibility study on the most frequently used tools and 

a comparison of open sources and commercial ones to 

determine usability and effectiveness are provided in this 

paper. The article presents an extensive survey on automated 

test failure detection and healing tools.This paper aims to find 

out how different emerging tools and methodologies can be 

found to assess software system quality constraints in a 

developed product.  

A comparison of various tools based on existing 

literature, as well as a relative study on different automated 

testing methodologies, will be conducted, which will help in 

selecting testing tools and methodologies concerning Cost and 

Time [35]. To summarize, the emergence of self-healing 

frameworks in web-based automation mirrors the need to 

tackle the issue of test maintenance amidst the swiftly 

changing landscape of web applications [36].  

Integrating AI and machine learning technologies opens 

up new avenues for improving the effectiveness and flexibility 

of test automation, consequently bolstering the dependability 

and excellence of web-based software products.  

3. Comparative Analysis of Tools  
The study concentrated on six tools for application testing 

automation; their Characteristics, advantages, and 

disadvantages of using these tools are presented below. 

For this paper, automated test failure detection and 

healing tools chosen are the following: 

Mabl [37] is an Artificial Intelligence-based testing 

automation tool that comes with machine-learning algorithms 

for detecting and troubleshooting test failures. Auto-healing 

tests, self-healing test suites, finding root causes, it does it all. 

Everything has to do with the running of the tests, which is 

infinitely scalable in a cloud-managed infrastructure, which 

means all the tests run in parallel. Mabl uses machine learning 

to identify threats or issues and improve test execution. It 

identifies issues and triggers alerts of possible impacts for test 

monitoring; it identifies and eliminates flakiness 

automatically by detecting changes for web elements and then 

dynamically updates all related tests. Continuous comparison 

of test results with the test history allows failures, changes, 

and regressions to be more easily detected and delivers 

updated releases more often.  

It is again one of the testing frameworks identified in 

analyzed documents aimed at finding powerful Web elements 

that have a similar counterpart in their neighborhood, such as 

in a table using complex XPath selectors for finding elements. 

One may need to generate the locator for an element by its 

location, for example, in a list or table. Mabl will track page 

elements and display what might actually anchor to the target 

element, along with confidence ratings. It then enables editing 

of the list of attributes found based on the use case. If broken, 

it will outline which locator is broken, along with a few 

possible fixes that a tester has to manually validate. This 

means that the picked repair will automatically propagate to 

all tests using that locator. 

Appvance IQ [38] is an AI-powered automation platform 

that provides real self-healing capabilities. It automatically 

detects and fixes problems with test scripts so they can still 

work as they should, even when you change the application. 

Appvance IQ has basic methods of test generation, which 

include a visual script writer that allows the testers to generate 

scripts without coding and an Artificial intelligence-

independent scripting generator that uses Machine Learning 

and intelligent generation to create scripts based on actual user 

tasks. It creates and runs test cases automatically for different 

platforms and environments.  

It examines user actions in order to produce test cases that 

cover important scenarios encountered by multiple users. The 

tool detects bugs and vulnerabilities. In addition, it gives 
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opinions and suggestions for enhancing software quality. 

Additionally, it displays a dashboard for simple tracking and 

managing defects. Appvance IQ simplifies defect tracking and 

management by providing a consolidated defect-tracking 

dashboard coupled with detailed reports and analytics on 

testing activities. Appvance IQ enables testers’ maximum 

efficiency in testing their programs by covering most of the 

test coverage while ensuring the fewest tests are written using 

this tool, saving time that would be wasted in writing many 

test cases one by one, compiling them into numerous smaller 

ones or higher level ways such as applications or modules. 

Tricentis Tosca [39] can aid in identifying and resolving 

test failures. It comprises an integrated defect tracking system 

that supports troubleshooting the main reason for test failures 

and making remedies. It allows the creation and running of test 

cases on various platforms. It leverages state-of-the-art 

machine learning algorithms to analyze user behavior and 

generates test scenarios covering edge/corner cases as well as 

frequent workflows.  

It is able to classify errors and vulnerabilities and align 

them with standards to help increase software quality like the 

way Tricentis Tosca does. The tool includes an easy-to-read 

dashboard for monitoring defects and management and 

provides comprehensive reports on TSTNG activities across 

platforms or environments. 

Applitools [40] helps automate visual UI testing and 

monitoring with end-to-end tools that are AI-enabled. There’s 

a seamless integration of existing tests during test generation; 

no manual writing is required. Its Visual AI feature is where 

machines imitate behavior to identify functions in a web page. 

Next, its AI analyzes the screen of the application to find UI 

bugs, e.g., underlying, invisible, off-page, unexpected 

appearing features. Features are the comparison algorithm that 

identifies whether the changes are meaningful or just 

incidents. The algorithm is fully adaptive, so there is no 

manual configuration and no need for predefined settings.  

Applitools has been able to add AI to the validation process 

by separating test interaction and test validation, helping 

verify the state of the entire UI in a given scenario, and 

mapping and measuring thousands of elements, text, and 

images nearly instantly. You can replace traditional test 

assertions with a single checkpoint powered by AI that is 

capable of validating thousands of elements in just seconds 

using Visual AI. With these smart assertions, the entire 

interface can be validated in a single command. One simply 

needs to steer toward the interface that you would like to 

validate and then organize every element with algorithms to 

detect any meaningful changes in the future. 

Rapise [41] is a self-correcting automated testing 

program. It uses pattern recognition technology to monitor UI 

changes in applications, effectively adjusting its testing scripts 

along the way. For every recorded element, Rapise creates a 

“full-path locator.” A full-path locator includes information 

on all the attributes of an element as well as its ancestors’ 

attributes in the DOM tree. At the moment of running a 

recorded test, the element is discovered using a standard 

XPath locator, and there is no reason to apply this new locator 

called a “full-path locator”.  But in case the generated standard 

XPath during recording or being created manually by a tester 

for an element does not pass validity checks, a new full-path 

locator is employed to locate the most appropriate element on 

the page. There is a powerful and simple visual language in 

Rapise called Rapise Visual Language (RVL) that allows you 

to write automated tests without any programming experience.  

With this approach, scripts are written without code, a 

feature that makes automatic testing accessible to domain 

users and testers who can be far from being programmers. 

While running automated tests, it’s nearly always necessary to 

verify that the system is functioning correctly and that the data 

shown on the screen corresponds to assumptions. In addition, 

there is a strong validation framework that Rapise supports, 

which can be further developed through scripting in IDE as 

well as an efficient verification system for creating or 

including new checking points and validation steps while 

recording. By using Rapise, you can carry out both positive 

and negative testing with one script. 

Leapwork [42] is a self-healing no-code automation tool. 

This makes automatic resilient testing possible by enabling 

modifications of test cases as UI alters in applications. The no-

code interface lowers the barrier to entry, allowing business 

users, QA testers, and developers to create and maintain 

automated tests. Rapid creation of automated tests without the 

need for extensive coding knowledge accelerates the 

automation process. Uses AI to recognize and interact with UI 

elements, making the tests more robust against UI changes. 

Automatically adjusts test scripts in response to minor 

changes in the application under test. 

4. Comparative Analysis 
With the ever-changing state of software development, 

choosing test tools correctly becomes a preeminent necessity 

for both quality and efficiency. This means that every 

organization should have a better judgment on different 

parameters or at least understand them. Therefore, this 

comparative analysis focused attention on some major testing 

tools that could be compared against specified criteria, such as 

AI-powered test automation, Self-Healing Support, 

Programming knowledge, Supported testing types, 

Reliability, Customization, Performance, Documentation, 

Pricing, Test case generation. Table 1 shows a comparative 

analysis of selected testing tools based on evaluation 

parameters. Figure 1 shows a detailed feature-by-feature 

comparison of test automation tools with different capabilities 

and performance metrics. 
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Table 1. Comparative analysis of the characteristics of automated test failure detection and healing tools 

Criteria 
Mabl  

[37] 

Appvance IQ 

[38] 

Tricentis 

Tosca [39] 

Applitools 

[40] 

Rapise  

[41] 

Leapwork 

[42] 

AI-powered test 

automation 
Yes Yes Yes Yes Yes Yes 

Self-Healing 

Support 
Yes Yes Yes No Yes Yes 

Programming 

Knowledge 
No Yes Yes Yes Yes No 

Supported 

Testing Types 

UI, API, 

Mobile 

UI, API, 

Mobile 

UI, API, 

Mobile 

UI, API, 

Mobile 

UI, API, 

Mobile 

UI, API, 

Mobile 

Reliability High Medium High Medium Medium High 

Customization Limit High High Limited High Moderate 

Performance Fast Moderate Fast Fast Moderate Fast 

Documentation Yes Yes Yes Yes Yes Yes 

Pricing Pay-per-use 
Per-user 

subscription 
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Fig. 2 Quality factors achieved through frequency using automated testing tools 

 

Fig. 3 Reliability of testing tools 
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5. Conclusion 
With the increasing shift toward automation across 

various fields, Test Automation is an advanced alternative for 

testing groups. Everyone understands AI’s potential to re-

imagine and re-engineer software development and testing. 

However, while new automation tools and testing frameworks 

appear, there is a substantial lack of understanding of AI-based 

test automation scope, problem-solving strength, and 

solutions and tools available in this field. In particular, self-

repairing web-based frameworks are thoroughly analyzed for 

their potential and limitations in software testing and test 

automation. AI, machine learning, and advanced algorithms 

energy such frameworks. They represent optimistic answers 

and solutions to a long-standing problem of rewriting test 

scripts to match the vibrant displays of web applications [43]. 

5.1. Future Work 

The ideal tool is considered easy to install and implement, 

open source, and freely available. Thus, this tool helps us in 

further initiative by conducting experiments on these tools and 

further improving. These will evolve over time to become 

predictive, basing their anticipations of failure on historical 

data in order to optimize test coverage. Emerging technologies 

such as blockchain and IoT combined with self-healing, 

robust, adaptive, and future-ready testing frameworks are 

being developed for organizations. The research focuses on 

improving the quality and reliability of automated test failure 

identification mechanisms, reducing the time for false 

negatives and positives, and increasing self-recovery 

mechanisms. Finally, the paper provides a broad overview of 

the challenges and the possible routes to address them [44]. 
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