
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 2, 113-123, February 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I2P113 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Comparative Review on Automated Test Failure

Detection and Healing Tools

Nammi Hemanth Kumar1 *, Sireesha Rodda2

1,2Department of Computer Science Engineering, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.

*Corresponding Author : hnammi@gitam.in

Received: 11 December 2024 Revised: 10 January 2025 Accepted: 08 February 2025 Published: 22 February 2025

Abstract - The main aim of this paper was to evaluate automated test failure detection and healing tools in software test

automation. Although Artificial Intelligence and Machine Learning involve creating separate and individual algorithms for

accessing data and making sense of it by identifying patterns to form conclusions, these predictions should be used to their full

benefit for software testing. Automated test failure detection and healing tools are one approach that makes more of these

predictions become a reality under software testing. This paper reviews the existing literature regarding healing tools specifically

created for test failure detection and healing, particularly their performance in recognizing User Interface changes and healing

the test scripts automatically. The review presents the key characteristics, features, functionalities, and technologies used in the

tools, such as Artificial Intelligence, machine learning, visual testing, and integration with popular test automation frameworks.

By juxtaposing the sources reviewed above, the review outlines the pros and cons and promising application areas of each and

provides suggestions for appropriate uses in highly diverse testing conditions and contexts. Moreover, the review also starts with

the gaps and the challenges that the current cutting-edge approaches have faced and gives a future outlook on what directions

future research and development have in terms of automated test failure detection and healing. Somewhere It seems like there is

no distinctive technique framework or tool available that could support the automated test failure detection and healing and can

fulfill all the requirements. Finally, this paper ends with a discussion of the most popular tools available, along with the expressed

thought process about the present and forthcoming artificial intelligence for test automation.

Keywords - Test automation, Artificial Intelligence, Machine Learning, Self-healing tools.

1. Introduction
Testing is a necessary part of the process of constructing

any software. It ensures that the software produced is reliable

and responsive to users’ needs [1]. Testing can prevent

expensive problems down the line by catching errors

expeditious in the development process. Different tests can be

used, and which ones will depend on the particular software

that is being developed. Nevertheless, the ultimate aim is to

locate defects in the software so that they can be repaired

before it is released to users. These defects can be slight bugs

or faults, meaning errors in the code itself. However, some can

be serious problems that might cause the software to fail or

crash.

Last but not least, finding and repairing defects early can

lower the cost of correcting them later [2]. Manual and

automation testing are other primary divisions in software

testing. The former refers to software application testing

whereby it’s testing stands in the hands of a human being’s

actions, while the latter is a software tool or program that

controls the execution of tests, comparing the pages and

results produced by a program under test with the expected

behavior and mark it as passed or fail [3]. A manual tester

enters data into the application and uses the application by

interfacing with the application and checking how the

application responds. Automation testing refers to testing

software applications by employing a software tool that

executes the application’s source code. The test, most likely,

is written by an Automation tester who, in advance,

determines the actions that the tool will perform to test the

software’s source code [4]. As test automation in software

development continues to grow, robust and reliable test

execution has become more important.

The traditional automation tools are based on static

scripts, which are extremely sensitive to any changes in the

AUT. A slight modification of the UI can cause the failure of

tests if element attributes have been changed, the layout is

modified, or dynamic identifiers are introduced, necessitating

frequent script maintenance. Self-healing automation tools

aim to address this issue by automatically detecting and

adapting to changes in the AUT. While promising, current

solutions lack robustness, often failing in highly dynamic

environments or introducing inefficiencies.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hnammi@gitam.in

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

114

1.1. Software Testing

Software testing is known as the way to find defects,

while software testing has different reasons for conducting it.

One reason is improved software quality, where user

requirements and expectations are checked for this product so

that it can be said to be high-quality software. Testing ensures

the smooth running of a software system. In Software

Developing Life Cycle (SDLC), software-developing

companies spend much effort and time on testing [5]. Early

detection of defects at the SDLC saves time and money, but if

they are discovered later on during development, there will be

a significant rise in both time-to-market and costs.

Consequently, performing the test across all stages of

SDLC is more fruitful in identifying the flaws in the program

[6]. It is more cost-effective to fix them earlier before release.

Software testing aims at the evaluation of applications

capabilities or products, for example, reliability, portability,

efficiency, security, and usability, among others, which should

be thoroughly tested by checking out all these principles [7].

The intent of software testing is to detect errors or defects and

avoid the recurrence of defects in the software, which

aftermath in the overall improved effectiveness of the system.

1.2. Manual Software Testing

This is the most basic level of testing, where test cases are

executed directly by interacting with the software. The tester

creates a set of test examples that illustrate the features and

desired output of the software to be tested. These test cases are

language natural plain text. It is time-consuming because, in

manual testing, every activity will be performed manually by

the tester. It is more cost-effective, but it may be a good choice

in the case of some complex systems where critical issues are

not likely to be found via automated testing. In manual testing,

the tester plays a key role as the end user and checks all

features of the software to make sure that the behavior is intact

[8].

1.3. Automated Software Testing

The process of testing becomes efficient. Automated

software testing makes it easy to run different tests, such as

regression tests and performance tests. The advent of

automated testing made hard testing activities easier because

it can test a wide range of data sets and also duplicate the tests

many times without any human intervention. Automated

software testing calls for minimal capital outlay in terms of

purchasing licensed tools; however, this is insignificant as

compared to the cost savings realized from reduced efforts in

manual software testing [4].

Some phases through which automated software testing

passes are developing the test plan or preparing the test cases,

opting for the best tool to use, developing the scripts, and

finally running the automated testing tool using the developed

script. Automating software tests aims to reduce both the time

taken and the cost involved in such an activity. This leads to

more efficient operation in relation to reducing human

involvement during a test process. Testing automation

supports reusability for different upgrades of the tested system

by employing tester’s tool scripts [9]. There are several

benefits to using automation testing, including:

1.3.1. Reduced Time to Test

Automation testing can reduce the time taken to test any

software application. This is because automation tests can be

rerun and run concurrently, thus reducing the time spent on

testing.

1.3.2. Improved Accuracy

Automation tests improve the precision of testing. This

occurs since automation tests are performed similarly every

time, resulting in consistent outcomes.

1.3.3. Reduced Costs

Automation testing reduces costs during testing. It means

that automation tests can reduce labor costs.

If you are thinking about automated testing, then you have

an array of tools from which to choose [10]. In opting for a

tool for automation testing [11], some considerations should

be put in mind, such as the type of applications that need to be

tested, the programming languages used, and the allocated

budget. Self-healing test automation is a revolutionary

improvement in software testing [12], which aims at

addressing the problem of test automation scripts becoming

outdated when application interfaces change by minimizing

the necessity of frequent manual script updates through the use

of advanced technologies that enhance the endurance and

productivity of automated testing. In this exploration, key

attributes, uses, and benefits of these tools will be discussed.

Robust testing methodologies are essential in a dynamic field

like software development to ensure the quality and reliability

of software applications. One crucial step has been taken

through the emergence of automation testing, where

companies can quickly detect bugs and validate functionality.

However, it becomes more difficult as projects get more

complex over time to manage many complex and extensive

test suites. The most challenging aspect is that testing teams

must quickly catch and resolve test failures. Some examples

of these include changes to an application’s code, updates in

environment configurations, or even abrupt shifts in user

interface elements [13]. Untreated test failures can delay

development processes and software releases and break trust

in its quality.

As a result, Automated Test Failure Detection and

Healing Tools have been rising [14]. These benefits are from

the latest techniques like intricate algorithms, artificial

intelligence, machine learning, etc. It can immediately

highlight what is failing during discovery testing and requires

to be fixed [15] using automatic test failure detection and

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

115

recovery tools to make the software product quality better

because it helps in avoiding production bugs in case the defect

reaches pro when it comes to auto-detect failures of tests

automatically using some tool manage to recover them too.

Furthermore, it reduces costs associated with testing and

also shortens its period while increasing testers’ productivity

since it eliminates the time used when downtime is inevitable

for isolating issues with components of a system, thereby

enhancing the efficiency of the tests. They typically employ

both static analysis and dynamic analysis. Some static analysis

tools scan the code for errors, while some dynamic analysis

tools execute tests and check the codes against unexpected

results. It has its own pros and cons as there are multiple tools

that have been published. It allows you to diagnose and

resolve test failures more quickly and efficiently, reducing the

time spent maintaining test suites.

2. Review of Related Literature
The integration of Artificial Intelligence (AI) and

Machine Learning (ML) technologies into the software testing

process has been in the spotlight over the past few years.

Software testing has traditionally been linked with being time-

consuming and manpower-intensive, with a lot of human

effort going into test case development, test execution, and

result analysis. The advent of AI and ML, however, is bringing

about a paradigm shift in the software testing process, leading

to increased efficiency, accuracy, and overall coverage.

A study titled “Self-Healing Test Automation Framework

using AI and ML” presents case studies demonstrating the

application of self-healing mechanisms in various software

environments. The research focuses on developing automated

recovery processes that dynamically adjust tests based on real-

time data, addressing technical challenges such as AI

integration and scalability [16]. Here are several ways AI/ML

are impacting software testing:

2.1. Test Case Generation and Optimization

Automated test cases generation and optimization by

AI/ML The use of AI to sift through historical test data and

code changes, AI algorithms can suggest the most critical

scenarios in a shorter duration of time, making sure there are

no overlaps too, which provides non-redundancy along with

complete coverage [17]. It uses machine learning algorithms

to understand the codebase, user stories, and requirements

before automatically creating test cases. These algorithms find

different paths across the code and write tests to ensure all

these are covered efficiently.

Leveraging this information with machine learning

models can optimize existing test suites for dormant code

paths by pruning redundant or less critical test cases and

thereby reducing the total number of tests. This optimization

will decrease the execution time and amount of resources

needed for testing. For example, a machine learning algorithm

can determine and provide test cases for corner cases that were

overlooked during the manual creation of the edge cases. This

methodical approach also leads to hunting phased bugs and

ensuring the high quality of software.

2.2. Test Execution

Maintenance of test scripts is one of the biggest

challenges of automation testing. These tools leverage

artificial intelligence to detect such kinds of application

changes made in the Application Under Test (AUT), like UI

modifications or behind-the-scene code updates and make

corresponding repairments. This self-healing feature helps

radically reduce the maintenance effort required to keep test

scripts working over a longer period. Based on the last code

changes, historical test data, and even weighing if you need to

maximize QAs, their capacity or chances of detection defects

in real production, AI algorithms can decide which sequence

will be the most impact target for running executions.

This little trick results in running the most important tests

first, thus saving time and resources. AI-Augmented Test

Automation Test automation tools can execute tests much

faster while beating the quality of manual testing. These tools

are able to auto-adjust with any changes in the application

interface or code, making it easy for developers and reducing

the overhead of maintaining test scripts [18].

2.3. Defect Prediction and Analysis

By predicting defects, the testing efforts can be arranged

in order of predicted risk. Testing is focused on high-risk areas

identified by AI models to ensure critical bugs are captured

early during development. It will detect any anomalies in the

changes made to code, artifacts created during build or test

results that might indicate possible defects. Such anomalies,

which could go unnoticed when investigated manually, may

indicate concealed issues that should be examined further. ML

algorithms can analyze defect data to predict potential bugs in

new code, helping developers address issues before they

become critical. This proactive approach enhances software

quality and reliability [19].

2.4. Regression Testing

This is done by machine learning models determining the

impacts of code changes on different parts of an application.

AI understands how the different pieces relate with one

another and, therefore, can tell which sections may be affected

as a result of recent changes requiring proper regression tests

to be conducted. Machine-learning-based tools automatically

update and repair test scripts that break due to changes in an

application’s functionality. This self-repairing capacity

reduces maintenance overheads and ensures continued

functionality of scripts over time. AI/machine learning knows

which part of software needs retesting after a change, thus

optimizing regression testing efforts. This reduces the time

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

116

spent on regression testing and ensures that new changes do

not introduce new bugs [20].

2.5. Natural Language Processing (NLP) for Requirements

Analysis

NLP algorithms can be used to extract key information

automatically from several sources of requirements

documentation, including user stories, functional

specifications, and business requirement documents. Because

of this extraction process, major aspects such as features,

limitations and the user’s desires are identified without any

manual intervention. In addition, it can note inconsistencies in

different requirements or gaps that lack necessary

information. Thereby ensuring that a full set of requirements

will be covered for the majority of key questions related to the

system. [21].

2.6. Self-Healing Test Automation

Traditional test scripts are designed using static locators

such as element IDs or XPaths for UI element identification

and interaction purposes. When the UI changes, those locators

may change, resulting in a failure. Broader test coverage is

allowed by self-healing since tests are going to work perfectly

even with applications that are constantly changing. It

provides accurate test results and helps locate actual defects

more quickly, rather than false positives due to minor UI

changes. More importantly, self-healing test automation

enables the maintenance of tests with script maintenance-

testers can focus more on developing new scripts and less on

fixing the current ones, thereby enhancing test coverage.

The self-healing system is able to adapt manually to any

changes that must be applied to guarantee the reliability of the

test suites, even if it transforms the application further. This

process allows learning over time without always needing to

go a step further and intervene manually each time, thus

making this continuing education process a good tool in

system monitoring. AI/ML-powered self-healing capabilities

ensure the automatic detection of changes in the application

under test and the adjustment of corresponding test scripts.

Thus, it reduces maintenance pressure on testers, who have to

cope with frequent modifications happening within

applications [22].

2.7. Visual Testing

Computer vision technologies equip AI tools for visual

testing. It ensures that the UI will look/behave as expected

across different devices and screen resolutions. This

technology is instrumental in ensuring that layouts, colors,

fonts, and images appear correctly on various devices’

screens, regardless of which browser a user chooses and

screen resolution. Visual testing complements functional

testing by guaranteeing that the application works correctly

and looks like it should. This is especially important in rich

graphical interface applications [23].

2.8. Intelligent Test Data Generation

Test case generation is a crucial phase of software testing.

It is done to ensure that the software can be tested with

different inputs and situations, thus being able to handle any

unexpected inputs gracefully. Nonetheless, manual generation

of test cases may be time-consuming and prone to errors.

Intelligent Test Data Generation (ITDG), on the other hand,

involves using artificial intelligence to automatically generate

test cases. The scale of the data to be generated may differ

substantially. This can make ITDG tools struggle to produce

valid yet challenging data. This must involve generating very

wide-ranging data that will be used to thoroughly prove the

program. Thus, ITDG tools may have challenges in providing

full coverage for all combinations of inputs and conditions

since this would require coming up with many varied datasets.

As a result, test data generation becomes faster, easier and

more reliable. AI could create reliable test data that mirrors

real environments and diverse edge cases, thus enabling robust

tests. This is key to ensuring the integrity and security of data

[24].

2.9. Root Cause Analysis

Automating the analysis process will easily spot and fix

defects; this is a very big advantage because it saves the time

that should have been spent in debugging and resolution

process of defects, and ML algorithms can analyze large

datasets with high accuracy, which minimizes human errors,

therefore, increasing the trustworthiness of root cause

identification. It can also trace the flow of data and control

through the application to point out exactly where the code

failed. AI understands code dependencies and relationships,

thereby predicting the effect of a defect by analyzing affected

areas and locating the root cause. Root cause patterns like

defects and test failures and their graphical representation

have become clearer using AI/ML. This can rapidly diagnose

and resolve troubles, thereby enhancing overall development

efficiency [25].

Currently, automating test generation and execution is a

highly desirable improvement in testing productivity and cost

reduction [26]. Automation facilitates more test cycles due to

repetitive tests and more continual test runs. There are some

frameworks, such as TestNG and BDD [27]. These

frameworks enable the tester to write their test cases more

productively and effectively in a shorter amount of time.

Adding artificial intelligence to automation that is currently

based on Selenium would make the testing processes more

practical, adaptable, and intelligent.

Automation testing is an indispensable part of modern

software testing, enabling faster releases, higher quality

products, and more efficient use of resources [28]. By

leveraging automation, organizations can enhance their testing

processes, achieve better coverage, and ensure that their

software meets the highest standards of quality and

performance. This technique would enable Selenium to adapt

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

117

to the rapidly changing characteristics of today’s 21st-century

web applications. More importantly, it allows testers to focus

on work that adds the most value, such as creating test

scenarios and scrutinizing [29]. There is a small amount of

research on automated detection and repair tools for failed

testing. However, there is research in this area. These studies

have shown that automated test failure detection and healing

tools can be effective in identifying and fixing defects in

software. Samad et al. [30] discussed details about Self-

healing capabilities that automatically identify and heal

broken locators during test execution. This eliminates the need

for manual intervention and ensures that tests continue to run

successfully even after page changes.

Machine learning-powered locator strategies leverage

machine learning algorithms to analyze page changes and

identify alternative locator strategies that are more robust to

updates [31]. This ensures that tests are not dependent on

fragile locators that are likely to break. Integrates with existing

Selenium test suites, making it easy to adopt without

disrupting existing workflows, and supports a wide range of

testing frameworks, including Java, Python, JavaScript, and

C# [32].

Significantly decreases the time and effort required to

maintain automated tests, freeing up testers to concentrate on

more valuable tasks. Testers can invest more time in

developing new test cases and expanding test coverage,

leading to a more comprehensive testing strategy [33].

Streamlines the test automation process, enabling testers to

execute tests more efficiently and identify potential issues

early in the development cycle. The main focus of this article

is to provide a relative analysis of mercantile and open-source

web-automated self-healing tools [34].

A feasibility study on the most frequently used tools and

a comparison of open sources and commercial ones to

determine usability and effectiveness are provided in this

paper. The article presents an extensive survey on automated

test failure detection and healing tools.This paper aims to find

out how different emerging tools and methodologies can be

found to assess software system quality constraints in a

developed product.

A comparison of various tools based on existing

literature, as well as a relative study on different automated

testing methodologies, will be conducted, which will help in

selecting testing tools and methodologies concerning Cost and

Time [35]. To summarize, the emergence of self-healing

frameworks in web-based automation mirrors the need to

tackle the issue of test maintenance amidst the swiftly

changing landscape of web applications [36].

Integrating AI and machine learning technologies opens

up new avenues for improving the effectiveness and flexibility

of test automation, consequently bolstering the dependability

and excellence of web-based software products.

3. Comparative Analysis of Tools
The study concentrated on six tools for application testing

automation; their Characteristics, advantages, and

disadvantages of using these tools are presented below.

For this paper, automated test failure detection and

healing tools chosen are the following:

Mabl [37] is an Artificial Intelligence-based testing

automation tool that comes with machine-learning algorithms

for detecting and troubleshooting test failures. Auto-healing

tests, self-healing test suites, finding root causes, it does it all.

Everything has to do with the running of the tests, which is

infinitely scalable in a cloud-managed infrastructure, which

means all the tests run in parallel. Mabl uses machine learning

to identify threats or issues and improve test execution. It

identifies issues and triggers alerts of possible impacts for test

monitoring; it identifies and eliminates flakiness

automatically by detecting changes for web elements and then

dynamically updates all related tests. Continuous comparison

of test results with the test history allows failures, changes,

and regressions to be more easily detected and delivers

updated releases more often.

It is again one of the testing frameworks identified in

analyzed documents aimed at finding powerful Web elements

that have a similar counterpart in their neighborhood, such as

in a table using complex XPath selectors for finding elements.

One may need to generate the locator for an element by its

location, for example, in a list or table. Mabl will track page

elements and display what might actually anchor to the target

element, along with confidence ratings. It then enables editing

of the list of attributes found based on the use case. If broken,

it will outline which locator is broken, along with a few

possible fixes that a tester has to manually validate. This

means that the picked repair will automatically propagate to

all tests using that locator.

Appvance IQ [38] is an AI-powered automation platform

that provides real self-healing capabilities. It automatically

detects and fixes problems with test scripts so they can still

work as they should, even when you change the application.

Appvance IQ has basic methods of test generation, which

include a visual script writer that allows the testers to generate

scripts without coding and an Artificial intelligence-

independent scripting generator that uses Machine Learning

and intelligent generation to create scripts based on actual user

tasks. It creates and runs test cases automatically for different

platforms and environments.

It examines user actions in order to produce test cases that

cover important scenarios encountered by multiple users. The

tool detects bugs and vulnerabilities. In addition, it gives

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

118

opinions and suggestions for enhancing software quality.

Additionally, it displays a dashboard for simple tracking and

managing defects. Appvance IQ simplifies defect tracking and

management by providing a consolidated defect-tracking

dashboard coupled with detailed reports and analytics on

testing activities. Appvance IQ enables testers’ maximum

efficiency in testing their programs by covering most of the

test coverage while ensuring the fewest tests are written using

this tool, saving time that would be wasted in writing many

test cases one by one, compiling them into numerous smaller

ones or higher level ways such as applications or modules.

Tricentis Tosca [39] can aid in identifying and resolving

test failures. It comprises an integrated defect tracking system

that supports troubleshooting the main reason for test failures

and making remedies. It allows the creation and running of test

cases on various platforms. It leverages state-of-the-art

machine learning algorithms to analyze user behavior and

generates test scenarios covering edge/corner cases as well as

frequent workflows.

It is able to classify errors and vulnerabilities and align

them with standards to help increase software quality like the

way Tricentis Tosca does. The tool includes an easy-to-read

dashboard for monitoring defects and management and

provides comprehensive reports on TSTNG activities across

platforms or environments.

Applitools [40] helps automate visual UI testing and

monitoring with end-to-end tools that are AI-enabled. There’s

a seamless integration of existing tests during test generation;

no manual writing is required. Its Visual AI feature is where

machines imitate behavior to identify functions in a web page.

Next, its AI analyzes the screen of the application to find UI

bugs, e.g., underlying, invisible, off-page, unexpected

appearing features. Features are the comparison algorithm that

identifies whether the changes are meaningful or just

incidents. The algorithm is fully adaptive, so there is no

manual configuration and no need for predefined settings.

Applitools has been able to add AI to the validation process

by separating test interaction and test validation, helping

verify the state of the entire UI in a given scenario, and

mapping and measuring thousands of elements, text, and

images nearly instantly. You can replace traditional test

assertions with a single checkpoint powered by AI that is

capable of validating thousands of elements in just seconds

using Visual AI. With these smart assertions, the entire

interface can be validated in a single command. One simply

needs to steer toward the interface that you would like to

validate and then organize every element with algorithms to

detect any meaningful changes in the future.

Rapise [41] is a self-correcting automated testing

program. It uses pattern recognition technology to monitor UI

changes in applications, effectively adjusting its testing scripts

along the way. For every recorded element, Rapise creates a

“full-path locator.” A full-path locator includes information

on all the attributes of an element as well as its ancestors’

attributes in the DOM tree. At the moment of running a

recorded test, the element is discovered using a standard

XPath locator, and there is no reason to apply this new locator

called a “full-path locator”. But in case the generated standard

XPath during recording or being created manually by a tester

for an element does not pass validity checks, a new full-path

locator is employed to locate the most appropriate element on

the page. There is a powerful and simple visual language in

Rapise called Rapise Visual Language (RVL) that allows you

to write automated tests without any programming experience.

With this approach, scripts are written without code, a

feature that makes automatic testing accessible to domain

users and testers who can be far from being programmers.

While running automated tests, it’s nearly always necessary to

verify that the system is functioning correctly and that the data

shown on the screen corresponds to assumptions. In addition,

there is a strong validation framework that Rapise supports,

which can be further developed through scripting in IDE as

well as an efficient verification system for creating or

including new checking points and validation steps while

recording. By using Rapise, you can carry out both positive

and negative testing with one script.

Leapwork [42] is a self-healing no-code automation tool.

This makes automatic resilient testing possible by enabling

modifications of test cases as UI alters in applications. The no-

code interface lowers the barrier to entry, allowing business

users, QA testers, and developers to create and maintain

automated tests. Rapid creation of automated tests without the

need for extensive coding knowledge accelerates the

automation process. Uses AI to recognize and interact with UI

elements, making the tests more robust against UI changes.

Automatically adjusts test scripts in response to minor

changes in the application under test.

4. Comparative Analysis
With the ever-changing state of software development,

choosing test tools correctly becomes a preeminent necessity

for both quality and efficiency. This means that every

organization should have a better judgment on different

parameters or at least understand them. Therefore, this

comparative analysis focused attention on some major testing

tools that could be compared against specified criteria, such as

AI-powered test automation, Self-Healing Support,

Programming knowledge, Supported testing types,

Reliability, Customization, Performance, Documentation,

Pricing, Test case generation. Table 1 shows a comparative

analysis of selected testing tools based on evaluation

parameters. Figure 1 shows a detailed feature-by-feature

comparison of test automation tools with different capabilities

and performance metrics.

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

119

Table 1. Comparative analysis of the characteristics of automated test failure detection and healing tools

Criteria
Mabl

[37]

Appvance IQ

[38]

Tricentis

Tosca [39]

Applitools

[40]

Rapise

[41]

Leapwork

[42]

AI-powered test

automation
Yes Yes Yes Yes Yes Yes

Self-Healing

Support
Yes Yes Yes No Yes Yes

Programming

Knowledge
No Yes Yes Yes Yes No

Supported

Testing Types

UI, API,

Mobile

UI, API,

Mobile

UI, API,

Mobile

UI, API,

Mobile

UI, API,

Mobile

UI, API,

Mobile

Reliability High Medium High Medium Medium High

Customization Limit High High Limited High Moderate

Performance Fast Moderate Fast Fast Moderate Fast

Documentation Yes Yes Yes Yes Yes Yes

Pricing Pay-per-use
Per-user

subscription

Per-user

subscription

Per-user

subscription

Per-user

subscription

Per-user

subscription

Test Case

Generation
Yes Yes Yes Yes Yes Yes

Fig. 1 Comparison of test automation tools

0

0.1

0.2

0.3

0.4

0.5

0.6

Mabl Appvance IQ

Tricentris Tosca Appiltools

Rapise Leapwork

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

120

Fig. 2 Quality factors achieved through frequency using automated testing tools

Fig. 3 Reliability of testing tools

Fig. 4 Performance of testing tools

85
90

75
80

70

95

65

Reliability Maintainability Efficiency Usability Portability Functionality Security

Software Quality Factors

High

Medium

Low

Mabl Appvance IQ Tricentis

Tosca

Applitools Rapise Leapwotk

R
el

ia
b

il
it

y

Fast

Moderate

Slow

Mabl Appvance iQ Tricentis

Tosca

Applitools Rapise Leapwotk

P
er

fo
rm

an
ce

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

121

5. Conclusion
With the increasing shift toward automation across

various fields, Test Automation is an advanced alternative for

testing groups. Everyone understands AI’s potential to re-

imagine and re-engineer software development and testing.

However, while new automation tools and testing frameworks

appear, there is a substantial lack of understanding of AI-based

test automation scope, problem-solving strength, and

solutions and tools available in this field. In particular, self-

repairing web-based frameworks are thoroughly analyzed for

their potential and limitations in software testing and test

automation. AI, machine learning, and advanced algorithms

energy such frameworks. They represent optimistic answers

and solutions to a long-standing problem of rewriting test

scripts to match the vibrant displays of web applications [43].

5.1. Future Work

The ideal tool is considered easy to install and implement,

open source, and freely available. Thus, this tool helps us in

further initiative by conducting experiments on these tools and

further improving. These will evolve over time to become

predictive, basing their anticipations of failure on historical

data in order to optimize test coverage. Emerging technologies

such as blockchain and IoT combined with self-healing,

robust, adaptive, and future-ready testing frameworks are

being developed for organizations. The research focuses on

improving the quality and reliability of automated test failure

identification mechanisms, reducing the time for false

negatives and positives, and increasing self-recovery

mechanisms. Finally, the paper provides a broad overview of

the challenges and the possible routes to address them [44].

References
[1] Itti Hooda, and Rajender Singh Chhillar, “Software Test Process, Testing Types and Techniques,” International Journal of Computer

Applications, vol. 111, no. 13, 2015. [Google Scholar] [Publisher Link]

[2] Glenford J. Myers, Corey Sandler, and Tom Badgett, The Art of Software Testing, John Wiley & Sons, 2011. [Google Scholar] [Publisher

Link]

[3] Juha Itkonen, Mika V. Mantyla, and Casper Lassenius, “How Do Testers Do It? An Exploratory Study on Manual Testing Practices,” 3rd

International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL, USA, 2009. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Suresh Thummalapenta et al., “Automating Test Automation,” 34th International Conference on Software Engineering (ICSE), Zurich,

Switzerland, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[5] Shikha, and Kailash Bahl, “Software Testing Tools & Techniques for Web Applications,” International Journal of Engineering and

Technical Research (IJETR), vol. 3, no. 5, 2015. [Google Scholar] [Publisher Link]

[6] Nazia Islam, “A Comparative Study of Automated Software Testing Tools,” Culminating Projects in Computer Science and Information

Technology, 2016. [Google Scholar] [Publisher Link]

[7] Vishawjyoti, and Sachin Sharma, “Study and Analysis of Automation Testing Techniques,” Journal of Global Research in Computer

Science, vol. 3, no. 12, pp. 36-43, 2012. [Publisher Link]

[8] Andreas Spillner, and Tilo Linz, Software Testing Foundations: A Study Guide for the Certified Tester Exam-Foundation Level-ISTQB®

Compliant, dpunkt. Verlag, 5th ed., 2021. [Google Scholar] [Publisher Link]

[9] Dorothy Graham, and Mark Fewster, “Experiences of Test Automation: Case Studies of Software Test Automation,” Addison-Wesley

Professional, 2012. [Google Scholar] [Publisher Link]

[10] Mubarak Albarka Umar, and Chen Zhanfang, “A Study of Automated Software Testing: Automation Tools and Frameworks,”

International Journal of Computer Science Engineering (IJCSE), vol. 8, no. 6, pp. 217-225, 2019. [Google Scholar] [Publisher Link]

[11] Anand Singh Gadwal, and Lalji Prasad, “Comparative Review of the Literature of Automated Testing Tools,” 2020. [Google Scholar]

[12] Soorajit Mukherjee, “Self-Healing Test Automation,” Medium, 2020. [Publisher Link]

[13] Gemma Catolino et al., “Not All Bugs are the Same: Understanding, Characterizing, and Classifying Bug Types,” Journal of Systems and

Software, vol. 152, pp. 165-181, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[14] Dhaya Sindhu Battina, “Artificial Intelligence in Software Test Automation: A Systematic Literature Review,” International Journal of

Emerging Technologies and Innovative Research, vol. 6, no. 12, 2019. [Google Scholar] [Publisher Link]

[15] Shahrokh Jalilian, and Shafagat J. Mahmudova. “Automatic Generation of Test Cases for Error Detection Using the Extended Imperialist

Competitive Algorithm,” Problems of Information Society, vol. 13, no. 2, pp. 46-54, 2022. [Google Scholar] [Publisher Link]

[16] Sutharsan Chiranjeevi Partha Saarathy, Suresh Bathrachalam, and Bharath Kumar Rajendran, “Self-Healing Test Automation Framework

Using AI and ML,” International Journal of Strategic Management, vol. 3, no. 3, pp. 45-77, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[17] Shahbaa I. Khalee, and Raghda Anan, “A Review Paper: Optimal Test Cases for Regression Testing Using Artificial Intelligent

Techniques,” International Journal of Electrical & Computer Engineering, vol. 13, no. 2, pp. 1803-1816

 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Gabaire Elmi Bile, “The Utilization of Log Files Generated by Test Executions: A Systematic Literature Review,” Digitala Vetenskapliga

Arkivet, 2023. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+test+process%2C+testing+types+and+techniques&btnG=
https://research.ijcaonline.org/volume111/number13/pxc3901433.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+art+of+software+testing&btnG=
https://books.google.co.in/books?hl=en&lr=&id=GjyEFPkMCwcC&oi=fnd&pg=PP7&dq=The+art+of+software+testing&ots=AjtVN0i_3h&sig=sNku7xyU2K3p8s37v3f10NVu_rk&redir_esc=y#v=onepage&q=The%20art%20of%20software%20testing&f=false
https://books.google.co.in/books?hl=en&lr=&id=GjyEFPkMCwcC&oi=fnd&pg=PP7&dq=The+art+of+software+testing&ots=AjtVN0i_3h&sig=sNku7xyU2K3p8s37v3f10NVu_rk&redir_esc=y#v=onepage&q=The%20art%20of%20software%20testing&f=false
https://doi.org/10.1109/ESEM.2009.5314240
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+do+testers+do+it%3F+An+exploratory+study+on+manual+testing+practices&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+do+testers+do+it%3F+An+exploratory+study+on+manual+testing+practices&btnG=
https://ieeexplore.ieee.org/document/5314240
https://doi.org/10.1109/ICSE.2012.6227131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automating+test+automation&btnG=
https://ieeexplore.ieee.org/document/6227131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Testing+Tools+%26+Techniques+for+Web+Applications&btnG=
https://www.erpublication.org/page/view_issue/volume3-issue5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Study+of+Automated+Software+Testing+Tools&btnG=
https://repository.stcloudstate.edu/csit_etds/12/
https://www.rroij.com/archive/grcs-volume-3-issue-12-year-2012.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Testing+Foundations%3A+A+Study+Guide+for+the+Certified+Tester+Exam-Foundation+Level-ISTQB%C2%AE+Compliant&btnG=
https://books.google.co.in/books?hl=en&lr=&id=MzQ7EAAAQBAJ&oi=fnd&pg=PA1&dq=Software+Testing+Foundations:+A+Study+Guide+for+the+Certified+Tester+Exam-Foundation+Level-ISTQB%C2%AE+Compliant&ots=Djt6Yk1C5l&sig=QxdG3GQHF20-Y9Uz4TqCtZCBh6Y&redir_esc=y#v=onepage&q=Software%20Testing%20Foundations%3A%20A%20Study%20Guide%20for%20the%20Certified%20Tester%20Exam-Foundation%20Level-ISTQB%C2%AE%20Compliant&f=false
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experiences+of+test+automation%3A+case+studies+of+software+test+automation&btnG=
https://books.google.co.in/books?hl=en&lr=&id=62pUzABIZSwC&oi=fnd&pg=PR9&dq=Experiences+of+test+automation:+case+studies+of+software+test+automation&ots=VMCHOopB0x&sig=Ojxio4UEqVP4BGjjuG_kCR8Nouc&redir_esc=y#v=onepage&q=Experiences%20of%20test%20automation%3A%20case%20studies%20of%20software%20test%20automation&f=false
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+study+of+automated+software+testing%3A+Automation+tools+and+frameworks&btnG=
https://www.ijcse.net/abstract.php?file=19-08-06-011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+review+of+the+literature+of+automated+testing+tools&btnG=
https://medium.com/@captainsuro/self-healing-test-automation-5e9473525905
https://doi.org/10.1016/j.jss.2019.03.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Not+all+bugs+are+the+same%3A+Understanding%2C+characterizing%2C+and+classifying+bug+types&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121219300536?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+intelligence+in+software+test+automation%3A+A+systematic+literature+review&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4004324
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+generation+of+test+cases+for+error+detection+using+the+extended+Imperialist+Competitive+Algorithm&btnG=
https://jpis.az/en/journals/285
https://doi.org/10.47604/ijsm.2843
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-Healing+Test+Automation+Framework+using+AI+and+ML&btnG=
https://www.iprjb.org/journals/index.php/IJSM/article/view/2843
https://www.iprjb.org/journals/index.php/IJSM/article/view/2843
http://doi.org/10.11591/ijece.v13i2.pp1803-1816
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+paper%3A+optimal+test+cases+for+regression+testing+using+artificial+intelligent+techniques&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/27923
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Utilization+of+Log+Files+Generated+by+Test+Executions%3A+A+Systematic+Literature+Review&btnG=
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1733241&dswid=9703

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

122

[19] Szymon Stradowski, and Lech Madeyski, “Machine Learning in Software Defect Prediction: A Business-Driven Systematic Mapping

Study,” Information and Software Technology, vol. 155, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Shravan Pargaonkar, “Advancements in Security Testing: A Comprehensive Review of Methodologies and Emerging Trends in Software

Quality Engineering,” International Journal of Science and Research (IJSR), vol. 12, no. 9, pp. 61-66, 2023. [Google Scholar] [Publisher

Link]

[21] Sabina-Cristiana Necula, Florin Dumitriu, and Valerică Greavu-Șerban, “A Systematic Literature Review on using Natural Language

Processing in Software Requirements Engineering,” Electronics, vol. 13, no. 11, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[22] Zahra Yazdanparast, “A Survey on Self-Healing Software System,” arXiv, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[23] Yasunari Matsuzaka, and Ryu Yashiro, “AI-Based Computer Vision Techniques and Expert Systems,” AI, vol. 4, no. 1, pp. 289-302,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[24] Gagan Kumar, Vinay Chopra, and Dinesh Gupta, “Systematic Literature Review in Software Test Data Generation,” Emerging Trends in

Engineering and Management, pp. 91-107. 2023. [CrossRef] [Google Scholar] [Publisher Link]

[25] C. Anjali, Julia Punitha Malar Dhas, and J. Amar Pratap Singh, “Automated Program and Software Defect Root Cause Analysis using

Machine Learning Techniques,” Automation: Journal of Automation, Measurement, Electronics, Computing and Communications, vol.

64, no. 4, pp. 878-885, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah, “Leveraging Existing Tests in Automated Test Generation for Web

Applications,” Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 67-78, 2014.

[CrossRef] [Google Scholar] [Publisher Link]

[27] Shivkumar Goel, and Kshitija Vartak, “Selenium with Support of both Test NG and Cucumber Frameworks,” International Journal of

Computer Applications, vol. 180, no. 51, 2018. [Publisher Link]

[28] Ghada Alsuwailem, and Ohoud Alharbi, “Utilizing Machine Learning for Predicting Software Faults through Selenium Testing Tool,”

International Journal of Computations, Information and Manufacturing (IJCIM), vol. 3, no. 2, 13-27, 2023. [Google Scholar] [Publisher

Link]

[29] Dalia Alamleh, “Utilizing AI in Test Automation to Perform Functional Testing on Web Application,” Science and Information

Conference, Springe, vol. 507, pp. 359-377, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[30] Abdus Samad et al., “A Cognitive Approach in Software Automation Testing,” Proceedings of the International Conference on Innovative

Computing & Communication, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[31] Hadeel Mohamed Eladawy, Amr E. Mohamed, and Sameh A. Salem, “A New Algorithm for Repairing Web-Locators Using Optimization

Techniques,” 13th International Conference on Computer Engineering and Systems, Cairo, Egypt, pp. 327-331, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[32] Harshita Wardhan, and Suman Madan, “Study on Functioning of Selenium Testing Tool,” International Research Journal of

Modernization in Engineering Technology and Science, vol. 3, no. 4, 2021. [Google Scholar] [Publisher Link]

[33] Mubarak Albarka Umar, “A Study of Software Testing: Categories, Levels, Techniques, and Types,” Authorea Preprints, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[34] Filippo Ricca, Alessandro Marchetto, and Andrea Stocco, “AI-Based Test Automation: A Grey Literature Analysis,” IEEE International

Conference on Software Testing, Verification and Validation Workshops, Porto de Galinhas, Brazil, pp. 263-270, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[35] Rohit Khankhoje, “Effortless Test Maintenance: A Critical Review of Self-Healing Frameworks,” International Journal for Research in

Applied Science and Engineering Technology, vol. 11, no. 10, 2023. [Google Scholar] [Publisher Link]

[36] João Paulo Magalhães, and Luis Moura Silva, “SHoWA: A Self-Healing Framework for Web-Based Applications,” ACM Transactions

on Autonomous and Adaptive Systems, vol. 10, no. 1, pp. 1-28, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[37] Rohit Khankhoje, “An Intelligent Apitesting: Unleashing the Power of AI,” International Journal of Software Engineering and

Application, vol. 15, no. 1, pp. 1-8, 2024. [Google Scholar] [Publisher Link]

[38] Moez Krichen, “A Survey on Formal Verification and Validation Techniques for the Internet of Things,” Applied Sciences, vol. 13, no.

14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[39] Flaviu Fuior, “An Overview of Some Tools for Automated Testing of Software Applications,” Romanian Journal of Information

Technology & Automatic Control, vol. 29, no. 3, pp. 97-106, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[40] Phuoc Pham, Vu Nguyen, and Tien Nguyen, “A Review of AI-Augmented End-to-End Test Automation Tools,” Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering, pp. 1-4, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[41] Danijel Radošević, Nikola Mrvac, and Andrija Bernik, “Robotic Process Automation with Optoklik,” Preprints, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[42] Marina Cernat, Adelina Nicoleta Staicu, and Alin Stefanescu, “Towards Automated Testing of RPA Implementations,” Proceedings of

the 11th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation, pp. 21-24, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.infsof.2022.107128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+in+software+defect+prediction%3A+A+business-driven+systematic+mapping+study&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584922002373?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advancements+in+Security+Testing%3A+A+Comprehensive+Review+of+Methodologies+and+Emerging+Trends+in+Software+Quality+Engineering&btnG=
https://www.ijsr.net/getabstract.php?paperid=SR23829090815
https://www.ijsr.net/getabstract.php?paperid=SR23829090815
https://doi.org/10.3390/electronics13112055
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Literature+Review+on+Using+Natural+Language+Processing+in+Software+Requirements+Engineering&btnG=
https://www.mdpi.com/2079-9292/13/11/2055
https://doi.org/10.48550/arXiv.2403.00455
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Self-healing+Software+System&btnG=
https://arxiv.org/abs/2403.00455
https://doi.org/10.3390/ai4010013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-based+computer+vision+techniques+and+expert+systems&btnG=
https://www.mdpi.com/2673-2688/4/1/13
https://doi.org/10.56155/978-81-955020-3-5-11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=systematic+Literature+Review+in+Software+Test+Data+Generation.&btnG=
https://www.publications.scrs.in/chapter/978-81-955020-3-5/11
https://doi.org/10.1080/00051144.2023.2225344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+program+and+software+defect+root+cause+analysis+using+machine+learning+techniques&btnG=
https://www.tandfonline.com/doi/full/10.1080/00051144.2023.2225344
https://doi.org/10.1145/2642937.2642991
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Leveraging+existing+tests+in+automated+test+generation+for+web+applications&btnG=
https://dl.acm.org/doi/10.1145/2642937.2642991
https://www.ijcaonline.org/archives/volume180/number51/29582-2018917334/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Utilizing+Machine+Learning+for+Predicting+Software+Faults+Through+Selenium+Testing+Tool&btnG=
https://www.journals.gaftim.com/index.php/ijcim/article/view/309
https://www.journals.gaftim.com/index.php/ijcim/article/view/309
https://doi.org/10.1007/978-3-031-10464-0_24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Utilizing+AI+in+Test+Automation+to+Perform+Functional+Testing+on+Web+Application&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-10464-0_24
https://dx.doi.org/10.2139/ssrn.3834262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Cognitive+Approach+in+Software+Automation+Testing&btnG=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3834262
https://doi.org/10.1109/ICCES.2018.8639336
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+algorithm+for+repairing+web-locators+using+optimization+techniques&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+algorithm+for+repairing+web-locators+using+optimization+techniques&btnG=
https://ieeexplore.ieee.org/document/8639336
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+On+Functioning+Of+Selenium+Testing+Tool&btnG=
https://www.irjmets.com/paperdetail.php?paperId=1c2c85b459ea09fbc1422ff7a767c879&title=STUDY+ON+FUNCTIONING+OF+SELENIUM+TESTING+TOOL&authpr=Harshita+Wardhan+%2C+Dr.+Suman+Madan
https://doi.org/10.36227/techrxiv.12578714.v1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+study+of+software+testing%3A+categories%2C+levels%2C+techniques%2C+and+types&btnG=
https://www.techrxiv.org/doi/full/10.36227/techrxiv.12578714.v1
https://doi.org/10.1109/ICSTW52544.2021.00051
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ai-based+test+automation%3A+A+grey+literature+analysis&btnG=
https://ieeexplore.ieee.org/document/9440153
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effortless+Test+Maintenance%3A+A+Critical+Review+of+Self-Healing+Frameworks.%E2%80%9D+&btnG=
https://www.ijraset.com/ijraset-volume/volume11-issuex-october2023
https://doi.org/10.1145/2700325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SHo+WA%3A+a+self-healing+framework+for+Web-based+applications&btnG=
https://dl.acm.org/doi/10.1145/2700325
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Intelligent+Apitesting%3A+Unleashing+The+Power+Of+AI.%E2%80%9D&btnG=
https://aircconline.com/abstract/ijsea/v15n1/15124ijsea01.html
https://doi.org/10.3390/app13148122
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+formal+verification+and+validation+techniques+for+the+Internet+of+Things&btnG=
https://www.mdpi.com/2076-3417/13/14/8122
https://doi.org/10.33436/v29i3y201908
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+overview+of+some+tools+for+automated+testing+of+software+applications&btnG=
https://rria.ici.ro/en/vol-29-no-3-2019/an-overview-of-some-tools-for-automated-testing-of-software-applications/
https://doi.org/10.1145/3551349.3563240
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+AI-augmented+End-to-End+Test+Automation+Tools&btnG=
https://dl.acm.org/doi/10.1145/3551349.3563240
http://doi.org/10.20944/preprints202102.0581.v1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robotic+Process+Automation+with+Optoklik&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robotic+Process+Automation+with+Optoklik&btnG=
https://www.preprints.org/manuscript/202102.0581
https://doi.org/10.1145/3412452.3423573
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+automated+testing+of+RPA+implementations&btnG=
https://dl.acm.org/doi/10.1145/3412452.3423573

Nammi Hemanth Kumar & Sireesha Rodda / IJEEE, 12(2), 113-123, 2025

123

[43] Yuvaraja Devarajan, “A Review on Intelligent Process Automation,” International Journal of Computer Applications, vol. 182, no. 36,

2019. [Google Scholar] [Publisher Link]

[44] Kam K.H. Ng et al., “A Systematic Literature Review on Intelligent Automation: Aligning Concepts from Theory, Practice, and Future

Perspectives,” Advanced Engineering Informatics, vol. 47, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+on+Intelligent+Process+Automation&btnG=
https://www.ijcaonline.org/archives/volume182/number36/30302-2019918374/
https://doi.org/10.1016/j.aei.2021.101246
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+on+intelligent+automation%3A+Aligning+concepts+from+theory%2C+practice%2C+and+future+perspectives.&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S147403462100001X?via%3Dihub

